Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = nucleoskeleton

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2426 KB  
Review
Transmembrane Protein 43: Molecular and Pathogenetic Implications in Arrhythmogenic Cardiomyopathy and Various Other Diseases
by Buyan-Ochir Orgil, Mekaea S. Spaulding, Harrison P. Smith, Zainab Baba, Neely R. Alberson, Enkhzul Batsaikhan, Jeffrey A. Towbin and Enkhsaikhan Purevjav
Int. J. Mol. Sci. 2025, 26(14), 6856; https://doi.org/10.3390/ijms26146856 - 17 Jul 2025
Viewed by 823
Abstract
Transmembrane protein 43 (TMEM43 or LUMA) encodes a highly conserved protein found in the nuclear and endoplasmic reticulum membranes of many cell types and the intercalated discs and adherens junctions of cardiac myocytes. TMEM43 is involved in facilitating intra/extracellular signal transduction [...] Read more.
Transmembrane protein 43 (TMEM43 or LUMA) encodes a highly conserved protein found in the nuclear and endoplasmic reticulum membranes of many cell types and the intercalated discs and adherens junctions of cardiac myocytes. TMEM43 is involved in facilitating intra/extracellular signal transduction to the nucleus via the linker of the nucleoskeleton and cytoskeleton complex. Genetic mutations may result in reduced TMEM43 expression and altered TMEM43 protein cellular localization, resulting in impaired cell polarization, intracellular force transmission, and cell–cell connections. The p.S358L mutation causes arrhythmogenic right ventricular cardiomyopathy type-5 and is associated with increased absorption of lipids, fatty acids, and cholesterol in the mouse small intestine, which may promote fibro-fatty replacement of cardiac myocytes. Mutations (p.E85K and p.I91V) have been identified in patients with Emery–Dreifuss Muscular Dystrophy-related myopathies. Other mutations also lead to auditory neuropathy spectrum disorder-associated hearing loss and have a negative association with cancer progression and tumor cell survival. This review explores the pathogenesis of TMEM43 mutation-associated diseases in humans, highlighting animal and in vitro studies that describe the molecular details of disease processes and clinical, histologic, and molecular manifestations. Additionally, we discuss TMEM43 expression-related conditions and how each disease may progress to severe and life-threatening states. Full article
Show Figures

Figure 1

19 pages, 3086 KB  
Review
The Role of Connections Between Cellular and Tissue Mechanical Elements and the Importance of Applied Energy in Mechanotransduction in Cancerous Tissue
by Frederick H. Silver
Biomolecules 2025, 15(4), 457; https://doi.org/10.3390/biom15040457 - 21 Mar 2025
Cited by 1 | Viewed by 1223
Abstract
In the presence of cellular mutations and impaired mechanisms of energy transmission to the attached cells and tissues, excess energy is available to upregulate some of the mechanotransduction pathways that maintain cell and tissue structure and function. The ability to transfer applied energy [...] Read more.
In the presence of cellular mutations and impaired mechanisms of energy transmission to the attached cells and tissues, excess energy is available to upregulate some of the mechanotransduction pathways that maintain cell and tissue structure and function. The ability to transfer applied energy through integrin-mediated pathways, cell ion channels, cell membrane, cytoskeleton–nucleoskeleton connections, cell junctions, and cell–extracellular matrix attachments provides an equilibrium for energy storage, transmission, and dissipation in tissues. Disruption in energy storage, transmission, or dissipation via genetic mutations blocks mechanical communication between cells and tissues and impairs the mechanical energy equilibrium that exists between cells and tissues. This results in local structural changes through altered regulatory pathways, which produce cell clustering, collagen encapsulation, and an epithelial–mesenchymal transition (EMT), leading to increased cellular motility along newly reorganized collagen fibers (fibrosis). The goal of this review is to postulate how changes in energy transfer between cells and the extracellular matrix may alter local energy equilibrium and mechanotransduction pathways. The changes along with cellular mutations lead to cell and ECM changes reported in cancer, which is postulated to modify mechanical equilibria between cells and their ECM. This leads to uncontrolled cancer cellular proliferation and collagen remodeling. Full article
(This article belongs to the Special Issue The Role of Mechanotransduction in Cellular Biology)
Show Figures

Figure 1

16 pages, 1001 KB  
Review
Mechanical Forces, Nucleus, Chromosomes, and Chromatin
by Malgorzata Kloc and Jarek Wosik
Biomolecules 2025, 15(3), 354; https://doi.org/10.3390/biom15030354 - 1 Mar 2025
Cited by 1 | Viewed by 2384
Abstract
Individual cells and cells within the tissues and organs constantly face mechanical challenges, such as tension, compression, strain, shear stress, and the rigidity of cellular and extracellular surroundings. Besides the external mechanical forces, cells and their components are also subjected to intracellular mechanical [...] Read more.
Individual cells and cells within the tissues and organs constantly face mechanical challenges, such as tension, compression, strain, shear stress, and the rigidity of cellular and extracellular surroundings. Besides the external mechanical forces, cells and their components are also subjected to intracellular mechanical forces, such as pulling, pushing, and stretching, created by the sophisticated force-generation machinery of the cytoskeleton and molecular motors. All these mechanical stressors switch on the mechanotransduction pathways, allowing cells and their components to respond and adapt. Mechanical force-induced changes at the cell membrane and cytoskeleton are also transmitted to the nucleus and its nucleoskeleton, affecting nucleocytoplasmic transport, chromatin conformation, transcriptional activity, replication, and genome, which, in turn, orchestrate cellular mechanical behavior. The memory of mechanoresponses is stored as epigenetic and chromatin structure modifications. The mechanical state of the cell in response to the acellular and cellular environment also determines cell identity, fate, and immune response to invading pathogens. Here, we give a short overview of the latest developments in understanding these processes, emphasizing their effects on cell nuclei, chromosomes, and chromatin. Full article
(This article belongs to the Special Issue The Role of Mechanotransduction in Cellular Biology)
Show Figures

Figure 1

19 pages, 1280 KB  
Review
Nuclear Structure, Size Regulation, and Role in Cell Migration
by Yuhao Li, Shanghao Ge, Jiayi Liu, Deseng Sun, Yang Xi and Pan Chen
Cells 2024, 13(24), 2130; https://doi.org/10.3390/cells13242130 - 23 Dec 2024
Cited by 3 | Viewed by 2455
Abstract
The nucleus serves as a pivotal regulatory and control hub in the cell, governing numerous aspects of cellular functions, including DNA replication, transcription, and RNA processing. Therefore, any deviations in nuclear morphology, structure, or organization can strongly affect cellular activities. In this review, [...] Read more.
The nucleus serves as a pivotal regulatory and control hub in the cell, governing numerous aspects of cellular functions, including DNA replication, transcription, and RNA processing. Therefore, any deviations in nuclear morphology, structure, or organization can strongly affect cellular activities. In this review, we provide an updated perspective on the structure and function of nuclear components, focusing on the linker of nucleoskeleton and cytoskeleton complex, the nuclear envelope, the nuclear lamina, and chromatin. Additionally, nuclear size should be considered a fundamental parameter for the cellular state. Its regulation is tightly linked to environmental changes, development, and various diseases, including cancer. Hence, we also provide a concise overview of different mechanisms by which nuclear size is determined, the emerging role of the nucleus as a mechanical sensor, and the implications of altered nuclear morphology on the physiology of diseased cells. Full article
(This article belongs to the Special Issue Organelle Contact and Its Physiological Implications)
Show Figures

Figure 1

19 pages, 3007 KB  
Review
Diverse Roles of the LINC Complex in Cellular Function and Disease in the Nervous System
by Ken-ichiro Kuwako and Sadafumi Suzuki
Int. J. Mol. Sci. 2024, 25(21), 11525; https://doi.org/10.3390/ijms252111525 - 26 Oct 2024
Viewed by 2593
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex, which spans the nuclear envelope, physically connects nuclear components to the cytoskeleton and plays a pivotal role in various cellular processes, including nuclear positioning, cell migration, and chromosomal configuration. Studies have revealed that the LINC [...] Read more.
The linker of nucleoskeleton and cytoskeleton (LINC) complex, which spans the nuclear envelope, physically connects nuclear components to the cytoskeleton and plays a pivotal role in various cellular processes, including nuclear positioning, cell migration, and chromosomal configuration. Studies have revealed that the LINC complex is essential for different aspects of the nervous system, particularly during development. The significance of the LINC complex in neural lineage cells is further corroborated by the fact that mutations in genes associated with the LINC complex have been implicated in several neurological diseases, including neurodegenerative and psychiatric disorders. In this review, we aimed to summarize the expanding knowledge of LINC complex-related neuronal functions and associated neurological diseases. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

27 pages, 5346 KB  
Article
Inhibition of PDIs Downregulates Core LINC Complex Proteins, Promoting the Invasiveness of MDA-MB-231 Breast Cancer Cells in Confined Spaces In Vitro
by Natalie Young, Zizhao Gui, Suleiman Mustafa, Kleopatra Papa, Emily Jessop, Elizabeth Ruddell, Laura Bevington, Roy A. Quinlan, Adam M. Benham, Martin W. Goldberg, Boguslaw Obara and Iakowos Karakesisoglou
Cells 2024, 13(11), 906; https://doi.org/10.3390/cells13110906 - 24 May 2024
Viewed by 2978
Abstract
Eukaryotic cells tether the nucleoskeleton to the cytoskeleton via a conserved molecular bridge, called the LINC complex. The core of the LINC complex comprises SUN-domain and KASH-domain proteins that directly associate within the nuclear envelope lumen. Intra- and inter-chain disulphide bonds, along with [...] Read more.
Eukaryotic cells tether the nucleoskeleton to the cytoskeleton via a conserved molecular bridge, called the LINC complex. The core of the LINC complex comprises SUN-domain and KASH-domain proteins that directly associate within the nuclear envelope lumen. Intra- and inter-chain disulphide bonds, along with KASH-domain protein interactions, both contribute to the tertiary and quaternary structure of vertebrate SUN-domain proteins. The significance of these bonds and the role of PDIs (protein disulphide isomerases) in LINC complex biology remains unclear. Reducing and non-reducing SDS-PAGE analyses revealed a prevalence of SUN2 homodimers in non-tumorigenic breast epithelia MCF10A cells, but not in the invasive triple-negative breast cancer MDA-MB-231 cell line. Furthermore, super-resolution microscopy revealed SUN2 staining alterations in MCF10A, but not in MDA-MB-231 nuclei, upon reducing agent exposure. While PDIA1 levels were similar in both cell lines, pharmacological inhibition of PDI activity in MDA-MB-231 cells led to SUN-domain protein down-regulation, as well as Nesprin-2 displacement from the nucleus. This inhibition also caused changes in perinuclear cytoskeletal architecture and lamin downregulation, and increased the invasiveness of PDI-inhibited MDA-MB-231 cells in space-restrictive in vitro environments, compared to untreated cells. These results emphasise the key roles of PDIs in regulating LINC complex biology, cellular architecture, biomechanics, and invasion. Full article
(This article belongs to the Special Issue Cytoskeletal Remodeling in Health and Disease)
Show Figures

Figure 1

23 pages, 1705 KB  
Review
Cytochalasins as Modulators of Stem Cell Differentiation
by Luca Pampanella, Giovannamaria Petrocelli, Provvidenza Maria Abruzzo, Cinzia Zucchini, Silvia Canaider, Carlo Ventura and Federica Facchin
Cells 2024, 13(5), 400; https://doi.org/10.3390/cells13050400 - 25 Feb 2024
Cited by 3 | Viewed by 2712
Abstract
Regenerative medicine aims to identify new research strategies for the repair and restoration of tissues damaged by pathological or accidental events. Mesenchymal stem cells (MSCs) play a key role in regenerative medicine approaches due to their specific properties, such as the high rate [...] Read more.
Regenerative medicine aims to identify new research strategies for the repair and restoration of tissues damaged by pathological or accidental events. Mesenchymal stem cells (MSCs) play a key role in regenerative medicine approaches due to their specific properties, such as the high rate of proliferation, the ability to differentiate into several cell lineages, the immunomodulatory potential, and their easy isolation with minimal ethical issues. One of the main goals of regenerative medicine is to modulate, both in vitro and in vivo, the differentiation potential of MSCs to improve their use in the repair of damaged tissues. Over the years, much evidence has been collected about the ability of cytochalasins, a large family of 60 metabolites isolated mainly from fungi, to modulate multiple properties of stem cells (SCs), such as proliferation, migration, and differentiation, by altering the organization of the cyto- and the nucleo-skeleton. In this review, we discussed the ability of two different cytochalasins, cytochalasins D and B, to influence specific SC differentiation programs modulated by several agents (chemical or physical) or intra- and extra-cellular factors, with particular attention to human MSCs (hMSCs). Full article
Show Figures

Graphical abstract

22 pages, 5707 KB  
Article
The LINC Complex Inhibits Excessive Chromatin Repression
by Daria Amiad Pavlov, CP Unnikannan, Dana Lorber, Gaurav Bajpai, Tsviya Olender, Elizabeth Stoops, Adriana Reuveny, Samuel Safran and Talila Volk
Cells 2023, 12(6), 932; https://doi.org/10.3390/cells12060932 - 18 Mar 2023
Cited by 9 | Viewed by 3572
Abstract
The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex transduces nuclear mechanical inputs suggested to control chromatin organization and gene expression; however, the underlying mechanism is currently unclear. We show here that the LINC complex is needed to minimize chromatin repression in muscle tissue, [...] Read more.
The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex transduces nuclear mechanical inputs suggested to control chromatin organization and gene expression; however, the underlying mechanism is currently unclear. We show here that the LINC complex is needed to minimize chromatin repression in muscle tissue, where the nuclei are exposed to significant mechanical inputs during muscle contraction. To this end, the genomic binding profiles of Polycomb, Heterochromatin Protein1 (HP1a) repressors, and of RNA-Pol II were studied in Drosophila larval muscles lacking functional LINC complex. A significant increase in the binding of Polycomb and parallel reduction of RNA-Pol-II binding to a set of muscle genes was observed. Consistently, enhanced tri-methylated H3K9 and H3K27 repressive modifications and reduced chromatin activation by H3K9 acetylation were found. Furthermore, larger tri-methylated H3K27me3 repressive clusters, and chromatin redistribution from the nuclear periphery towards nuclear center, were detected in live LINC mutant larval muscles. Computer simulation indicated that the observed dissociation of the chromatin from the nuclear envelope promotes growth of tri-methylated H3K27 repressive clusters. Thus, we suggest that by promoting chromatin–nuclear envelope binding, the LINC complex restricts the size of repressive H3K27 tri-methylated clusters, thereby limiting the binding of Polycomb transcription repressor, directing robust transcription in muscle fibers. Full article
(This article belongs to the Special Issue Mechanotransduction in Cell Functioning and (Patho)physiology)
Show Figures

Figure 1

18 pages, 4899 KB  
Review
Insights into the Molecular Mechanisms Regulating Cell Behavior in Response to Magnetic Materials and Magnetic Stimulation in Stem Cell (Neurogenic) Differentiation
by Alexandra-Elena Mocanu-Dobranici, Marieta Costache and Sorina Dinescu
Int. J. Mol. Sci. 2023, 24(3), 2028; https://doi.org/10.3390/ijms24032028 - 19 Jan 2023
Cited by 13 | Viewed by 4015
Abstract
Magnetic materials and magnetic stimulation have gained increasing attention in tissue engineering (TE), particularly for bone and nervous tissue reconstruction. Magnetism is utilized to modulate the cell response to environmental factors and lineage specifications, which involve complex mechanisms of action. Magnetic fields and [...] Read more.
Magnetic materials and magnetic stimulation have gained increasing attention in tissue engineering (TE), particularly for bone and nervous tissue reconstruction. Magnetism is utilized to modulate the cell response to environmental factors and lineage specifications, which involve complex mechanisms of action. Magnetic fields and nanoparticles (MNPs) may trigger focal adhesion changes, which are further translated into the reorganization of the cytoskeleton architecture and have an impact on nuclear morphology and positioning through the activation of mechanotransduction pathways. Mechanical stress induced by magnetic stimuli translates into an elongation of cytoskeleton fibers, the activation of linker in the nucleoskeleton and cytoskeleton (LINC) complex, and nuclear envelope deformation, and finally leads to the mechanical regulation of chromatin conformational changes. As such, the internalization of MNPs with further magnetic stimulation promotes the evolution of stem cells and neurogenic differentiation, triggering significant changes in global gene expression that are mediated by histone deacetylases (e.g., HDAC 5/11), and the upregulation of noncoding RNAs (e.g., miR-106b~25). Additionally, exposure to a magnetic environment had a positive influence on neurodifferentiation through the modulation of calcium channels’ activity and cyclic AMP response element-binding protein (CREB) phosphorylation. This review presents an updated and integrated perspective on the molecular mechanisms that govern the cellular response to magnetic cues, with a special focus on neurogenic differentiation and the possible utility of nervous TE, as well as the limitations of using magnetism for these applications. Full article
(This article belongs to the Special Issue Stem Cell Biology & Regenerative Medicine)
Show Figures

Figure 1

24 pages, 2879 KB  
Systematic Review
Genotype-Phenotype Correlations in Human Diseases Caused by Mutations of LINC Complex-Associated Genes: A Systematic Review and Meta-Summary
by Emily C. Storey and Heidi R. Fuller
Cells 2022, 11(24), 4065; https://doi.org/10.3390/cells11244065 - 15 Dec 2022
Cited by 21 | Viewed by 4085
Abstract
Mutations in genes encoding proteins associated with the linker of nucleoskeleton and cytoskeleton (LINC) complex within the nuclear envelope cause different diseases with varying phenotypes including skeletal muscle, cardiac, metabolic, or nervous system pathologies. There is some understanding of the structure of LINC [...] Read more.
Mutations in genes encoding proteins associated with the linker of nucleoskeleton and cytoskeleton (LINC) complex within the nuclear envelope cause different diseases with varying phenotypes including skeletal muscle, cardiac, metabolic, or nervous system pathologies. There is some understanding of the structure of LINC complex-associated proteins and how they interact, but it is unclear how mutations in genes encoding them can cause the same disease, and different diseases with different phenotypes. Here, published mutations in LINC complex-associated proteins were systematically reviewed and analyzed to ascertain whether patterns exist between the genetic sequence variants and clinical phenotypes. This revealed LMNA is the only LINC complex-associated gene in which mutations commonly cause distinct conditions, and there are no clear genotype-phenotype correlations. Clusters of LMNA variants causing striated muscle disease are located in exons 1 and 6, and metabolic disease-associated LMNA variants are frequently found in the tail of lamin A/C. Additionally, exon 6 of the emerin gene, EMD, may be a mutation “hot-spot”, and diseases related to SYNE1, encoding nesprin-1, are most often caused by nonsense type mutations. These results provide insight into the diverse roles of LINC-complex proteins in human disease and provide direction for future gene-targeted therapy development. Full article
(This article belongs to the Collection Lamins and Laminopathies)
Show Figures

Figure 1

19 pages, 1936 KB  
Review
LINCing Senescence and Nuclear Envelope Changes
by Bakhita R. M. Meqbel, Matilde Gomes, Amr Omer, Imed E. Gallouzi and Henning F. Horn
Cells 2022, 11(11), 1787; https://doi.org/10.3390/cells11111787 - 30 May 2022
Cited by 12 | Viewed by 3947
Abstract
The nuclear envelope (NE) has emerged as a nexus for cellular organization, signaling, and survival. Beyond its role as a barrier to separate the nucleoplasm from the cytoplasm, the NE’s role in supporting and maintaining a myriad of other functions has made it [...] Read more.
The nuclear envelope (NE) has emerged as a nexus for cellular organization, signaling, and survival. Beyond its role as a barrier to separate the nucleoplasm from the cytoplasm, the NE’s role in supporting and maintaining a myriad of other functions has made it a target of study in many cellular processes, including senescence. The nucleus undergoes dramatic changes in senescence, many of which are driven by changes in the NE. Indeed, Lamin B1, a key NE protein that is consistently downregulated in senescence, has become a marker for senescence. Other NE proteins have also been shown to play a role in senescence, including LINC (linker of nucleoskeleton and cytoskeleton) complex proteins. LINC complexes span the NE, forming physical connections between the cytoplasm to the nucleoplasm. In this way, they integrate nuclear and cytoplasmic mechanical signals and are essential not only for a variety of cellular functions but are needed for cell survival. However, LINC complex proteins have been shown to have a myriad of functions in addition to forming a LINC complex, often existing as nucleoplasmic or cytoplasmic soluble proteins in a variety of isoforms. Some of these proteins have now been shown to play important roles in DNA repair, cell signaling, and nuclear shape regulation, all of which are important in senescence. This review will focus on some of these roles and highlight the importance of LINC complex proteins in senescence. Full article
Show Figures

Figure 1

12 pages, 672 KB  
Review
How and Why Chromosomes Interact with the Cytoskeleton during Meiosis
by Hyung Jun Kim, Chenshu Liu and Abby F. Dernburg
Genes 2022, 13(5), 901; https://doi.org/10.3390/genes13050901 - 18 May 2022
Cited by 20 | Viewed by 4311
Abstract
During the early meiotic prophase, connections are established between chromosomes and cytoplasmic motors via a nuclear envelope bridge, known as a LINC (linker of nucleoskeleton and cytoskeleton) complex. These widely conserved links can promote both chromosome and nuclear motions. Studies in diverse organisms [...] Read more.
During the early meiotic prophase, connections are established between chromosomes and cytoplasmic motors via a nuclear envelope bridge, known as a LINC (linker of nucleoskeleton and cytoskeleton) complex. These widely conserved links can promote both chromosome and nuclear motions. Studies in diverse organisms have illuminated the molecular architecture of these connections, but important questions remain regarding how they contribute to meiotic processes. Here, we summarize the current knowledge in the field, outline the challenges in studying these chromosome dynamics, and highlight distinctive features that have been characterized in major model systems. Full article
(This article belongs to the Special Issue Genetics of Meiotic Chromosome Dynamics)
Show Figures

Figure 1

26 pages, 5141 KB  
Article
Clinical Relevance of Secreted Small Noncoding RNAs in an Embryo Implantation Potential Prediction at Morula and Blastocyst Development Stages
by Angelika V. Timofeeva, Ivan S. Fedorov, Maria A. Shamina, Vitaliy V. Chagovets, Nataliya P. Makarova, Elena A. Kalinina, Tatiana A. Nazarenko and Gennady T. Sukhikh
Life 2021, 11(12), 1328; https://doi.org/10.3390/life11121328 - 1 Dec 2021
Cited by 8 | Viewed by 3590
Abstract
Despite the improvements in biotechnological approaches and the selection of controlled ovarian hyperstimulation protocols, the resulting pregnancy rate from in vitro fertilization (IVF) protocols still does not exceed 30–40%. In this connection, there is an acute question of the development of a non-invasive, [...] Read more.
Despite the improvements in biotechnological approaches and the selection of controlled ovarian hyperstimulation protocols, the resulting pregnancy rate from in vitro fertilization (IVF) protocols still does not exceed 30–40%. In this connection, there is an acute question of the development of a non-invasive, sensitive, and specific method for assessing the implantation potential of an embryo. A total of 110 subfertile couples were included in the study to undergo the IVF/ICSI program. Obtained embryos for transfer into the uterine cavity of patient cohort 1 (n = 60) and cohort 2 (n = 50) were excellent/good-quality blastocysts, and small noncoding RNA (sncRNA) content in the corresponding spent culture medium samples at the morula stage (n = 43) or at the blastocyst stage (n = 31) was analyzed by deep sequencing followed by qRT-PCR in real time. Two logistic regression models were developed to predict the implantation potential of the embryo with 100% sensitivity and 100% specificity: model 1 at the morula stage, using various combinations of hsa_piR_022258, hsa-let-7i-5p, hsa_piR_000765, hsa_piR_015249, hsa_piR_019122, and hsa_piR_008112, and model 2 at the blastocyst stage, using various combinations of hsa_piR_020497, hsa_piR_008113, hsa-miR-381-3p, hsa_piR_022258, and hsa-let-7a-5p. Protein products of sncRNA potential target genes participate in the selective turnover of proteins through the ubiquitination system and in the organization of the various cell cytoskeleton and nucleoskeleton structures, regulating the activity of the Hippo signaling pathway, which determines the fate specification of the blastomers. Full article
(This article belongs to the Special Issue Genomic and Transcriptomic Alterations in Cancer and Aging)
Show Figures

Figure 1

29 pages, 3270 KB  
Review
The Role of Emerin in Cancer Progression and Metastasis
by Alexandra G. Liddane and James M. Holaska
Int. J. Mol. Sci. 2021, 22(20), 11289; https://doi.org/10.3390/ijms222011289 - 19 Oct 2021
Cited by 25 | Viewed by 7967
Abstract
It is commonly recognized in the field that cancer cells exhibit changes in the size and shape of their nuclei. These features often serve as important biomarkers in the diagnosis and prognosis of cancer patients. Nuclear size can significantly impact cell migration due [...] Read more.
It is commonly recognized in the field that cancer cells exhibit changes in the size and shape of their nuclei. These features often serve as important biomarkers in the diagnosis and prognosis of cancer patients. Nuclear size can significantly impact cell migration due to its incredibly large size. Nuclear structural changes are predicted to regulate cancer cell migration. Nuclear abnormalities are common across a vast spectrum of cancer types, regardless of tissue source, mutational spectrum, and signaling dependencies. The pervasiveness of nuclear alterations suggests that changes in nuclear structure may be crucially linked to the transformation process. The factors driving these nuclear abnormalities, and the functional consequences, are not completely understood. Nuclear envelope proteins play an important role in regulating nuclear size and structure in cancer. Altered expression of nuclear lamina proteins, including emerin, is found in many cancers and this expression is correlated with better clinical outcomes. A model is emerging whereby emerin, as well as other nuclear lamina proteins, binding to the nucleoskeleton regulates the nuclear structure to impact metastasis. In this model, emerin and lamins play a central role in metastatic transformation, since decreased emerin expression during transformation causes the nuclear structural defects required for increased cell migration, intravasation, and extravasation. Herein, we discuss the cellular functions of nuclear lamina proteins, with a particular focus on emerin, and how these functions impact cancer progression and metastasis. Full article
(This article belongs to the Special Issue Nuclear Envelope Proteins 2.0)
Show Figures

Figure 1

22 pages, 5444 KB  
Article
Zonula occludens 2 and Cell-Cell Contacts Are Required for Normal Nuclear Shape in Epithelia
by Christian Hernández-Guzmán, Helios Gallego-Gutiérrez, Bibiana Chávez-Munguía, Dolores Martín-Tapia and Lorenza González-Mariscal
Cells 2021, 10(10), 2568; https://doi.org/10.3390/cells10102568 - 28 Sep 2021
Cited by 4 | Viewed by 3636
Abstract
MAGUK protein ZO-2 is present at tight junctions (TJs) and nuclei. In MDCK ZO-2 knockdown (KD) cells, nuclei exhibit an irregular shape with lobules and indentations. This condition correlates with an increase in DNA double strand breaks, however cells are not senescent and [...] Read more.
MAGUK protein ZO-2 is present at tight junctions (TJs) and nuclei. In MDCK ZO-2 knockdown (KD) cells, nuclei exhibit an irregular shape with lobules and indentations. This condition correlates with an increase in DNA double strand breaks, however cells are not senescent and instead become resistant to UV-induced senescence. The irregular nuclear shape is also observed in isolated cells and in those without TJs, due to the lack of extracellular calcium. The aberrant nuclear shape of ZO-2 KD cells is not accompanied by a reduced expression of lamins A/C and B and lamin B receptors. Instead, it involves a decrease in constitutive and facultative heterochromatin, and microtubule instability that is restored with docetaxel. ZO-2 KD cells over-express SUN-1 that crosses the inner nuclear membrane and connects the nucleoskeleton of lamin A to nesprins, which traverse the outer nuclear membrane. Nesprins-3 and -4 that indirectly bind on their cytoplasmic face to vimentin and microtubules, respectively, are also over-expressed in ZO-2 KD cells, whereas vimentin is depleted. SUN-1 and lamin B1 co-immunoprecipitate with ZO-2, and SUN-1 associates to ZO-2 in a pull-down assay. Our results suggest that ZO-2 forms a complex with SUN-1 and lamin B1 at the inner nuclear membrane, and that ZO-2 and cell–cell contacts are required for a normal nuclear shape. Full article
(This article belongs to the Special Issue Regulation of Nuclear Organization and Function)
Show Figures

Figure 1

Back to TopTop