Processing math: 100%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = non-thermal gamma-rays

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1300 KiB  
Article
PyMAP: Python-Based Data Analysis Package with a New Image Cleaning Method to Enhance the Sensitivity of MACE Telescope
by Mani Khurana, Kuldeep Kumar Yadav, Pradeep Chandra, Krishna Kumar Singh, Atul Pathania and Chinmay Borwankar
Galaxies 2025, 13(1), 14; https://doi.org/10.3390/galaxies13010014 - 15 Feb 2025
Viewed by 572
Abstract
Observations of Very High Energy (VHE) gamma ray sources using the ground-based Imaging Atmospheric Cherenkov Telescopes (IACTs) play a pivotal role in understanding the non-thermal energetic phenomena and acceleration processes under extreme astrophysical conditions. However, detection of the VHE gamma ray signal from [...] Read more.
Observations of Very High Energy (VHE) gamma ray sources using the ground-based Imaging Atmospheric Cherenkov Telescopes (IACTs) play a pivotal role in understanding the non-thermal energetic phenomena and acceleration processes under extreme astrophysical conditions. However, detection of the VHE gamma ray signal from the astrophysical sources is very challenging, as these telescopes detect the photons indirectly by measuring the flash of Cherenkov light from the Extensive Air Showers (EAS) initiated by the cosmic gamma rays in the Earth’s atmosphere. This requires fast detection systems, along with advanced data acquisition and analysis techniques to measure the development of extensive air showers and the subsequent segregation of gamma ray events from the huge cosmic ray background, followed by the physics analysis of the signal. Here, we report the development of a python-based package for analyzing the data from the Major Atmospheric Cherenkov Experiment (MACE), which is operational at Hanle in India. The Python-based MACE data Analysis Package (PyMAP) analyzes data by using advanced methods and machine learning algorithms. Data recorded by the MACE telescope are passed through different utilities developed in the PyMAP to extract the gamma ray signal from a given source direction. We also propose a new image cleaning method called DIOS (Denoising Image of Shower) and compare its performance with the standard image cleaning method. The working performance of DIOS indicates an advantage over the standard method with an improvement of ≈25% in the sensitivity of MACE. Full article
Show Figures

Figure 1

30 pages, 11511 KiB  
Article
Sources and Radiations of the Fermi Bubbles
by Vladimir A. Dogiel and Chung-Ming Ko
Universe 2024, 10(11), 424; https://doi.org/10.3390/universe10110424 - 12 Nov 2024
Viewed by 1162
Abstract
Two enigmatic gamma-ray features in the galactic central region, known as Fermi Bubbles (FBs), were found from Fermi-LAT data. An energy release, (e.g., by tidal disruption events in the Galactic Center, GC), generates a cavity with a shock that expands into the local [...] Read more.
Two enigmatic gamma-ray features in the galactic central region, known as Fermi Bubbles (FBs), were found from Fermi-LAT data. An energy release, (e.g., by tidal disruption events in the Galactic Center, GC), generates a cavity with a shock that expands into the local ambient medium of the galactic halo. A decade or so ago, a phenomenological model of the FBs was suggested as a result of routine star disruptions by the supermassive black hole in the GC which might provide enough energy for large-scale structures, like the FBs. In 2020, analytical and numerical models of the FBs as a process of routine tidal disruption of stars near the GC were developed; these disruption events can provide enough cumulative energy to form and maintain large-scale structures like the FBs. The disruption events are expected to be 104105yr1, providing an average power of energy release from the GC into the halo of ˙E3×1041 erg s1, which is needed to support the FBs. Analysis of the evolution of superbubbles in exponentially stratified disks concluded that the FB envelope would be destroyed by the Rayleigh–Taylor (RT) instabilities at late stages. The shell is composed of swept-up gas of the bubble, whose thickness is much thinner in comparison to the size of the envelope. We assume that hydrodynamic turbulence is excited in the FB envelope by the RT instability. In this case, the universal energy spectrum of turbulence may be developed in the inertial range of wavenumbers of fluctuations (the Kolmogorov–Obukhov spectrum). From our model we suppose the power of the FBs is transformed partly into the energy of hydrodynamic turbulence in the envelope. If so, hydrodynamic turbulence may generate MHD fluctuations, which accelerate cosmic rays there and generate gamma-ray and radio emission from the FBs. We hope that this model may interpret the observed nonthermal emission from the bubbles. Full article
(This article belongs to the Special Issue Studying Astrophysics with High-Energy Cosmic Particles)
Show Figures

Figure 1

35 pages, 7319 KiB  
Article
Searching for Hadronic Signatures in the Time Domain of Blazar Emission: The Case of Mrk 501
by Margaritis Chatzis, Stamatios I. Stathopoulos, Maria Petropoulou and Georgios Vasilopoulos
Universe 2024, 10(10), 392; https://doi.org/10.3390/universe10100392 - 10 Oct 2024
Cited by 1 | Viewed by 856
Abstract
Blazars—a subclass of active galaxies—are intrinsically time-variable broadband sources of electromagnetic radiation. In this contribution, we explored relativistic proton (hadronic) signatures in the time domain blazar emission and searched for those parameter combinations that unveil their presence during flaring epochs. We generated time [...] Read more.
Blazars—a subclass of active galaxies—are intrinsically time-variable broadband sources of electromagnetic radiation. In this contribution, we explored relativistic proton (hadronic) signatures in the time domain blazar emission and searched for those parameter combinations that unveil their presence during flaring epochs. We generated time series for key model parameters, like magnetic field strength and the power-law index of radiating particles, which were motivated from a simulated time series with statistical properties describing the observed GeV gamma-ray flux. We chose the TeV blazar Mrk 501 as our test case, as it had been the study ground for extensive investigations during individual flaring events. Using the code LeHaMoC, we computed the electromagnetic and neutrino emissions for a period of several years that contained several flares of interest. We show that for both of those particle distributions the power-law index variations that were tied to moderate changes in the magnetic field strength of the emitting region might naturally lead to hard X-ray flares with very-high-energy γ-ray counterparts. We found spectral differences measurable by the Cherenkov Telescope Array Observatory at sub-TeV energies, and we computed the neutrino fluence over 14.5 years. The latter predicted ∼0.2 muon and anti-muon neutrinos, consistent with the non-detection of high-energy neutrinos from Mrk 501. Full article
(This article belongs to the Special Issue Blazar Bursts: Theory and Observation)
Show Figures

Figure 1

8 pages, 285 KiB  
Article
Implications of the Spin-Induced Accretion Disk Truncation on the X-ray Binary Broadband Emission
by Theodora Papavasileiou, Odysseas Kosmas and Theocharis Kosmas
Particles 2024, 7(4), 879-886; https://doi.org/10.3390/particles7040052 - 1 Oct 2024
Viewed by 1072
Abstract
Black hole X-ray binary systems consist of a black hole accreting mass from its binary companion, forming an accretion disk. As a result, twin relativistic plasma ejections (jets) are launched towards opposite and perpendicular directions. Moreover, multiple broadband emission observations from X-ray binary [...] Read more.
Black hole X-ray binary systems consist of a black hole accreting mass from its binary companion, forming an accretion disk. As a result, twin relativistic plasma ejections (jets) are launched towards opposite and perpendicular directions. Moreover, multiple broadband emission observations from X-ray binary systems range from radio to high-energy gamma rays. The emission mechanisms exhibit thermal origins from the disk, stellar companion, and non-thermal jet-related components (i.e., synchrotron emission, inverse comptonization of less energetic photons, etc.). In many attempts at fitting the emitted spectra, a static black hole is often assumed regarding the accretion disk modeling, ignoring the Kerr metric properties that significantly impact the geometry around the usually rotating black hole. In this work, we study the possible implications of the spin inclusion in predictions of the X-ray binary spectrum. We mainly focus on the most significant aspect inserted by the Kerr geometry, the innermost stable circular orbit radius dictating the disk’s inner boundary. The outcome suggests a higher-peaked and hardened X-ray spectrum from the accretion disk and a substantial increase in the inverse Compton component of disk-originated photons. Jet-photon absorption is also heavily affected at higher energy regimes dominated by hadron-induced emission mechanisms. Nevertheless, a complete investigation requires the full examination of the spin contribution and the resulting relativistic effects beyond the disk truncation. Full article
Show Figures

Figure 1

17 pages, 921 KiB  
Article
Characterisation of the Atmosphere in Very High Energy Gamma-Astronomy for Imaging Atmospheric Cherenkov Telescopes
by Dijana Dominis Prester, Jan Ebr, Markus Gaug, Alexander Hahn, Ana Babić, Jiří Eliášek, Petr Janeček, Sergey Karpov, Marta Kolarek, Marina Manganaro and Razmik Mirzoyan
Universe 2024, 10(9), 349; https://doi.org/10.3390/universe10090349 - 30 Aug 2024
Cited by 1 | Viewed by 1265
Abstract
Ground-based observations of Very High Energy (VHE) gamma rays from extreme astrophysical sources are significantly influenced by atmospheric conditions. This is due to the atmosphere being an integral part of the detector when utilizing Imaging Atmospheric Cherenkov Telescopes (IACTs). Clouds and dust particles [...] Read more.
Ground-based observations of Very High Energy (VHE) gamma rays from extreme astrophysical sources are significantly influenced by atmospheric conditions. This is due to the atmosphere being an integral part of the detector when utilizing Imaging Atmospheric Cherenkov Telescopes (IACTs). Clouds and dust particles diminish atmospheric transmission of Cherenkov light, thereby impacting the reconstruction of the air showers and consequently the reconstructed gamma-ray spectra. Precise measurements of atmospheric transmission above Cherenkov observatories play a pivotal role in the accuracy of the analysed data, among which the corrections of the reconstructed energies and fluxes of incoming gamma rays, and in establishing observation strategies for different types of gamma-ray emitting sources. The Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescopes and the Cherenkov Telescope Array Observatory (CTAO), both located on the Observatorio del Roque de los Muchachos (ORM), La Palma, Canary Islands, use different sets of auxiliary instruments for real-time characterisation of the atmosphere. In this paper, historical data taken by MAGIC LIDAR (LIght Detection And Ranging) and CTAO FRAM (F/Photometric Robotic Telescope) are presented. From the atmospheric aerosol transmission profiles measured by the MAGIC LIDAR and CTAO FRAM aerosol optical depth maps, we obtain the characterisation of the clouds above the ORM at La Palma needed for data correction and optimal observation scheduling. Full article
(This article belongs to the Collection Women Physicists in Astrophysics, Cosmology and Particle Physics)
Show Figures

Figure 1

15 pages, 3871 KiB  
Article
Physical Pretreatments of Cassava Chips Influenced Chemical Composition, Physicochemical Properties, and In Vitro Digestibility in Animal Models
by Suriyanee Takaeh, Sukanya Poolthajit, Waraporn Hahor, Nutt Nuntapong, Wanwisa Ngampongsai and Karun Thongprajukaew
Animals 2024, 14(6), 908; https://doi.org/10.3390/ani14060908 - 15 Mar 2024
Cited by 1 | Viewed by 1857
Abstract
Physical pretreatment procedures can significantly influence the quality of food and feed raw materials. To increase the ability to be digested in animals, cassava chips were pretreated by four alternative methods (extrusion, microwave irradiation, gamma irradiation, or NaOH hydrolysis), and then the chemical [...] Read more.
Physical pretreatment procedures can significantly influence the quality of food and feed raw materials. To increase the ability to be digested in animals, cassava chips were pretreated by four alternative methods (extrusion, microwave irradiation, gamma irradiation, or NaOH hydrolysis), and then the chemical composition, physicochemical properties, and in vitro digestibility of the pretreated samples were assessed and compared with unprocessed cassava chips (control). The chemical compositions (crude protein, ether extract, neutral detergent fiber, acid detergent fiber, ash, non-fiber carbohydrate, and gross energy) were significantly altered due to the pretreatment methods (p < 0.05). The nutritive profile was qualitatively changed when assessed through Fourier-transform infrared spectroscopy. Some physicochemical properties in association with enzymatic hydrolysis, which include pH, water solubility, water absorption capacity, thermal properties (differential scanning calorimetry), diffraction pattern (X-ray diffractometry), and microstructure (scanning electron microscopy), were significantly changed. In vitro carbohydrate digestibility based on digestive enzyme extracts from Nile tilapia (Oreochromis niloticus) suggests the microwaving method for cassava chips preparation, while microwaving, followed by extrusion or gamma irradiation, was suggested for broiler (Gallus gallus domesticus). There were no differences in the pepsin-cellulase digestibility values tested for the ruminant model. These findings suggest the use of pretreated cassava chips in animal feeding. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

21 pages, 5327 KiB  
Review
Highlights of the Magic Florian Goebel Telescopes in the Study of Active Galactic Nuclei
by Marina Manganaro and Dijana Dominis Prester
Universe 2024, 10(2), 80; https://doi.org/10.3390/universe10020080 - 6 Feb 2024
Cited by 1 | Viewed by 1660
Abstract
The MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) Florian Goebel telescopes are a system of two Cherenkov telescopes located on the Canary island of La Palma (Spain), at the Roque de Los Muchachos Observatory, which have been operating in stereo mode since 2009. Their [...] Read more.
The MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) Florian Goebel telescopes are a system of two Cherenkov telescopes located on the Canary island of La Palma (Spain), at the Roque de Los Muchachos Observatory, which have been operating in stereo mode since 2009. Their low energy threshold (down to 15 GeV) allows the investigation of Active Galactic Nuclei (AGNs) in the very-high-energy (VHE, E > 100 GeV) gamma-ray range with a sensitivity up to the redshift limit of the existing IACT (Imaging Atmospheric Cherenkov Telescopes) systems. The MAGIC telescopes discovered 36 extragalactic objects emitting VHE gamma-rays and performed comprehensive studies of galaxies and their AGNs, also in a multi-wavelength (MWL) and multi-messenger (MM) context, expanding the knowledge of our Universe. Here, we report on the highlights achieved by the MAGIC collaboration since the beginning of their operations. Full article
(This article belongs to the Special Issue Recent Advances in Gamma Ray Astrophysics and Future Perspectives)
Show Figures

Figure 1

13 pages, 480 KiB  
Article
A Lepton–Hadron Model for the Multi-Wavelength Emission from Extreme High-Frequency Peaked BL Lacertae 1ES 1218+304
by Wenjing Dong, Qian Dong and Yonggang Zheng
Galaxies 2024, 12(1), 2; https://doi.org/10.3390/galaxies12010002 - 29 Dec 2023
Cited by 1 | Viewed by 1978
Abstract
We develop a lepton–hadron model for the possible origin of hard very high energy (VHE) spectra from a distant blazar. The model includes synchrotron self-Compton (SSC) and hadronic components. The lepton components include synchrotron radiation and inverse Compton scattering of relativistic electrons. For [...] Read more.
We develop a lepton–hadron model for the possible origin of hard very high energy (VHE) spectra from a distant blazar. The model includes synchrotron self-Compton (SSC) and hadronic components. The lepton components include synchrotron radiation and inverse Compton scattering of relativistic electrons. For the hadronic components, we consider proton synchrotron radiation and investigate the interaction of protons with the synchrotron emission soft photons or cosmic microwave background (CMB) photons. Upon adopting the parametrization of the observed spectrum of 1ES 1218+304, we obtain the following results: (1) the model is able to match the spectral energy distribution of 1ES 1218+304; (2) we find that in Ep10101017eV, the π0γ-ray process contributes the majority of the secondary photons; and (3) the interaction of protons with the low-energy photons may occur in or outside the jet. Full article
Show Figures

Figure 1

24 pages, 603 KiB  
Article
Testing a Lepto-Hadronic Two-Zone Model with Extreme High-Synchrotron Peaked BL Lacs and Track-like High-Energy Neutrinos
by Edilberto Aguilar-Ruiz, Antonio Galván-Gámez and Nissim Fraija
Galaxies 2023, 11(6), 117; https://doi.org/10.3390/galaxies11060117 - 6 Dec 2023
Cited by 2 | Viewed by 1911
Abstract
Numerous studies suggest that high-energy (HE) neutrinos and ultra-high-energy (UHE) cosmic rays could originate from extremely high-synchrotron peaked (EHSP) BL Lacs, which have been identified as effective particle accelerators. Due to the discovery of HE-neutrinos by the IceCube telescope, these hypotheses may shortly [...] Read more.
Numerous studies suggest that high-energy (HE) neutrinos and ultra-high-energy (UHE) cosmic rays could originate from extremely high-synchrotron peaked (EHSP) BL Lacs, which have been identified as effective particle accelerators. Due to the discovery of HE-neutrinos by the IceCube telescope, these hypotheses may shortly have the opportunity to be tested. In this work, we use a two-zone leptohadronic model to explain the spatial coincidence of three EHSP BL Lac: 1RXS J09462.5+010459, 1ES 1101-232, and 3HSP J095507.9+355101 with the arrival of track-like neutrinos. Our results for 1RXS J09462.5+010459 and 1ES 1101-232 indicate that the model accurately describes the electromagnetic emission and neutrino events without increasing the fluxes in the measured bands. In addition, the X-ray flaring state of 3HSP J095507.9+355101 can be explained by our model, but the measured ultraviolet flux during the neutrino arrival time window cannot be explained. For all cases, the broadband emission and neutrino arrival are better described by hard proton distributions ≈1.5. Finally, the proton luminosity required to explain the neutrino fluxes is slightly higher than the Eddington limit with a photopion efficiency of ≈0.1 for non-flaring state cases. On the other hand, for the flaring state of 3HSP J095507.9+355101, the proton luminosity must be higher than the Eddington limit at least by one order of magnitude, even if the photopion efficiency reaches unity. Full article
Show Figures

Figure 1

27 pages, 10235 KiB  
Review
Persistence of Coronavirus on Surface Materials and Its Control Measures Using Nonthermal Plasma and Other Agents
by Sekar Ashokkumar, Nagendra Kumar Kaushik, Ihn Han, Han Sup Uhm, Jang Sick Park, Gyu Seong Cho, Young-Jei Oh, Yung Oh Shin and Eun Ha Choi
Int. J. Mol. Sci. 2023, 24(18), 14106; https://doi.org/10.3390/ijms241814106 - 14 Sep 2023
Cited by 7 | Viewed by 2182
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been responsible for the initiation of the global pandemic since 2020. The virus spreads through contaminated air particles, fomite, and surface-contaminated porous (i.e., paper, wood, and masks) and non-porous (i.e., plastic, stainless steel, and glass) materials. [...] Read more.
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been responsible for the initiation of the global pandemic since 2020. The virus spreads through contaminated air particles, fomite, and surface-contaminated porous (i.e., paper, wood, and masks) and non-porous (i.e., plastic, stainless steel, and glass) materials. The persistence of viruses on materials depends on porosity, adsorption, evaporation, isoelectric point, and environmental conditions, such as temperature, pH, and relative humidity. Disinfection techniques are crucial for preventing viral contamination on animated and inanimate surfaces. Currently, there are few effective methodologies for preventing SARS-CoV-2 and other coronaviruses without any side effects. Before infection can occur, measures must be taken to prevent the persistence of the coronavirus on the surfaces of both porous and non-porous inanimate materials. This review focuses on coronavirus persistence in surface materials (inanimate) and control measures. Viruses are inactivated through chemical and physical methods; the chemical methods particularly include alcohol, chlorine, and peroxide, whereas temperature, pH, humidity, ultraviolet irradiation (UV), gamma radiation, X-rays, ozone, and non-thermal, plasma-generated reactive oxygen and nitrogen species (RONS) are physical methods. Full article
(This article belongs to the Special Issue Bio-Plasma for Molecular Science)
Show Figures

Figure 1

15 pages, 6166 KiB  
Review
Evolved Pulsar Wind Nebulae
by Barbara Olmi
Universe 2023, 9(9), 402; https://doi.org/10.3390/universe9090402 - 1 Sep 2023
Cited by 7 | Viewed by 1647
Abstract
Based on the expected population of core collapse supernova remnants and the huge number of detected pulsars in the Galaxy, still representing only a fraction of the real population, pulsar wind nebulae are likely to constitute one of the largest classes of extended [...] Read more.
Based on the expected population of core collapse supernova remnants and the huge number of detected pulsars in the Galaxy, still representing only a fraction of the real population, pulsar wind nebulae are likely to constitute one of the largest classes of extended Galactic sources in many energy bands. For simple evolutionary reasons, the majority of the population is made of evolved systems, whose detection and identification are complicated by their reduced luminosity, the possible lack of X-ray emission (that fades progressively away with the age of the pulsar), and by their modified morphology with respect to young systems. Nevertheless they have gained renewed attention in recent years, following the detection of misaligned X-ray tails protruding from an increasing number of nebulae created by fast moving pulsars, and of extended TeV halos surrounding aged systems. Both these features are clear signs of an efficient escape of particles, with energy close to the maximum acceleration limit of the pulsar. Here we discuss the properties of those evolved systems and what we have understood about the process of particle escape, and the formation of observed features. Full article
(This article belongs to the Special Issue Pulsar Wind Nebulae)
Show Figures

Figure 1

18 pages, 5609 KiB  
Review
Gamma Ray Pulsars and Opportunities for the MACE Telescope
by Atul Pathania, Krishna Kumar Singh and Kuldeep Kumar Yadav
Galaxies 2023, 11(4), 91; https://doi.org/10.3390/galaxies11040091 - 17 Aug 2023
Viewed by 1928
Abstract
Rapidly rotating neutron stars with very strong surface magnetic fields are observed to emit pulsed emission in the whole range of electromagnetic spectrum from radio to high-energy gamma rays. These so-called pulsars are known for their exceptional rotational stability. The radio emission from [...] Read more.
Rapidly rotating neutron stars with very strong surface magnetic fields are observed to emit pulsed emission in the whole range of electromagnetic spectrum from radio to high-energy gamma rays. These so-called pulsars are known for their exceptional rotational stability. The radio emission from pulsars is generally believed to be powered by the rotational energy of neutron stars. More than 3000 pulsars have been currently known from radio observations; however, only about 10% are observed in the high-energy gamma ray band. The Fermi-LAT observations in the energy range above 100 MeV have discovered more than 300 pulsars. However, the origin of high-energy non-thermal radiation from pulsars is not completely understood and remains an active area of research. In this contribution, we report a summary of observational features of the gamma ray pulsars and briefly discuss observability for the MACE gamma ray telescope, which has just started its regular science operation at Hanle in India. Six gamma ray pulsars, other than the well-known Crab and Geminga, are identified as probable candidates for MACE observations. Full article
(This article belongs to the Special Issue The 10th Anniversary of Galaxies: The Astrophysics of Neutron Stars)
Show Figures

Figure 1

41 pages, 669 KiB  
Review
Gamma-ray Emission and Variability Processes in High-Energy-Peaked BL Lacertae Objects
by Bidzina Kapanadze
Universe 2023, 9(7), 344; https://doi.org/10.3390/universe9070344 - 24 Jul 2023
Cited by 1 | Viewed by 1892
Abstract
BL Lac objects are active galactic nuclei notable for a beamed nonthermal radiation, which is generated in one of the relativistic jets forming a small angle to the observer’s line-of-sight. The broadband spectra of BL Lacs show a two-component spectral energy distribution (SED). [...] Read more.
BL Lac objects are active galactic nuclei notable for a beamed nonthermal radiation, which is generated in one of the relativistic jets forming a small angle to the observer’s line-of-sight. The broadband spectra of BL Lacs show a two-component spectral energy distribution (SED). High-energy-peaked BL Lacs (HBLs) exhibit their lower-energy (synchrotron) peaks at UV to X-ray frequencies. The origin of the higher-energy SED component, representing the γ-ray range in HBLs, is still controversial and different emission scenarios (one- and multi-zone synchrotron self-Compton, hadronic etc.) are proposed. In γ-rays, HBLs show a complex flaring behavior with rapid and large-amplitude TeV-band variations on timescales down to a few minutes. This review presents a detailed characterization of the hypothetical emission mechanisms which could contribute to the γ-ray emission, their application to the nearby TeV-detected HBLs, successes in the broadband SED modeling and difficulties in the interpretation of the observational data. I also overview the unstable processes to be responsible for the observed γ-ray variability and particle energization up to millions of Lorentz factors (relativistic shocks, magnetic reconnection, turbulence and jet-star interaction). Finally, the future prospects for solving the persisting problems by means of the dedicated gamma-ray observations and sophisticated simulations are also addressed. Full article
(This article belongs to the Special Issue Recent Advances in Gamma Ray Astrophysics and Future Perspectives)
Show Figures

Figure 1

34 pages, 2147 KiB  
Article
MeV, GeV and TeV Neutrinos from Binary-Driven Hypernovae
by S. Campion, J. D. Uribe-Suárez, J. D. Melon Fuksman and J. A. Rueda
Symmetry 2023, 15(2), 412; https://doi.org/10.3390/sym15020412 - 3 Feb 2023
Cited by 2 | Viewed by 2247
Abstract
We analyze neutrino emission channels in energetic (1052 erg) long gamma-ray bursts within the binary-driven hypernova model. The binary-driven hypernova progenitor is a binary system composed of a carbon-oxygen star and a neutron star (NS) companion. The gravitational collapse leads [...] Read more.
We analyze neutrino emission channels in energetic (1052 erg) long gamma-ray bursts within the binary-driven hypernova model. The binary-driven hypernova progenitor is a binary system composed of a carbon-oxygen star and a neutron star (NS) companion. The gravitational collapse leads to a type Ic supernova (SN) explosion and triggers an accretion process onto the NS. For orbital periods of a few minutes, the NS reaches the critical mass and forms a black hole (BH). Two physical situations produce MeV neutrinos. First, during the accretion, the NS surface emits neutrino–antineutrino pairs by thermal production. We calculate the properties of such a neutrino emission, including flavor evolution. Second, if the angular momentum of the SN ejecta is high enough, an accretion disk might form around the BH. The disk’s high density and temperature are ideal for MeV-neutrino production. We estimate the flavor evolution of electron and non-electron neutrinos and find that neutrino oscillation inside the disk leads to flavor equipartition. This effect reduces (compared to assuming frozen flavor content) the energy deposition rate of neutrino–antineutrino annihilation into electron–positron (e+e) pairs in the BH vicinity. We then analyze the production of GeV-TeV neutrinos around the newborn black hole. The magnetic field surrounding the BH interacts with the BH gravitomagnetic field producing an electric field that leads to spontaneous e+e pairs by vacuum breakdown. The e+e plasma self-accelerates due to its internal pressure and engulfs protons during the expansion. The hadronic interaction of the protons in the expanding plasma with the ambient protons leads to neutrino emission via the decay chain of π-meson and μ-lepton, around and far from the black hole, along different directions. These neutrinos have energies in the GeV-TeV regime, and we calculate their spectrum and luminosity. We also outline the detection probability by some current and future neutrino detectors. Full article
(This article belongs to the Special Issue Symmetry and Neutrino Physics: Theory and Experiments)
Show Figures

Figure 1

17 pages, 1454 KiB  
Article
Explaining the Multiwavelength Emission of γ-ray Bright Flat-Spectrum Radio Quasar 3C 454.3 in Different Activity States
by Yaru Feng, Shaoming Hu, Ruixin Zhou and Songbo Gao
Universe 2022, 8(11), 585; https://doi.org/10.3390/universe8110585 - 4 Nov 2022
Cited by 2 | Viewed by 1951
Abstract
The origin of gamma-ray flares of blazars is still an open issue in jet physics. In this work, we reproduce the multiwavelength spectral energy distribution (SED) of flat-spectrum radio quasars 3C 454.3 under a one-zone leptonic scenario, investigate the variation of the physical [...] Read more.
The origin of gamma-ray flares of blazars is still an open issue in jet physics. In this work, we reproduce the multiwavelength spectral energy distribution (SED) of flat-spectrum radio quasars 3C 454.3 under a one-zone leptonic scenario, investigate the variation of the physical parameters in different activity states, and analyze the possible origin of its γ-ray outburst. Based on the analysis of multiwavelength quasi-simultaneous observations of 3C 454.3 during MJD 55,400–56,000, we consider that the radiation includes synchrotron (Syn), synchrotron self-Compton (SSC), and external Compton (EC) radiations by the simulation, and the seed photons of the external Compton component mainly comes from the broad-line region and dusty molecular torus. The model results show that: (1) We can well reproduce the multiwavelength quasi-simultaneity SED of 3C 454.3 in various activity states by using a one-zone Syn+SSC+EC model. (2) By comparing the physical model parameters of the bright and the quiescent states, we suggest that this γ-ray flaring activity is more likely to be caused by the increase in the doppler factor. Full article
(This article belongs to the Special Issue Multi-Messengers of Black Hole Accretion and Emission)
Show Figures

Figure 1

Back to TopTop