Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = non-magnetized cylinder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1082 KB  
Article
Influence of Magnetic Field and Porous Medium on Taylor–Couette Flows of Second Grade Fluids Due to Time-Dependent Couples on a Circular Cylinder
by Dumitru Vieru and Constantin Fetecau
Mathematics 2025, 13(13), 2211; https://doi.org/10.3390/math13132211 - 7 Jul 2025
Viewed by 363
Abstract
Axially symmetric Taylor–Couette flows of incompressible second grade fluids induced by time-dependent couples inside an infinite circular cylinder are studied under the action of an external magnetic field. The influence of the medium porosity is taken into account in the mathematical modeling. Analytical [...] Read more.
Axially symmetric Taylor–Couette flows of incompressible second grade fluids induced by time-dependent couples inside an infinite circular cylinder are studied under the action of an external magnetic field. The influence of the medium porosity is taken into account in the mathematical modeling. Analytical expressions for the dimensionless non-trivial shear stress and the corresponding fluid velocity were determined using the finite Hankel and Laplace transforms. The solutions obtained are new in the specialized literature and can be customized for various problems of interest in engineering practice. For illustration, the cases of oscillating and constant couples have been considered, and the steady state components of the shear stresses were presented in equivalent forms. Numerical schemes based on finite differences have been formulated for determining the numerical solutions of the proposed problem. It was shown that the numerical results based on analytical solutions and those obtained with the numerical methods have close values with very good accuracy. It was also proved that the fluid flows more slowly and the steady state is reached earlier in the presence of a magnetic field or porous medium. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics, 3rd Edition)
Show Figures

Figure 1

16 pages, 66642 KB  
Article
Counterintuitive Particle Confinement in a Helical Force-Free Plasma
by Adam D. Light, Hariharan Srinivasulu, Christopher J. Hansen and Michael R. Brown
Plasma 2025, 8(2), 20; https://doi.org/10.3390/plasma8020020 - 26 May 2025
Cited by 1 | Viewed by 1222
Abstract
The force-free magnetic field solution formed in a high-aspect ratio cylinder is a non-axisymmetric (m=1), closed magnetic structure that can be produced in laboratory experiments. Force-free equilibria can have strong field gradients that break the usual adiabatic invariants associated [...] Read more.
The force-free magnetic field solution formed in a high-aspect ratio cylinder is a non-axisymmetric (m=1), closed magnetic structure that can be produced in laboratory experiments. Force-free equilibria can have strong field gradients that break the usual adiabatic invariants associated with particle motion, and gyroradii at measured conditions can be large relative to the gradient scale lengths of the magnetic field. Individual particle motion is largely unexplored in force-free systems without axisymmetry, and it is unclear how the large gradients influence confinement. To understand more about how particles remain confined in these configurations, we simulate a thermal distribution of protons moving in a high-aspect-ratio force-free magnetic field using a Boris stepper. The particle loss is logarithmic in time, which suggests trapping and/or periodic orbits. Many particles do remain confined in particular regions of the field, analogous to trapped particles in other magnetic configurations. Some closed flux surfaces can be identified, but particle orbits are not necessarily described by these surfaces. We show examples of orbits that remain on well-defined surfaces and discuss the statistical properties of confined and escaping particles. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Figure 1

17 pages, 1712 KB  
Article
Levenberg–Marquardt Analysis of MHD Hybrid Convection in Non-Newtonian Fluids over an Inclined Container
by Julien Moussa H. Barakat, Zaher Al Barakeh and Raymond Ghandour
Eng 2025, 6(5), 92; https://doi.org/10.3390/eng6050092 - 30 Apr 2025
Viewed by 693
Abstract
This work aims to explore the magnetohydrodynamic mixed convection boundary layer flow (MHD-MCBLF) on a slanted extending cylinder using Eyring–Powell fluid in combination with Levenberg–Marquardt algorithm–artificial neural networks (LMA-ANNs). The thermal properties include thermal stratification, which has a higher temperature surface on the [...] Read more.
This work aims to explore the magnetohydrodynamic mixed convection boundary layer flow (MHD-MCBLF) on a slanted extending cylinder using Eyring–Powell fluid in combination with Levenberg–Marquardt algorithm–artificial neural networks (LMA-ANNs). The thermal properties include thermal stratification, which has a higher temperature surface on the cylinder than on the surrounding fluid. The mathematical model incorporates essential factors involving mixed conventions, thermal layers, heat absorption/generation, geometry curvature, fluid properties, magnetic field intensity, and Prandtl number. Partial differential equations govern the process and are transformed into coupled nonlinear ordinary differential equations with proper changes of variables. Datasets are generated for two cases: a flat plate (zero curving) and a cylinder (non-zero curving). The applicability of the LMA-ANN solver is presented by solving the MHD-MCBLF problem using regression analysis, mean squared error evaluation, histograms, and gradient analysis. It presents an affordable computational tool for predicting multicomponent reactive and non-reactive thermofluid phase interactions. This study introduces an application of Levenberg–Marquardt algorithm-based artificial neural networks (LMA-ANNs) to solve complex magnetohydrodynamic mixed convection boundary layer flows of Eyring–Powell fluids over inclined stretching cylinders. This approach efficiently approximates solutions to the transformed nonlinear differential equations, demonstrating high accuracy and reduced computational effort. Such advancements are particularly beneficial in industries like polymer processing, biomedical engineering, and thermal management systems, where modeling non-Newtonian fluid behaviors is crucial. Full article
Show Figures

Figure 1

70 pages, 19921 KB  
Review
A Comprehensive Review on the Natural Convection Heat Transfer in Horizontal and Inclined Closed Rectangular Enclosures with Internal Objects at Various Heating Conditions
by Antony Jobby, Mehdi Khatamifar and Wenxian Lin
Energies 2025, 18(4), 950; https://doi.org/10.3390/en18040950 - 17 Feb 2025
Cited by 6 | Viewed by 2495
Abstract
This study is a comprehensive review on the natural convection heat transfer in horizontal and inclined closed rectangular enclosures with internal objects (including circular, square, elliptic, rectangular, and triangular cylinders, thin plates, as well as other geometries) at various heating conditions. The review [...] Read more.
This study is a comprehensive review on the natural convection heat transfer in horizontal and inclined closed rectangular enclosures with internal objects (including circular, square, elliptic, rectangular, and triangular cylinders, thin plates, as well as other geometries) at various heating conditions. The review examines the influence of various pertinent governing parameters, including the Rayleigh number, Prandtl number, geometries, inclination of enclosure, concentration of nanoparticles, non-Newtonian fluids, magnetic force, porous media, etc. It also reviews various numerical simulation methods used in the previous studies. The present review shows that the presence of inner objects at different heating conditions and the inclination of enclosures significantly changes the natural convection flow and heat transfer behavior. It is found that the existing studies within the scope of the present review are essentially numerical with the assumption of laminar flow and at relatively low Rayleigh numbers, which significantly restrict the usefulness of the results for practical applications. Furthermore, the majority of the past studies focused on single and two inner objects in simple shapes (circular, square, and elliptic) and assumed identical objects and uniformly distributed placements when multiple inner objects are presented. Based on the review outcomes, some recommendations for future research on this specific topic are made. Full article
(This article belongs to the Collection Advances in Heat Transfer Enhancement)
Show Figures

Figure 1

23 pages, 1724 KB  
Article
An Experimental Study on a Blockage Effect of Sting-Free AxialCircular Cylinders
by Hiroyuki Okuizumi, Yuki Wajima, Yasufumi Konishi, Hideo Sawada, Shigeru Obayashi and Naofumi Ohnishi
Fluids 2025, 10(2), 42; https://doi.org/10.3390/fluids10020042 - 9 Feb 2025
Viewed by 978
Abstract
The correction of the blockage effect is crucial in wind tunnel experiments, particularly for the drag forces on bluff bodies with a large flow separation at the leading edge. Maskell’s wake blockage correction is a widely used method for bluff bodies. However, the [...] Read more.
The correction of the blockage effect is crucial in wind tunnel experiments, particularly for the drag forces on bluff bodies with a large flow separation at the leading edge. Maskell’s wake blockage correction is a widely used method for bluff bodies. However, the correction method is limited to the separated flow that does not reattach. In this study, the blockage effect and correction methods were investigated due to the presence or absence of the leading-edge-separated shear layer reattachment in a flow field with non-support interference produced using a magnetic suspension and balance system (MSBS). The drag coefficient without a wall constraint (CDL) was evaluated by varying the fineness ratio in the models with L/D=1.0 and 2.0. For L/D=1.0, where the leading-edge-separated shear layer does not reattach, the solid blockage correction following the wake blockage correction reduced the difference to within ±0.01. However, as S/C changed, the corrected drag coefficient was not constant. Further investigation is needed to evaluate the possibility of overcorrection. For L/D=2.0, the reattachment occurs; the wake blockage correction alone is insufficient; therefore, a solid blockage correction must apply along with the wake blockage correction. It leads the difference to become less than ±0.02 compared to CDL. The results of this study suggest that both wake and solid blockage corrections are effective regardless of the presence or absence of the reattachment of the leading-edge-separated shear layer on the cylinder. Full article
Show Figures

Figure 1

5 pages, 1147 KB  
Proceeding Paper
Electrodeless Studies of MXenes in Aqueous and Polar Non-Aqueous Aprotonic Solvent
by Oksana Gutsul and Vsevolod Slobodyan
Eng. Proc. 2024, 82(1), 68; https://doi.org/10.3390/ecsa-11-20464 - 26 Nov 2024
Viewed by 1833
Abstract
MXenes attract considerable attention due to their unique properties, in particular, their high electrical conductivity. The physical processes occurring during the electrodeless study of the specific electrical conductivity σ of MXenes in distillation water and in a polar non-aqueous solvent of N-Methyl-2Pyrrolidone (NMP) [...] Read more.
MXenes attract considerable attention due to their unique properties, in particular, their high electrical conductivity. The physical processes occurring during the electrodeless study of the specific electrical conductivity σ of MXenes in distillation water and in a polar non-aqueous solvent of N-Methyl-2Pyrrolidone (NMP) at fixed resonant frequencies for five solenoids (f1 = 160 kHz, f2 = 270 kHz, f3 = 1.6 MHz, f4 = 4.8 MHz, and f5 = 23 MHz) are considered. The oscillating circuit was tuned to resonance by changing the capacitance of the BM-560 Q-factor meter. The Q factor of the oscillating circuit was measured in the range of 100–300 with a maximum relative error of ±5% and in the range of 30–100 with a maximum relative error of ±3%. The cylinder with the liquid was placed in the middle of the measuring solenoid, in the area of a homogeneous magnetic field. The measurements were performed for four control volumes of the liquids under study (1 mL, 2 mL, 3 mL, and 4 mL). The best measurement sensitivity was observed for the maximum volume of the liquid (4 mL). A difference between the experimental dependences of the introduced attenuation d of the oscillating circuit with a cylinder with MXenes in aqueous and non-aqueous polar solvent NMP was observed. The nonlinear dependence of the attenuation of the oscillatory circuit d on the volume of the studied liquids was analyzed. The maximum value of the attenuation of the oscillating circuit for the solenoid at the resonant frequency of 160 kHz was observed for the NMP-MXenes measurement, in contrast to the study of MXenes in distillation water having the highest attenuation at a frequency of 1.6 MHz. Full article
Show Figures

Figure 1

17 pages, 2821 KB  
Article
On the Piezomagnetism of Magnetoactive Elastomeric Cylinders in Uniform Magnetic Fields: Height Modulation in the Vicinity of an Operating Point by Time-Harmonic Fields
by Gašper Glavan, Inna A. Belyaeva and Mikhail Shamonin
Polymers 2024, 16(19), 2706; https://doi.org/10.3390/polym16192706 - 25 Sep 2024
Cited by 1 | Viewed by 6415
Abstract
Soft magnetoactive elastomers (MAEs) are currently considered to be promising materials for actuators in soft robotics. Magnetically controlled actuators often operate in the vicinity of a bias point. Their dynamic properties can be characterized by the piezomagnetic strain coefficient, which is a ratio [...] Read more.
Soft magnetoactive elastomers (MAEs) are currently considered to be promising materials for actuators in soft robotics. Magnetically controlled actuators often operate in the vicinity of a bias point. Their dynamic properties can be characterized by the piezomagnetic strain coefficient, which is a ratio of the time-harmonic strain amplitude to the corresponding magnetic field strength. Herein, the dynamic strain response of a family of MAE cylinders to the time-harmonic (frequency of 0.1–2.5 Hz) magnetic fields of varying amplitude (12.5 kA/m–62.5 kA/m), superimposed on different bias magnetic fields (25–127 kA/m), is systematically investigated for the first time. Strain measurements are based on optical imaging with sub-pixel resolution. It is found that the dynamic strain response of MAEs is considerably different from that in conventional magnetostrictive polymer composites (MPCs), and it cannot be described by the effective piezomagnetic constant from the quasi-static measurements. The obtained maximum values of the piezomagnetic strain coefficient (∼102 nm/A) are one to two orders of magnitude higher than in conventional MPCs, but there is a significant phase lag (35–60°) in the magnetostrictive response with respect to an alternating magnetic field. The experimental dependencies of the characteristics of the alternating strain on the amplitude of the alternating field, bias field, oscillation frequency, and aspect ratio of cylinders are given for several representative examples. It is hypothesized that the main cause of observed peculiarities is the non-linear viscoelasticity of these composite materials. Full article
(This article belongs to the Special Issue Advances in Functional Rubber and Elastomer Composites II)
Show Figures

Graphical abstract

13 pages, 2743 KB  
Article
Quality Assurance of Point and 2D Shear Wave Elastography through the Establishment of Baseline Data Using Phantoms
by Jacqueline Gallet, Elisabetta Sassaroli, Qing Yuan, Areej Aljabal and Mi-Ae Park
Sensors 2024, 24(15), 4961; https://doi.org/10.3390/s24154961 - 31 Jul 2024
Cited by 1 | Viewed by 2767
Abstract
Ultrasound elastography has been available on most modern systems; however, the implementation of quality processes tends to be ad hoc. It is essential for a medical physicist to benchmark elastography measurements on each system and track them over time, especially after major software [...] Read more.
Ultrasound elastography has been available on most modern systems; however, the implementation of quality processes tends to be ad hoc. It is essential for a medical physicist to benchmark elastography measurements on each system and track them over time, especially after major software upgrades or repairs. This study aims to establish baseline data using phantoms and monitor them for quality assurance in elastography. In this paper, we utilized two phantoms: a set of cylinders, each with a composite material with varying Young’s moduli, and an anthropomorphic abdominal phantom containing a liver modeled to represent early-stage fibrosis. These phantoms were imaged using three ultrasound manufacturers’ elastography functions with either point or 2D elastography. The abdominal phantom was also imaged using magnetic resonance elastography (MRE) as it is recognized as the non-invasive gold standard for staging liver fibrosis. The scaling factor was determined based on the data acquired using MR and US elastography from the same vendor. The ultrasound elastography measurements showed inconsistency between different manufacturers, but within the same manufacturer, the measurements showed high repeatability. In conclusion, we have established baseline data for quality assurance procedures and specified the criteria for the acceptable range in liver fibrosis phantoms during routine testing. Full article
Show Figures

Figure 1

16 pages, 1423 KB  
Article
Investigating Magnetohydrodynamic Motions of Oldroyd-B Fluids through a Circular Cylinder Filled with Porous Medium
by Constantin Fetecau and Dumitru Vieru
Processes 2024, 12(7), 1354; https://doi.org/10.3390/pr12071354 - 28 Jun 2024
Cited by 6 | Viewed by 1474
Abstract
We analytically investigated the magnetohydrodynamic motions of electrically conductive, incompressible Oldroyd-B fluids through an infinite circular cylinder filled with a porous medium. A general expression was established for the dimensionless velocity of fluid as a cylinder moves along its symmetry axis with an [...] Read more.
We analytically investigated the magnetohydrodynamic motions of electrically conductive, incompressible Oldroyd-B fluids through an infinite circular cylinder filled with a porous medium. A general expression was established for the dimensionless velocity of fluid as a cylinder moves along its symmetry axis with an arbitrary velocity; the expression can generate exact solutions for any motion of this fluid type, solving the discussed problem. Special cases were considered and validated through graphical investigation to illustrate important characteristics of fluid behavior. In application, this is the first presentation of an exact general expression for non-trivial shear stress related to the magnetohydrodynamic motions of Oldroyd-B fluids when a longitudinal time-dependent shear stress is applied to the fluid by a cylinder. Solutions for the motions of rate-type fluids are lacking. The graphical representations show that in the presence of a magnetic field or porous medium, fluids flow more slowly and the steady state is reached earlier. Full article
Show Figures

Figure 1

27 pages, 853 KB  
Article
Overlapping Grid-Based Spectral Collocation Technique for Bioconvective Flow of MHD Williamson Nanofluid over a Radiative Circular Cylindrical Body with Activation Energy
by Musawenkosi Patson Mkhatshwa
Computation 2024, 12(4), 75; https://doi.org/10.3390/computation12040075 - 5 Apr 2024
Cited by 7 | Viewed by 1742
Abstract
The amalgamation of motile microbes in nanofluid (NF) is important in upsurging the thermal conductivity of various systems, including micro-fluid devices, chip-shaped micro-devices, and enzyme biosensors. The current scrutiny focuses on the bioconvective flow of magneto-Williamson NFs containing motile microbes through a horizontal [...] Read more.
The amalgamation of motile microbes in nanofluid (NF) is important in upsurging the thermal conductivity of various systems, including micro-fluid devices, chip-shaped micro-devices, and enzyme biosensors. The current scrutiny focuses on the bioconvective flow of magneto-Williamson NFs containing motile microbes through a horizontal circular cylinder placed in a porous medium with nonlinear mixed convection and thermal radiation, heat sink/source, variable fluid properties, activation energy with chemical and microbial reactions, and Brownian motion for both nanoparticles and microbes. The flow analysis has also been considered subject to velocity slips, suction/injection, and heat convective and zero mass flux constraints at the boundary. The governing equations have been converted to a non-dimensional form using similarity variables, and the overlapping grid-based spectral collocation technique has been executed to procure solutions numerically. The graphical interpretation of various pertinent variables in the flow profiles and physical quantities of engineering attentiveness is provided and discussed. The results reveal that NF flow is accelerated by nonlinear thermal convection, velocity slip, magnetic fields, and variable viscosity parameters but decelerated by the Williamson fluid and suction parameters. The inclusion of nonlinear thermal radiation and variable thermal conductivity helps to enhance the fluid temperature and heat transfer rate. The concentration of both nanoparticles and motile microbes is promoted by the incorporation of activation energy in the flow system. The contribution of microbial Brownian motion along with microbial reactions on flow quantities justifies the importance of these features in the dynamics of motile microbes. Full article
Show Figures

Figure 1

24 pages, 3382 KB  
Article
A Two-Temperature Fractional DPL Thermoelasticity Model with an Exponential Rabotnov Kernel for a Flexible Cylinder with Changeable Properties
by Ahmed E. Abouelregal, Yazeed Alhassan, Hashem Althagafi and Faisal Alsharif
Fractal Fract. 2024, 8(4), 182; https://doi.org/10.3390/fractalfract8040182 - 22 Mar 2024
Cited by 19 | Viewed by 2109
Abstract
This article presents a new thermoelastic model that incorporates fractional-order derivatives of two-phase heat transfer as well as a two-temperature concept. The objective of this model is to improve comprehension and forecasting of heat transport processes in two-phase-lag systems by employing fractional calculus. [...] Read more.
This article presents a new thermoelastic model that incorporates fractional-order derivatives of two-phase heat transfer as well as a two-temperature concept. The objective of this model is to improve comprehension and forecasting of heat transport processes in two-phase-lag systems by employing fractional calculus. This model suggests a new generalized fractional derivative that can make different kinds of singular and non-singular fractional derivatives, depending on the kernels that are used. The non-singular kernels of the normalized sinc function and the Rabotnov fractional–exponential function are used to create the two new fractional derivatives. The thermoelastic responses of a solid cylinder with a restricted surface and exposed to a moving heat flux were examined in order to assess the correctness of the suggested model. It was considered that the cylinder’s thermal characteristics are dependent on the linear temperature change and that it is submerged in a continuous magnetic field. To solve the set of equations controlling the suggested issue, Laplace transforms were used. In addition to the reliance of thermal characteristics on temperature change, the influence of derivatives and fractional order was also studied by providing numerical values for the temperature, displacement, and stress components. This study found that the speed of the heat source and variable properties significantly impact the behavior of the variables under investigation. Meanwhile, the fractional parameter has a slight effect on non-dimensional temperature changes but plays a crucial role in altering the peak value of non-dimensional displacement and pressure. Full article
Show Figures

Figure 1

15 pages, 4262 KB  
Article
Oscillatory and Periodical Behavior of Heat Transfer and Magnetic Flux along Magnetic-Driven Cylinder with Viscous Dissipation and Joule Heating Effects
by Zia Ullah, Musaad S. Aldhabani and Muhammad Adnan Qaiser
Mathematics 2023, 11(18), 3917; https://doi.org/10.3390/math11183917 - 14 Sep 2023
Cited by 7 | Viewed by 1473
Abstract
Several primary mechanisms are less utilized in engineering and recent technologies due to unsustainable heating. The impact of viscous dissipation and Joule heating is very important to examine current density and heat rate across a magnetized cylinder. The key objective of this examination [...] Read more.
Several primary mechanisms are less utilized in engineering and recent technologies due to unsustainable heating. The impact of viscous dissipation and Joule heating is very important to examine current density and heat rate across a magnetized cylinder. The key objective of this examination was to insulate excessive heat around the cylinder. The present effort investigated the impact of viscous dissipations, Joule heating, and magnetohydrodynamics (MHD) on the transitory motion of convective-heat transport and magnetic flux features of dissipative flows throughout a magnetized and warmed cylinder at suitable places. The suggested turbulent dynamical structure of mathematics is offered for an associated method of partial differentiation equations impacted by boundary values. The complex equations are translated via non-dimensional shapes by using relevant non-dimensional numbers. The non-dimensional representation has been improved to make it easier to conduct uniform computational calculations. The computational answers for these linked dimensionalized formulations have been achieved using the Prandtl coefficient Pr, Joule heating parameter ζ, Eckert number Ec, the magneto-force number ξ, the buoyancy parameter λ, and multiple additional predefined factors. The important contribution of this work is based on non-fluctuating solutions that are utilized to examine the oscillating behavior of shearing stress, rate of fluctuating heat transport, and rate of fluctuating magnetic flux in the presence of viscous dissipation and Joule heating at prominent angles. It is shown that the velocity of a fluid increases as the buoyancy parameter increases. The maximum frequency of heat transmission is illustrated for each Eckert variable. Full article
(This article belongs to the Special Issue Advances in Computational and Applied Fluid Dynamics)
Show Figures

Figure 1

17 pages, 3954 KB  
Article
Amplitude and Phase Angle of Oscillatory Heat Transfer and Current Density along a Nonconducting Cylinder with Reduced Gravity and Thermal Stratification Effects
by Zia Ullah, Nawishta Jabeen and Muhammad Usman Khan
Mathematics 2023, 11(9), 2134; https://doi.org/10.3390/math11092134 - 2 May 2023
Cited by 18 | Viewed by 2088
Abstract
Due to excessive heating, various physical mechanisms are less effective in engineering and modern technologies. The aligned electromagnetic field performs as insulation that absorbs the heat from the surroundings, which is an essential feature in contemporary technologies, to decrease high temperatures. The major [...] Read more.
Due to excessive heating, various physical mechanisms are less effective in engineering and modern technologies. The aligned electromagnetic field performs as insulation that absorbs the heat from the surroundings, which is an essential feature in contemporary technologies, to decrease high temperatures. The major goal of the present investigation is to use magnetism perpendicular to the surface to address this issue. Numerical simulations have been made of the MHD convective heat and amplitude problem of electrical fluid flow down a horizontally non-magnetized circular heated cylinder with reduced gravity and thermal stratification. The associated non-linear PDEs that control fluid motion can be conveniently represented using the finite-difference algorithm and primitive element substitution. The FORTRAN application was used to compute the quantitative outcomes, which are then displayed in diagrams and table formats. The physical features, including the phase angle, skin friction, transfer of heat, and electrical density for velocity description, the magnetic characteristics, and the temperature distribution, coupled by their gradients, have an impact on each of the variables in the flow simulation. In the domains of MRI resonant patterns, prosthetic heartvalves, interior heart cavities, and nanoburning devices, the existing magneto-hydrodynamics and thermodynamic scenario are significant. The main findings of the current work are that the dimensionless velocity of the fluid increases as the gravity factor Rg decreases. The prominent change in the phase angle of current density αm and heat flux αt is examined for each value of the buoyancy parameter at both α=π/6 and π angles. The transitory skin friction and heat transfer rate shows a prominent magnitude of oscillation at both α=π/6 and π/2 positions, but current density increases with a higher magnitude of oscillation. Full article
(This article belongs to the Special Issue Advances in Computational Fluid Dynamics with Applications)
Show Figures

Figure 1

17 pages, 3597 KB  
Article
Convective Heat Transfer and Entropy Generation for Nano-Jet Impingement Cooling of a Moving Hot Surface under the Effects of Multiple Rotating Cylinders and Magnetic Field
by Lioua Kolsi, Fatih Selimefendigil, Samia Larguech, Kaouther Ghachem, Hind Albalawi, Badr M. Alshammari and Taher Labidi
Mathematics 2023, 11(8), 1891; https://doi.org/10.3390/math11081891 - 17 Apr 2023
Cited by 6 | Viewed by 1711
Abstract
In this study, confined slot nano-jet impingement cooling of a hot moving surface is investigated under the combined utilization multiple rotating cylinders and magnetic field. Both convective heat transfer and entropy generation analysis are conducted using a finite element method. Parametric variation of [...] Read more.
In this study, confined slot nano-jet impingement cooling of a hot moving surface is investigated under the combined utilization multiple rotating cylinders and magnetic field. Both convective heat transfer and entropy generation analysis are conducted using a finite element method. Parametric variation of the rotational Reynolds number (Rew between −500 and 500), velocity ratio (VR between 0 and 0.25), Hartmann number (Ha between 0 and 20) and the horizontal location of cylinders (Mx between −8 and 8) are considered. Rotation of the cylinders generally resulted in the degradation of cooling performance while increasing the wall velocity, and the horizontal location of the cylinder was found to positively contribute to this. Heat transfer rate reductions of 20% and 12.5% are obtained using rotations at the highest Rew for the case of stationary (VR = 0) and moving wall (VR = 0.25). When magnetic field at the highest strength is imposed in the rotating cylinder case, the cooling performance is increased by about 18.6%, while it is reduced by about 28% for the non-rotating cylinder case. The hot wall movement contributes, by about 14%, to the overall cooling performance enhancement. Away from the inlet location of the rotating cylinders, thermal performance improvement of 12% is obtained. The entropy generation rises with higher hot wall velocity and higher horizontal distances of the rotating cylinders, while it is reduced with a higher magnetic field for non-rotating cylinders. The best configurations in terms of cooling performance provide 8.7% and 34.2% enhancements for non-rotating and rotating cylinders compared with the reference case of (Rew, VR, Ha, Mx) = (0, 0, 0, 0), while entropy generation becomes 1% and 15% higher. Full article
(This article belongs to the Special Issue Analysis and Applications of Mathematical Fluid Dynamics)
Show Figures

Figure 1

14 pages, 2318 KB  
Article
A Lab-on-a-Tube Biosensor Combining Recombinase-Aided Amplification and CRISPR-Cas12a with Rotated Magnetic Extraction for Salmonella Detection
by Shangyi Wu, Jing Yuan, Ai Xu, Lei Wang, Yanbin Li, Jianhan Lin, Xiqing Yue and Xinge Xi
Micromachines 2023, 14(4), 830; https://doi.org/10.3390/mi14040830 - 9 Apr 2023
Cited by 12 | Viewed by 3390
Abstract
Background: Foodborne pathogenic bacteria threaten worldwide public health, and simple bacterial detection methods are in urgent need. Here, we established a lab-on-a-tube biosensor for simple, rapid, sensitive, and specific detection of foodborne bacteria. Methods: A rotatable Halbach cylinder magnet and an iron wire [...] Read more.
Background: Foodborne pathogenic bacteria threaten worldwide public health, and simple bacterial detection methods are in urgent need. Here, we established a lab-on-a-tube biosensor for simple, rapid, sensitive, and specific detection of foodborne bacteria. Methods: A rotatable Halbach cylinder magnet and an iron wire netting with magnetic silica beads (MSBs) were used for simple and effective extraction and purification of DNA from the target bacteria, and recombinase-aided amplification (RAA) was combined with clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins12a(CRISPR-Cas12a) to amplify DNA and generate fluorescent signal. First, 15 mL of the bacterial sample was centrifuged, and the bacterial pellet was lysed by protease to release target DNA. Then, DNA-MSB complexes were formed as the tube was intermittently rotated and distributed uniformly onto the iron wire netting inside the Halbach cylinder magnet. Finally, the purified DNA was amplified using RAA and quantitatively detected by the CRISPR-Cas12a assay. Results: This biosensor could quantitatively detect Salmonella in spiked milk samples in 75 min, with a lower detection limit of 6 CFU/mL. The fluorescent signal of 102 CFU/mL Salmonella Typhimurium was over 2000 RFU, while 104 CFU/mL Listeria monocytogenes, Bacillus cereus, and E. coli O157:H7 were selected as non-target bacteria and had signals less than 500 RFU (same as the negative control). Conclusions: This lab-on-a-tube biosensor integrates cell lysis, DNA extraction, and RAA amplification in one 15 mL tube to simplify the operation and avoid contamination, making it suitable for low-concentration Salmonella detection. Full article
(This article belongs to the Special Issue Advanced Biomanufacturing for Biomedical Engineering Applications)
Show Figures

Figure 1

Back to TopTop