Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = o–cresol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5060 KB  
Article
Cyclodextrin Polymer-Embedded NiS/FeS Composite as a Fenton-like Catalyst for the Degradation of Cresol Red
by Eman M. Abd El-Monaem, Jawaher Y. Al Nawah, Mohammed Salah Ayoup and Abdelazeem S. Eltaweil
Polymers 2025, 17(7), 876; https://doi.org/10.3390/polym17070876 - 25 Mar 2025
Cited by 1 | Viewed by 533
Abstract
Herein, a heterogeneous Fenton-like catalyst was designed by immobilizing iron oxide (FeS) and nickel sulfide (NiS) on the surface of β-cyclodextrin (β-CD), creating a NiS/FeS@β-CD composite for degrading triphenylmethane cresol red dye. Varied instruments were used to study the physical and chemical characteristics [...] Read more.
Herein, a heterogeneous Fenton-like catalyst was designed by immobilizing iron oxide (FeS) and nickel sulfide (NiS) on the surface of β-cyclodextrin (β-CD), creating a NiS/FeS@β-CD composite for degrading triphenylmethane cresol red dye. Varied instruments were used to study the physical and chemical characteristics of the NiS/FeS@β-CD catalyst. The appropriate catalytic conditions of the Fenton-like degradation of cresol red by NiS/FeS@β-CD were identified, clarifying that the higher degradation % fulfilled 99.86% with an adsorption % of 27.44% at a cresol red concentration = 50 mg/L, NiS/FeS@β-CD dose = 0.01 g, pH = 3, processing temperature = 30 °C, H2O2 concentration = 100 mg/L, and H2O2 volume = 1 mL. The kinetic assessments depicted the preference of the second order to represent the Fenton-like degradation of cresol red by NiS/FeS@β-CD. The mechanistic proposition of the adsorption/Fenton-like degradation of cresol red was understood using a quenching test and XPS analysis. Finally, to confirm the durability of NiS/FeS@β-CD, a reusability test was proceeded on the catalyst for five adsorption/Fenton-like degradation runs, with identifying the leaching concentrations of nickel and iron from the catalyst by ICP-OES after each run. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

18 pages, 10382 KB  
Article
Novel Thiourea Ligands—Synthesis, Characterization and Preliminary Study on Their Coordination Abilities
by Stanislava E. Todorova, Rusi I. Rusew, Zhanina S. Petkova, Boris L. Shivachev and Vanya B. Kurteva
Molecules 2024, 29(20), 4906; https://doi.org/10.3390/molecules29204906 - 16 Oct 2024
Viewed by 2336
Abstract
Two series of polydentate N,O,S-ligands containing thiourea fragments attached to a p-cresol scaffold, unsymmetrical mono-acylated bis-amines and symmetrical bis-thioureas, are obtained by common experiments. It is observed that the reaction output is strongly dependent on both bis-amine [...] Read more.
Two series of polydentate N,O,S-ligands containing thiourea fragments attached to a p-cresol scaffold, unsymmetrical mono-acylated bis-amines and symmetrical bis-thioureas, are obtained by common experiments. It is observed that the reaction output is strongly dependent on both bis-amine and thiocarbamic chloride substituents. The products are characterized by 1D and 2D NMR spectra in solution and by single crystal XRD. A preliminary study on the coordination abilities of selected products is performed by ITC at around neutral media. Full article
Show Figures

Graphical abstract

11 pages, 4107 KB  
Article
Experimental Study on the Transport Properties of 12 Novel Deep Eutectic Solvents
by Jing Fan, Yuting Pan, Dazhi Gao and Hongwei Qu
Polymers 2024, 16(13), 1946; https://doi.org/10.3390/polym16131946 - 8 Jul 2024
Cited by 1 | Viewed by 1536
Abstract
Deep eutectic solvents (DESs) are complex substances composed of two or three components, wherein hydrogen bond donors and acceptors engage in intricate interactions within a hydrogen bond network. They have attracted extensive attention from researchers due to their easy synthesis, cost-effectiveness, broad liquid [...] Read more.
Deep eutectic solvents (DESs) are complex substances composed of two or three components, wherein hydrogen bond donors and acceptors engage in intricate interactions within a hydrogen bond network. They have attracted extensive attention from researchers due to their easy synthesis, cost-effectiveness, broad liquid range, good stability, and for being green and non-toxic. However, studies on the physical properties of DESs are still scarce and many theories are not perfect enough, which limits the application of DESs in engineering practice. In this study, twelve DESs were synthesized by using choline chloride and betaine as HBAs, and ethylene glycol, polyethylene glycol 600, o-cresol, glycerol, and lactic acid as HBDs. The variation rules of their thermal conductivity and viscosity with temperature at atmospheric pressure were systematically investigated. The experimental results showed that the thermal conductivity of the 1:4 choline chloride/glycerol solvent was the largest at 294 K, reaching 0.2456 W·m−1·K−1, which could satisfy the demand for high efficiency heat transfer by heat-transferring workpieces. The temperature–viscosity relationship of the DESs was fitted using the Arrhenius model, and the maximum average absolute deviation was 6.77%. Full article
Show Figures

Figure 1

11 pages, 607 KB  
Article
Evaluating the Susceptibility of Different Crops to Smoke Taint
by Julie Culbert, Renata Ristic and Kerry Wilkinson
Horticulturae 2024, 10(7), 713; https://doi.org/10.3390/horticulturae10070713 - 5 Jul 2024
Viewed by 1847
Abstract
The potential for grapes and wine to be tainted following vineyard exposure to wildfire smoke is well established, with recent studies suggesting hops and apples (and thus beer and cider) can be similarly affected. However, the susceptibility of other crops to ‘smoke taint’ [...] Read more.
The potential for grapes and wine to be tainted following vineyard exposure to wildfire smoke is well established, with recent studies suggesting hops and apples (and thus beer and cider) can be similarly affected. However, the susceptibility of other crops to ‘smoke taint’ has not yet been investigated. Smoke was applied to a selection of fruits and vegetables, as well as potted lavender plants, and their volatile phenol composition determined by gas chromatography–mass spectrometry to evaluate their susceptibility to contamination by smoke. Volatile phenols were observed in control (unsmoked) capsicum, cherry, lavender, lemon, spinach and tomato samples, typically at ≤18 µg/kg, but 52 µg/kg of guaiacol and 83–416 µg/kg of o- and m-cresol and 4-methylsyringol were detected in tomato and lavender samples, respectively. However, significant increases in volatile phenol concentrations were observed as a consequence of smoke exposure; with the highest volatile phenol levels occurring in smoke-exposed strawberry and lavender samples. Variation in the uptake of volatile phenols by different crops was attributed to differences in their physical properties, i.e., their surface area, texture and/or cuticle composition, while the peel of banana, lemon, and to a lesser extent apple samples, mitigated the permeation of smoke-derived volatile phenols into pulp. Results provide valuable insight into the susceptibility of different crops to smoke contamination. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

26 pages, 8699 KB  
Article
Environmentally Friendly o–Cresol–Furfural–Formaldehyde Resin as an Alternative to Traditional Phenol–Formaldehyde Resins for Paint Industry
by Marta Depta, Sławomir Napiórkowski, Katarzyna Zielińska, Katarzyna Gębura, Daria Niewolik and Katarzyna Jaszcz
Materials 2024, 17(13), 3072; https://doi.org/10.3390/ma17133072 - 22 Jun 2024
Cited by 4 | Viewed by 1484
Abstract
This paper describes studies on the preparation of an o–cresol–furfural–formaldehyde resin in the presence of an alkaline catalyst and its modification with n-butanol or 2-ethylhexanol. The novelty of this research is to obtain a furfural-based resin of the resole type and its etherification. [...] Read more.
This paper describes studies on the preparation of an o–cresol–furfural–formaldehyde resin in the presence of an alkaline catalyst and its modification with n-butanol or 2-ethylhexanol. The novelty of this research is to obtain a furfural-based resin of the resole type and its etherification. Such resins are not described in the literature and also are not available on the market. The obtained resin based on furfural, which can be obtained from agricultural waste, had a low minimum content of free o–cresol < 1 wt.%, furfural < 0.1 wt.%, and formaldehyde < 0.1 wt.%. The resin structure was characterized by mass spectrometry (ESI-MS), FT-IR, and NMR spectroscopy, which showed the presence of hydroxymethylene groups in the resin before modification and alkyl groups derived from n-butanol and 2-ethylhexanol after modification. The etherified resins had a lower viscosity and were more flexible (DSC) than the resin before modification and they can be used as an environmentally friendly, safe, and sustainable alternative to traditional phenol–formaldehyde resins in the paint industry. They demonstrate the ability to create a protective coating with good adherence to metal substrates and an excellent balance of flexibility and hardness. Full article
(This article belongs to the Special Issue Advances in Biomass-Based Materials and Their Applications)
Show Figures

Figure 1

19 pages, 7994 KB  
Article
Catalysts Based on Iron Oxides for Wastewater Purification from Phenolic Compounds: Synthesis, Physicochemical Analysis, Determination of Catalytic Activity
by Binara T. Dossumova, Larissa R. Sassykova, Tatyana V. Shakiyeva, Dinara Muktaly, Aigul A. Batyrbayeva and Madina A. Kozhaisakova
ChemEngineering 2024, 8(1), 8; https://doi.org/10.3390/chemengineering8010008 - 1 Jan 2024
Cited by 4 | Viewed by 3108
Abstract
In this work, the synthesis of magnetite nanoparticles and catalysts based on it stabilized with silicon and aluminum oxides was carried out. It is revealed that the stabilization of the magnetite surface by using aluminum and silicon oxides leads to a decrease in [...] Read more.
In this work, the synthesis of magnetite nanoparticles and catalysts based on it stabilized with silicon and aluminum oxides was carried out. It is revealed that the stabilization of the magnetite surface by using aluminum and silicon oxides leads to a decrease in the size of magnetite nanocrystals in nanocomposites (particle diameter less than ~10 nm). The catalytic activity of the obtained catalysts was evaluated during the oxidation reaction of phenol, pyrocatechin and cresol with oxygen. It is well known that phenolic compounds are among the most dangerous water pollutants. The effect of phenol concentration and the effect of temperature (303–333 K) on the rate of oxidation of phenol to Fe3O4/SiO2 has been studied. It has been determined that the dependence of the oxidation rate of phenol on the initial concentration of phenol in solution is described by a first-order equation. At temperatures of 303–313 K, incomplete absorption of the calculated amount of oxygen is observed, and the analysis data indicate the non-selective oxidation of phenol. Intermediate products, such as catechin, hydroquinone, formic acid, oxidation products, were found. The results of UV and IR spectroscopy showed that catalysts based on magnetite Fe3O4 are effective in the oxidation of phenol with oxygen. In the UV spectrum of the product in the wavelength range 190–1100 nm, there is an absorption band at a wavelength of 240–245 nm and a weak band at 430 nm, which is characteristic of benzoquinone. In the IR spectrum of the product, absorption bands were detected in the region of 1644 cm−1, which is characteristic of the oscillations of the C=O bonds of the carbonyl group of benzoquinone. The peaks also found at 1353 cm−1 and 1229 cm−1 may be due to vibrations of the C-H and C-C bonds of the quinone ring. It was found that among the synthesized catalysts, the Fe3O4/SiO2 catalyst demonstrated the greatest activity in the reaction of liquid-phase oxidation of phenol. Full article
Show Figures

Figure 1

18 pages, 4367 KB  
Article
Influence of pH on the Inhibiting Characteristics of Cresol Red Incorporated in Chitosan Coatings on Zinc
by Regina Buier, Gabriella Stefania Szabó, Gabriel Katona, Norbert Muntean and Liana Maria Muresan
Metals 2023, 13(12), 1958; https://doi.org/10.3390/met13121958 - 30 Nov 2023
Cited by 5 | Viewed by 1657
Abstract
The present work focuses on the investigation of protective coatings produced on zinc from chitosan (Chit) and an anionic dye, namely cresol red. Cresol red (CR) fulfills the basic requirements to be used as a corrosion inhibitor because it possesses a relatively high [...] Read more.
The present work focuses on the investigation of protective coatings produced on zinc from chitosan (Chit) and an anionic dye, namely cresol red. Cresol red (CR) fulfills the basic requirements to be used as a corrosion inhibitor because it possesses a relatively high molecular weight and includes in its structure oxygen and sulfur atoms as well as aromatic rings. Moreover, it is an anionic compound that can interact with positively charged chitosan to produce reinforced coatings for zinc anti-corrosion protection. The influence of cresol red as a possible corrosion inhibitor for zinc substrates was investigated either in solution or incorporated in Chit coatings. Two preparation methods for the coatings were used: (i) Chit coating impregnation by immersion in the CR solution after Chit deposition on Zn, and (ii) chitosan mixing with the CR solution before applying the dip-coating technique. Potentiodynamic polarization curves were used to determine the kinetic parameters of the corrosion process. Long-term measurements were carried out in wet/dry cyclic conditions by using electrochemical impedance spectroscopy. EIS measurements recorded in 0.2 g/L Na2SO4 at pH = 7 show an important increase in the impedance of the coatings occurring from the first until the fifty-fifth day in a row, in dry–wet cycles. This increase is due to the beneficial effect of CR incorporated in Chitosan and could be, at least partially, related to a consolidation of the Chit coating structure in the presence of CR by crosslinking between Chit and CR molecules. The structure of the coatings was studied, and the interactions between chitosan and cresol red were put into evidence by using FT-IR spectroscopy. Adhesion and wettability measurements were also carried out. The adhesion of Chit incorporating CR on Zn was better than that on glass substrates and reached ~99.99%, suggesting a better affinity of the chitosan coating towards the Zn substrate due to the existence of ZnO on the substrate surface. All the results show that CR could be used on zinc as a corrosion inhibitor incorporated in chitosan at basic pHs, but without taking advantage of its pH-indicating properties, which are lost due to the interactions occurring between the positively charged biopolymer and the negatively charged dye molecule. The preparation method of Chit coating impregnation with CR by immersion in the solution after deposition on Zn led to poorer results than the method in which chitosan was previously mixed with CR before applying the dip-coating technique. Full article
(This article belongs to the Special Issue Advances in Corrosion and Protection of Materials (Second Edition))
Show Figures

Figure 1

16 pages, 3063 KB  
Article
Nanosized Silica-Supported 12-Tungstophosphoric Acid: A Highly Active and Stable Catalyst for the Alkylation of p-Cresol with tert-Butanol
by Walaa Alharbi, Khadijah H. Alharbi, L. Selva Roselin, R. Savidha and Rosilda Selvin
Catalysts 2023, 13(11), 1432; https://doi.org/10.3390/catal13111432 - 13 Nov 2023
Cited by 2 | Viewed by 2080
Abstract
12-Tungstophosphoric acid supported on nanosilica (TPA/SiO2) was employed as a catalyst for the tertiary butylation of p-cresol using tertiary butanol as an alkylating agent. The TPA/SiO2 catalyst was synthesized using the wet impregnation method followed by steaming at 150 [...] Read more.
12-Tungstophosphoric acid supported on nanosilica (TPA/SiO2) was employed as a catalyst for the tertiary butylation of p-cresol using tertiary butanol as an alkylating agent. The TPA/SiO2 catalyst was synthesized using the wet impregnation method followed by steaming at 150 °C for 6 h. The catalysts were characterized by means of X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM) analysis. The surface acidity of the untreated and steamed catalysts was characterized via FTIR and DSC thermal analysis using pyridine as a probe molecule. The fresh and spent catalysts were characterized via TGA analysis. The catalytic activity studies showed that the steamed catalyst displayed higher activity, with a higher desired yield of 2-tert-butyl cresol (2-TBC) compared to the untreated catalyst, and that this activity was related to the presence of stronger Brønsted acid sites in the steamed catalyst. A detailed analysis of the TPA/SiO2 steamed catalyst was performed to study the effects of reactant time-on-stream, reactant feed rate, reaction temperature, and the molar ratio of tert-butanol to p-cresol. The optimum reaction temperature, tert-butanol/p-cresol molar ratio, feed rate, and time-on-stream were 413 K, a molar ratio of 2:1, 6 mL/min, and 2 h, respectively. The present study demonstrates that the TPA/SiO2 catalyst exhibits high activity in terms of % conversion and high % selectivity of 2-TBC under the optimized conditions. The characterization of fresh and spent catalysts confirmed the occurrence of coke deposition after the catalytic reaction. The catalyst was regenerated via heat treatment at 400 °C for 5 h. The regenerated catalyst was reused for subsequent runs for three cycles without showing a loss in its activity. Full article
Show Figures

Graphical abstract

15 pages, 6846 KB  
Article
Effects of Aromatic Compounds Degradation on Bacterial Cell Morphology
by Maria Gerginova, Gulzhan Spankulova, Tsvetelina Paunova-Krasteva, Nadejda Peneva, Stoyanka Stoitsova and Zlatka Alexieva
Fermentation 2023, 9(11), 957; https://doi.org/10.3390/fermentation9110957 - 8 Nov 2023
Cited by 4 | Viewed by 2730
Abstract
The aim of the present study was to evaluate in parallel the capacity of three bacterial strains originating from oil-polluted soils to degrade monoaromatic compounds and the alterations in the bacterial cell morphology as a result of the biodegradation. The strain Gordonia sp. [...] Read more.
The aim of the present study was to evaluate in parallel the capacity of three bacterial strains originating from oil-polluted soils to degrade monoaromatic compounds and the alterations in the bacterial cell morphology as a result of the biodegradation. The strain Gordonia sp. 12/5 can grow well in media containing catechol, o-, m-, and p-cresol without significant morphological changes in the cells, as shown by scanning electron microscopy. This implies good adaptation of the strain for growth in hydrocarbon-containing media and indicates it is a proper candidate strain for further development of purification methodologies applicable to ecosystems contaminated with such compounds. The growth of the two Rhodococcus strains in the presence of the above carbon sources is accompanied by changes in cell size characteristic of stress conditions. Nevertheless, their hydrocarbon-degrading capacity should not be neglected for future applications. In summary, the established ability to degrade monoaromatic compounds, in parallel with the morphological changes of the bacterial cells, can be used as a valuable indicator of the strain’s vitality in the presence of tested aromatic compounds and, accordingly, of its applicability for bioremediation purposes. Full article
(This article belongs to the Special Issue New Research on Strains Improvement and Microbial Biosynthesis)
Show Figures

Figure 1

26 pages, 11450 KB  
Article
Polydentate N,O-Ligands Possessing Unsymmetrical Urea Fragments Attached to a p-Cresol Scaffold
by Stanislava E. Todorova, Rusi I. Rusew, Boris L. Shivachev and Vanya B. Kurteva
Molecules 2023, 28(18), 6540; https://doi.org/10.3390/molecules28186540 - 9 Sep 2023
Cited by 1 | Viewed by 1629
Abstract
In this study, three series of polydentate N,O-ligands possessing unsymmetrical urea fragments attached to a p-cresol scaffold are obtained, namely mono- and bi-substituted open-chain aromatics, synthesised using a common experiment, as well as fused aryloxazinones. Separate protocols for the [...] Read more.
In this study, three series of polydentate N,O-ligands possessing unsymmetrical urea fragments attached to a p-cresol scaffold are obtained, namely mono- and bi-substituted open-chain aromatics, synthesised using a common experiment, as well as fused aryloxazinones. Separate protocols for the preparation of each series are developed. It is found that in the case of open-chain compounds, the reaction output is strongly dependent on both bis-amine and carbamoyl chloride substituents, while oxazinones can be effectively obtained via a common protocol. The products are characterized via 1D and 2D NMR spectra in solution and using single-crystal XRD. A preliminary study on the coordination abilities of the products performed via ITC shows that there are no substantial interactions in the pH range of 5.0–8.5 in general. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

24 pages, 2190 KB  
Review
Reaction Steps in Heterogeneous Photocatalytic Oxidation of Toluene in Gas Phase—A Review
by Yerzhigit Tulebekov, Zhandos Orazov, Bagdat Satybaldiyev, Daniel D. Snow, Raphaël Schneider and Bolat Uralbekov
Molecules 2023, 28(18), 6451; https://doi.org/10.3390/molecules28186451 - 6 Sep 2023
Cited by 19 | Viewed by 4431
Abstract
A review of the current literature shows there is no clear consensus regarding the reaction mechanisms of air-borne aromatic compounds such as toluene by photocatalytic oxidation. Potential oxidation reactions over TiO2 or TiO2-based catalysts under ultraviolet and visible (UV/VIS) illumination [...] Read more.
A review of the current literature shows there is no clear consensus regarding the reaction mechanisms of air-borne aromatic compounds such as toluene by photocatalytic oxidation. Potential oxidation reactions over TiO2 or TiO2-based catalysts under ultraviolet and visible (UV/VIS) illumination are most commonly considered for removal of these pollutants. Along the pathways from a model pollutant, toluene, to final mineralization products (CO2 and H2O), the formation of several intermediates via specific reactions include parallel oxidation reactions and formation of less-reactive intermediates on the TiO2 surface. The latter may occupy active adsorption sites and causes drastic catalyst deactivation in some cases. Major hazardous gas-phase intermediates are benzene and formaldehyde, classified by the International Agency for Research on Cancer (IARC) as Group 1 carcinogenic compounds. Adsorbed intermediates leading to catalyst deactivation are benzaldehyde, benzoic acid, and cresols. The three most typical pathways of toluene photocatalytic oxidation are reviewed: methyl group oxidation, aromatic ring oxidation, and aromatic ring opening. Full article
(This article belongs to the Special Issue Advances in Catalysis and Photocatalysis)
Show Figures

Figure 1

12 pages, 1949 KB  
Article
Characterization of the Key Aroma Compounds in Different Yeast Proteins by GC-MS/O, Sensory Evaluation, and E-Nose
by Jiahui Chen, Dandan Pu, Yige Shi, Baoguo Sun, Hui Guo, Ku Li and Yuyu Zhang
Foods 2023, 12(16), 3136; https://doi.org/10.3390/foods12163136 - 21 Aug 2023
Cited by 10 | Viewed by 2903
Abstract
The unique odors of yeast proteins (YPs) are decisive for their application in meat substitutes. Sensory evaluation, electronic nose, and gas chromatography–mass spectrometry/olfactory (GC-MS/O) were combined to characterize the aroma profiles and aroma-active compounds of YPs. The sensory evaluation results indicate that the [...] Read more.
The unique odors of yeast proteins (YPs) are decisive for their application in meat substitutes. Sensory evaluation, electronic nose, and gas chromatography–mass spectrometry/olfactory (GC-MS/O) were combined to characterize the aroma profiles and aroma-active compounds of YPs. The sensory evaluation results indicate that the sweaty aroma had the strongest intensity in YP #10, followed by rice bran, sour, and plastic. The electronic nose could effectively distinguish the aroma differences among five YPs. A total of 27 aroma-active compounds in the five YPs were identified by GC-MS/O. The concentration of 2-methyl-propanoic acid (6.37 μg/kg), butanoic acid (47.46 μg/kg), 3-methyl-butanoic acid (22.50 μg/kg), and indole (943.40 μg/kg) in YP #10’s aroma was higher than that of the other YPs. The partial least squares regression method results show that o-cresol, (3S)-3,7-dimethyloct-7-en-1-ol, benzyl alcohol, octanal, 2-methyl-propanoic acid, butanoic acid, 3-methyl-butanoic acid, hexanal, heptanal, and indole were predicted as the potential aroma-active compounds significantly contributing to the aroma profiles of the five YPs. Addition experiments confirmed that the overall aroma profile intensities of the five YP samples were extended with the addition of these ten compounds, verifying their significant contributions. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

19 pages, 4060 KB  
Article
Untargeted Multiomics Approach Coupling Lipidomics and Metabolomics Profiling Reveals New Insights in Diabetic Retinopathy
by Patricia Ancel, Jean Charles Martin, Elisa Doukbi, Marie Houssays, Pierre Gascon, Maud Righini, Frédéric Matonti, Ljubica Svilar, Marie Valmori, Catherine Tardivel, Nicolas Venteclef, Jean Baptiste Julla, Jean François Gautier, Noémie Resseguier, Anne Dutour and Bénédicte Gaborit
Int. J. Mol. Sci. 2023, 24(15), 12053; https://doi.org/10.3390/ijms241512053 - 27 Jul 2023
Cited by 20 | Viewed by 3900
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes mellitus (DM) which is the main cause of vision loss in the working-age population. Currently known risk factors such as age, disease duration, and hemoglobin A1c lack sufficient efficiency to distinguish patients with early [...] Read more.
Diabetic retinopathy (DR) is a microvascular complication of diabetes mellitus (DM) which is the main cause of vision loss in the working-age population. Currently known risk factors such as age, disease duration, and hemoglobin A1c lack sufficient efficiency to distinguish patients with early stages of DR. A total of 194 plasma samples were collected from patients with type 2 DM and DR (moderate to proliferative (PDR) or control (no or mild DR) matched for age, gender, diabetes duration, HbA1c, and hypertension. Untargeted lipidomic and metabolomic approaches were performed. Partial-least square methods were used to analyze the datasets. Levels of 69 metabolites and 85 lipid species were found to be significantly different in the plasma of DR patients versus controls. Metabolite set enrichment analysis indicated that pathways such as metabolism of branched-chain amino acids (methylglutaryl carnitine p = 0.004), the kynurenine pathway (tryptophan p < 0.001), and microbiota metabolism (p-Cresol sulfate p = 0.004) were among the most enriched deregulated pathways in the DR group. Moreover, Glucose-6-phosphate (p = 0.001) and N-methyl-glutamate (p < 0.001) were upregulated in DR. Subgroup analyses identified a specific signature associated with PDR, macular oedema, and DR associated with chronic kidney disease. Phosphatidylcholines (PCs) were dysregulated, with an increase of alkyl-PCs (PC O-42:5 p < 0.001) in DR, while non-ether PCs (PC 14:0–16:1, p < 0.001; PC 18:2–14:0, p < 0.001) were decreased in the DR group. Through an unbiased multiomics approach, we identified metabolites and lipid species that interestingly discriminate patients with or without DR. These features could be a research basis to identify new potential plasma biomarkers to promote 3P medicine. Full article
Show Figures

Figure 1

15 pages, 2178 KB  
Article
Preconcentration of Volatile Organic Compounds on Carbon Magnetic Sorbents in the Analysis of Air by Using the Configuration Change of the Sorbent Bed during the Transition from Sorption to Thermodesorption GC-FID
by Oleg Rodinkov, Victor Postnov, Valery Spivakovskyi, Ekaterina Znamenskaya, Anastasia Zheludovskaya and Pavel Nesterenko
Separations 2023, 10(7), 416; https://doi.org/10.3390/separations10070416 - 23 Jul 2023
Cited by 3 | Viewed by 1770
Abstract
The new scheme of the rapid preconcentration of volatile organic substances followed by the thermodesorption and gas chromatographic determination by using a flame ionization detector is proposed for the analysis of air. The scheme implies a change in the geometry of the adsorbent [...] Read more.
The new scheme of the rapid preconcentration of volatile organic substances followed by the thermodesorption and gas chromatographic determination by using a flame ionization detector is proposed for the analysis of air. The scheme implies a change in the geometry of the adsorbent layer in a column during the transition from adsorption to thermal desorption steps. The extraction of analytes is carried out in a wide tube, allowing quantitative adsorption at higher flow rates of the analyzed air passed through the magnetic sorbent held in a thin layer retained by a permanent magnet without any supporting frits. Novel magnetic adsorbents composed of magnetite or a zirconia/magnetite core and pyrocarbon shell are developed for this application. At the end of the adsorption step, the magnet moved out of the system, and the adsorbent transferred under the gravity force into a narrow tube, which provides the more efficient heating of the adsorbent and minimal blurring of the analyte zones during the subsequent thermal desorption. The proposed scheme allows a significant reduction (approximately 10 times) of the time required for the preconcentration of analytes, which is illustrated by the GC determination of alcohols (butanol-1, pentanol-1), phenol, and o-cresol in the air. Full article
Show Figures

Graphical abstract

16 pages, 1168 KB  
Article
Untargeted Analysis of Serum Metabolomes in Dogs with Exocrine Pancreatic Insufficiency
by Patrick C. Barko, Stanley I. Rubin, Kelly S. Swanson, Maureen A. McMichael, Marcella D. Ridgway and David A. Williams
Animals 2023, 13(14), 2313; https://doi.org/10.3390/ani13142313 - 14 Jul 2023
Cited by 3 | Viewed by 3408
Abstract
Exocrine pancreatic insufficiency (EPI) is a malabsorptive syndrome resulting from insufficient secretion of pancreatic digestive enzymes. EPI is treated with pancreatic enzyme replacement therapy (PERT), but the persistence of clinical signs, especially diarrhea, is common after treatment. We used untargeted metabolomics of serum [...] Read more.
Exocrine pancreatic insufficiency (EPI) is a malabsorptive syndrome resulting from insufficient secretion of pancreatic digestive enzymes. EPI is treated with pancreatic enzyme replacement therapy (PERT), but the persistence of clinical signs, especially diarrhea, is common after treatment. We used untargeted metabolomics of serum to identify metabolic disturbances associated with EPI and generate novel hypotheses related to its pathophysiology. Fasted serum samples were collected from dogs with EPI (n = 20) and healthy controls (n = 10), all receiving PERT. Serum metabolomes were generated using UPLC-MS/MS, and differences in relative metabolite abundances were compared between the groups. Of the 759 serum metabolites detected, 114 varied significantly (p < 0.05, q < 0.2) between dogs with EPI and healthy controls. Differences in amino acids (arginate, homoarginine, 2-oxoarginine, N-acetyl-cadaverine, and α-ketoglutaramate) and lipids (free fatty acids and docosahexaenoylcarnitine) were consistent with increased proteolysis and lipolysis, indicating a persistent catabolic state in dogs with EPI. Relative abundances of gut microbial metabolites (phenyllactate, 4-hydroxyphenylacetate, phenylacetyl-amino acids, catechol sulfates, and o-cresol-sulfate) were altered in dogs with EPI, consistent with disruptions in gut microbial communities. Increased kynurenine is consistent with the presence of intestinal inflammation in dogs with EPI. Whether these metabolic disturbances participate in the pathophysiology of EPI or contribute to the persistence of clinical signs after treatment is unknown, but they are targets for future investigations. Full article
(This article belongs to the Special Issue Frontiers in Canine and Feline Gastrointestinal Disease)
Show Figures

Figure 1

Back to TopTop