Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = oblique shear test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5332 KB  
Article
Experimental and Numerical Simulation Study on Shear Performance of RC Corbel Under Synergistic Change in Inclination Angle
by Hao Huang, Chengfeng Xue and Zhangdong Wang
Buildings 2025, 15(17), 3098; https://doi.org/10.3390/buildings15173098 - 28 Aug 2025
Viewed by 124
Abstract
The purpose of this paper is to study the shear performance of reinforced concrete corbels under a synergistic change in the main stirrup inclination angle to explore the synergistic mechanism of the main reinforcement and the stirrup inclination angle, and to evaluate the [...] Read more.
The purpose of this paper is to study the shear performance of reinforced concrete corbels under a synergistic change in the main stirrup inclination angle to explore the synergistic mechanism of the main reinforcement and the stirrup inclination angle, and to evaluate the applicability of existing design specifications. The shear performance test was carried out by designing RC corbel specimens with an inclination angle of the main reinforcement and stirrup. The test results show that a 15° inclination scheme significantly improves the shear performance: the yield load is increased by 28.3%, the ultimate load is increased by 23.6%, the strain of the main reinforcement of the 15° specimen is reduced by 51.3%, the stirrup shows a delayed yield (the yield load is increased by 11.6%) and lower strain level (250 kN is reduced by 23.7%), and the oblique reinforcement optimizes the internal force transfer path and delays the reinforcement yield. A CDP finite element model was established for verification, and the failure mode and crack propagation process of the corbel were accurately reproduced. The prediction error of ultimate load was less than 2.27%. Based on the test data, the existing standard method is tested and a modified formula of the triangular truss model based on the horizontal inclination angle of the tie rod is proposed. The prediction ratio of the bearing capacity is highly consistent with the test value. A function correlation model between the inclination angle of the steel bar and the bearing capacity is constructed, which provides a quantitative theoretical tool for the optimal design of RC corbel inclination parameters. Full article
Show Figures

Figure 1

18 pages, 9314 KB  
Article
Damage Mechanism and Modeling of CFRP Laminates Impacted by Single Waterjets: Effect of the Impact Direction
by Naidan Hou, Yulong Li and Ping Liu
Materials 2025, 18(15), 3495; https://doi.org/10.3390/ma18153495 - 25 Jul 2025
Viewed by 329
Abstract
In engineering practice, liquid droplet impingement typically occurs at an oblique angle relative to the target surface, yet the influence of impact orientation on damage outcomes remains contentious and exhibits target-material dependency. In this paper, a typical single-waterjet-generating technique is applied to liquid [...] Read more.
In engineering practice, liquid droplet impingement typically occurs at an oblique angle relative to the target surface, yet the influence of impact orientation on damage outcomes remains contentious and exhibits target-material dependency. In this paper, a typical single-waterjet-generating technique is applied to liquid impact tests on a unidirectional carbon fiber-reinforced polymer (CFRP) laminate, with special focus on the effects of the impingement angle and the fiber orientation. Finite-element simulation is employed to help reveal the failure mechanism of oblique impacts. The results show that, in most cases, the damage caused by a 15° oblique impact is slightly larger than that of a normal impact, while the increase amplitude varies with different impact speeds. Resin removal is more prone to occur when the projection of the waterjet velocity on the impact surface is perpendicular (marked as the fiber orientation PE) rather than parallel (marked as the fiber orientation PA) to the fiber direction of the top layer. A PE fiber orientation can lead to mass material peeling in comparison with PA, and the damage range is even much larger than for a normal impact. The underlying mechanism can be attributed to the increased lateral jet-particle velocity and resultant shear stress along the impact projection direction. The distinct damage modes observed on the CFRP laminate with the different fiber orientations PE and PA originate from the asymmetric tensile properties in the longitudinal/transverse directions of laminates coupled with dissimilar fiber–matrix interfacial characteristics. A theoretical model for the surface damage area under a single-jet impact was established through experimental data fitting based on a modified water-hammer pressure contact-radius formulation. The model quantitatively characterizes the influence of critical parameters, including the jet velocity, diameter, and impact angle, on the central area of the surface failure ring. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

22 pages, 5702 KB  
Article
Calibration and Experimental Validation of Discrete Element Parameters of Fritillariae Thunbergii Bulbus
by Hang Zheng, Zhaowei Hu, Xianglei Xue, Yunxiang Ye, Tian Liu, Ning Ren, Fanyi Liu and Guohong Yu
Appl. Sci. 2025, 15(14), 7951; https://doi.org/10.3390/app15147951 - 17 Jul 2025
Viewed by 290
Abstract
The development of slicing equipment for Fritillariae Thunbergii Bulbus (FTB) has been constrained by the absence of precise and reliable simulation model parameters, which has hindered the optimization of structural design through simulation techniques. Taking FTB as the research object, this study aims [...] Read more.
The development of slicing equipment for Fritillariae Thunbergii Bulbus (FTB) has been constrained by the absence of precise and reliable simulation model parameters, which has hindered the optimization of structural design through simulation techniques. Taking FTB as the research object, this study aims to resolve this issue by conducting the calibration and experimental validation of the discrete element parameters for FTB. Both intrinsic and contact parameters were obtained through physical experiments, on the basis of which a discrete element model for FTB was established by using the Hertz–Mindlin with bonding model. To validate the calibrated bonding parameters of this model, the maximum shear force was selected as the evaluation index. Significant influencing factors were identified and analyzed through a single-factor test, a two-level factorial test, and the steepest ascent method. Response surface methodology was then applied for experimental design and parameter optimization. Finally, shear and compression tests were conducted to verify the accuracy of calibrated parameters. The results show that the mechanical properties of FTB are significantly affected by the normal stiffness per unit area, the tangential stiffness per unit area, and the bonding radius, with optimal values of 1.438 × 108 N·m−3, 0.447 × 108 N·m−3, and 1.362 mm, respectively. The relative errors in the shear and compression tests were all within 5.18%. The maximum error between the simulated and measured maximum shear force under three different types of blades was less than 5.11%. The percentages of the average shear force of the oblique blade were reduced by 52.23% and 29.55% compared with the flat and arc blades, respectively, while the force variation trends for FTB remained consistent. These findings confirm the reliability of the simulation parameters and establish a theoretical basis for optimizing the structural design of slicing equipment for FTB. Full article
Show Figures

Figure 1

17 pages, 6826 KB  
Article
Mechanical Behavior and Fracture Evolution of Artificial Rock Specimens Within 3D-Printed Fractures
by Yijun Gao, Peitao Wang, Xingwang Fan, Qingru Liu, Zhenwu Qi and Meifeng Cai
Appl. Sci. 2025, 15(12), 6662; https://doi.org/10.3390/app15126662 - 13 Jun 2025
Viewed by 438
Abstract
Coal rock is characterized by numerous cracks, which significantly impact its mechanical properties, such as fracture evolution and strength. In this study, various fracture network models were created using three-dimensional (3D) printing technology. Employing rigid adhesive and different proportions of coal powder, coal-like [...] Read more.
Coal rock is characterized by numerous cracks, which significantly impact its mechanical properties, such as fracture evolution and strength. In this study, various fracture network models were created using three-dimensional (3D) printing technology. Employing rigid adhesive and different proportions of coal powder, coal-like samples with intricate fracture networks were successfully fabricated. To replicate the mechanical properties of natural coal rocks, uniaxial compression tests were conducted to investigate the mechanical characteristics and failure modes of samples with different coal powder ratios. Additionally, the mechanical response of samples with discrete fracture network (DFN) models was evaluated after freezing treatment. Findings revealed that increasing the coal powder content enhanced the strength of the samples, whereas the introduction of the DFN model reduced their compressive strength. Samples containing the DFN model predominantly exhibited longitudinal fractures as their failure mode, contrasting with the shear fractures observed in the solid model samples. Furthermore, under low-temperature conditions, the artificial specimens exhibited a distinct trend, where brittleness increased proportionally with coal powder content, a phenomenon attributed to the influence of AB adhesive. After applying freezing treatment to DFN model coal-like samples, stress–strain curves resembling those of actual coal rocks were observed, along with a slightly reduced compressive strength and a brittle failure mode characterized by oblique shear failure. Full article
Show Figures

Figure 1

16 pages, 4163 KB  
Article
Experimental and Theoretical Investigation on Cracking Behavior and Influencing Factors of Steel-Reinforced Concrete Deep Beams
by Gaoxing Hu, Lei Zeng, Buqing Chen and Shuai Teng
Buildings 2025, 15(11), 1812; https://doi.org/10.3390/buildings15111812 - 25 May 2025
Viewed by 525
Abstract
Steel-reinforced concrete (SRC) deep beams have been widely used in engineering applications such as high-rise buildings and long-span bridges, with their structural behavior and mechanical properties attracting significant research attention. To investigate the shear cracking behavior of SRC deep beams, seven specimens with [...] Read more.
Steel-reinforced concrete (SRC) deep beams have been widely used in engineering applications such as high-rise buildings and long-span bridges, with their structural behavior and mechanical properties attracting significant research attention. To investigate the shear cracking behavior of SRC deep beams, seven specimens with a scale of 0.4 times were designed for static loading tests, and the influence of the shear-span-to-depth ratio λ, the width ratio of the steel flange, and the height ratio of the steel web on the width and spacing of the diagonal crack was considered. The cracking behavior of the diagonal cracks in the shear span area were recorded by the digital image correlation (DIC) technique. The results show the following: (1) the use of the DIC technology revealed the entire process of crack occurrence, development, and evolution and obtained the distribution characteristics of crack development; (2) the steel flange width has a slight effect on the spacing and width of the diagonal cracks. The diagonal crack width increased with the improvement of the height of the steel web, but the influence of the steel web on the spacing of diagonal cracks was not significant. When the height ratio increased from 0.3 to 0.45 and 0.6, the maximum oblique crack width increased by 13% and 14.5%. Based on the above experimental results and relevant analysis conclusions, an improved method was proposed to calculate the diagonal crack width of composite deep beams by further considering the influence of the crack angle. Finally, the experimental results verified its high accuracy in a qualitative analysis. The calculation method proposed in this article can be used to predict and estimate the width of diagonal cracks in SRC deep beams. Full article
(This article belongs to the Special Issue Advances in Building Structure Analysis and Health Monitoring)
Show Figures

Figure 1

15 pages, 9276 KB  
Article
Mechanical Response Mechanism and Yield Characteristics of Coal Under Quasi-Static and Dynamic Loading
by Liupeng Huo, Feng Gao and Yan Xing
Appl. Sci. 2025, 15(10), 5238; https://doi.org/10.3390/app15105238 - 8 May 2025
Viewed by 520
Abstract
During deep mining engineering, coal bodies are subjected to complex geological stresses such as periodic roof pressure and blasting impacts, which may induce mechanical property deterioration and trigger severe rock burst accidents. This study systematically investigated the mechanical characteristics and failure mechanisms of [...] Read more.
During deep mining engineering, coal bodies are subjected to complex geological stresses such as periodic roof pressure and blasting impacts, which may induce mechanical property deterioration and trigger severe rock burst accidents. This study systematically investigated the mechanical characteristics and failure mechanisms of coal under strain rates on two orders of magnitude through quasi-static cyclic loading–unloading experiments and split Hopkinson pressure bar (SHPB) tests, combined with acoustic emission (AE) localization and crack characteristic stress analysis. The research focused on the differential mechanical responses of coal-rock masses under distinct stress environments in deep mining. The results demonstrated that under quasi-static loading, the stress–strain curve exhibited four characteristic stages: compaction (I), linear elasticity (II), nonlinear crack propagation (III), and post-peak softening (IV). The peak strain displayed linear growth with increasing cycle, accompanied by a failure mode characterized by oblique shear failure that induced a transition from gradual to abrupt increases in the AE counts. In contrast, under the dynamic loading conditions, there was a bifurcated post-peak phase consisting of two unloading stages due to elastic rebound effects, with nonlinear growth of the peak strain and an interlaced failure pattern combining lateral tensile cracks and axial compressive fractures. The two loading conditions exhibited similar evolutionary trends in crack damage stress, though a slight reduction in stress occurred during the final dynamic loading phase due to accumulated damage. Notably, the crack closure stress under quasi-static loading followed a decrease–increase pattern with cycle progression, whereas the dynamic loading conditions presented the inverse increase–decrease tendency. These findings provide theoretical foundations for stability control in underground engineering and prevention of dynamic hazards. Full article
Show Figures

Figure 1

19 pages, 5282 KB  
Article
Shear Properties of the Interface Between Polyurethane Concrete and Normal Concrete
by Yuhan Zhang, Xinlong Yue, Zhengyi Liu, Boyang Mi, Lu Wang, Quansheng Sun, Xu Wang and Zhongnan Dai
Appl. Sci. 2025, 15(8), 4580; https://doi.org/10.3390/app15084580 - 21 Apr 2025
Viewed by 661
Abstract
Polyurethane concrete (PUC) is a promising candidate for structural repair materials due to its excellent mechanical properties and durability. However, the bonding performance between PUC and concrete interfaces may limit its broader application. This study examined the factors affecting the shear strength at [...] Read more.
Polyurethane concrete (PUC) is a promising candidate for structural repair materials due to its excellent mechanical properties and durability. However, the bonding performance between PUC and concrete interfaces may limit its broader application. This study examined the factors affecting the shear strength at the PUC–NC interface. A total of 16 oblique shear tests, varying by interface treatment methods (smooth—GH, roughened—ZM, and grooved—KC), adhesive application rates—NJJ (0, 0.2, and 0.3 kg/m2), and steel fiber contents—GXW (0%, 0.5%, 1%, and 1.5%), to evaluate their impact on the mechanical properties of the PUC–NC interface. The results demonstrated that roughening the interface significantly improved the shear strength, resulting in a 32% increase compared to a smooth interface and 15% compared to a grooved interface. A moderate adhesive application rate (0.2 kg/m2) enhanced the interface strength, while excessive adhesive did not further increase the shear strength. The optimal steel fiber content (1%) resulted in the highest shear strength, improving it by 22%, whereas excess steel fibers (1.5%) reduced the interface strength. This is due to fiber agglomeration, which weakens mechanical interlocking and introduces defects that impair interfacial bonding. Load–slip curve analysis revealed that roughened interfaces combined with the appropriate amount of steel fibers improved the interface toughness, delaying the failure process. This study presents a model for calculating the shear strength of steel fiber-reinforced PUC–NC interfaces, incorporating shear slip. Compared to existing models, it more accurately reflects the experimental data. Full article
Show Figures

Figure 1

14 pages, 8334 KB  
Article
Experimental Study on Flexural Performance of Screw Clamping and Welding Joint for Prestressed Concrete Square Piles
by Quanbiao Xu, Yajun Zhu, Gang Chen and Dan Xu
Buildings 2025, 15(3), 480; https://doi.org/10.3390/buildings15030480 - 4 Feb 2025
Viewed by 846
Abstract
To ensure the connection performance of precast concrete square piles, a screw clamping and welding joint connection is applied to the solid square piles. By conducting full-scale bending performance tests on six solid square pile specimens with cross-sectional side lengths of 300, 450, [...] Read more.
To ensure the connection performance of precast concrete square piles, a screw clamping and welding joint connection is applied to the solid square piles. By conducting full-scale bending performance tests on six solid square pile specimens with cross-sectional side lengths of 300, 450, and 600 mm, including pile bodies, screw clamping joints, screw clamping, and welding joints, the bending load-bearing capacity, deformation capacity, and failure characteristics of the screw clamping–welding joint connection are compared and studied. The results show that the bending failure mode of the pile body specimens is shear failure in the flexural shear section and concrete crushing in the compression zone of the pure bending section; the bending failure mode of the screw clamping joint specimens are the pull-out of steel bar heads at the joint end plate; the bending failure mode of the screw clamping and welding joint specimens are concrete crushing in the compression zone of the pure bending section, steel bar breakage in the tension zone of the flexural shear section, and pull-out of steel bar heads at the end plate. It is worth noting that no significant damage occurred at the joints. The cracks in the pure bending section of the bending specimens mainly develop vertically and are evenly distributed, while some cracks in the flexural shear section develop obliquely towards the loading point, with branching. Compared to the pile body specimens, the cracking moment of the joint specimens is up to 16% higher, the ultimate moment is within 15% lower, and the maximum mid-span deflection is within 25% lower, indicating that the provision of anchorage reinforcement can increase the stiffness and cracking moment of the specimens. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

16 pages, 6483 KB  
Article
Research on the Mechanical Properties of EPS Lightweight Soil Mixed with Fly Ash
by Lifang Mei, Yiwen Huang and Dali Xiang
Polymers 2024, 16(24), 3517; https://doi.org/10.3390/polym16243517 - 18 Dec 2024
Cited by 1 | Viewed by 862
Abstract
Expanded polystyrene (EPS) bead–lightweight soil composites are a new type of artificial geotechnical material with low density and high strength. We applied EPS bead–lightweight soil in this project, replacing partial cement with fly ash to reduce construction costs. EPS beads were used as [...] Read more.
Expanded polystyrene (EPS) bead–lightweight soil composites are a new type of artificial geotechnical material with low density and high strength. We applied EPS bead–lightweight soil in this project, replacing partial cement with fly ash to reduce construction costs. EPS beads were used as a lightweight material and cement and fly ash as curing agents in the raw soil were used to make EPS lightweight soil mixed with fly ash. The EPS bead proportions were 0.5%, 1%, 1.5%, and 2%; the total curing agent contents were 10%, 15%, 20%, and 25%; and the proportions of fly ash replacing cement were 0%, 15%, 30%, 45%, and 60%, respectively. Unconfined compressive strength (UCS) and scanning electron microscopy (SEM) tests were conducted. The results showed that the EPS content, total curing agent content, and proportion of fly ash replacing cement had a significant impact on the UCS of the lightweight soil. This decreased with an increase in EPS content and decrease in total curing agent content and decreased with increased proportions of fly ash replacing cement. When the proportion of fly ash replacing cement was not too high, the strength of the lightweight soil decreased less, and its performance still met engineering needs. At the same time, the soil can also consume fly ash and reduce environmental pollution. EPS lightweight soil mixed with fly ash still has advantages, and it is recommended to keep the proportion of fly ash replacing cement less than 30%. The failure patterns for lightweight soil mainly include splitting failure, oblique shear failure, and bulging failure, which are related to the material mix ratio. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

17 pages, 20563 KB  
Article
Experimental Study and Numerical Simulation on the Influence of Specimen Size on Failure Characteristics and Mechanics of Plastic Concrete Under the Uniaxial Compression Test
by Xuwei Pan, Mingjian Guo, Siwei Wang, Tong Jiang, Shuai Liu and Shuo Zhang
Materials 2024, 17(23), 5986; https://doi.org/10.3390/ma17235986 - 6 Dec 2024
Viewed by 812
Abstract
In this paper, uniaxial compression tests and numerical simulation were conducted on specimens of five sizes, and the influence of specimen size on the failure characteristics and mechanics of specimens was studied. The results show that when the bottom size of the specimen [...] Read more.
In this paper, uniaxial compression tests and numerical simulation were conducted on specimens of five sizes, and the influence of specimen size on the failure characteristics and mechanics of specimens was studied. The results show that when the bottom size of the specimen is the same, with the increase in the height–width ratio of the specimen size (from 1 to 3), the peak stress of the specimen gradually decreases, but when the decrease is greatly reduced, the concentration of contact force chains in the model increases. The failure mode of the specimen changes from tensile failure to shear failure, and the distribution of cracks changes from multiple vertical cracks uniformly to a concentrated main oblique crack. The failure characteristics change from the overall failure to the serious failure of the near stressed end of the specimen, while the far stressed end is not failure or slight failure. When the height–width ratio of the specimen is the same, with the increase in the overall size, the peak stress decreases, and the dense vertical cracks change into a small amount of concentrated oblique cracks, and the integrity of the specimen and model is better. There is a good effect using PFC2D software to simulate the crack evolution and failure characteristics of plastic concrete. Full article
(This article belongs to the Special Issue Low-Carbon Building Materials)
Show Figures

Figure 1

13 pages, 10350 KB  
Article
Titanium Cable Cerclage Increases the Load to Failure in Plate Osteosynthesis for Distal Femoral Fractures
by Christopher Bliemel, Jakob Cornelius, Valerie Lehmann, Ludwig Oberkircher, Denis Visser, Bastian Pass, Steffen Ruchholtz and Martin Bäumlein
Medicina 2024, 60(9), 1524; https://doi.org/10.3390/medicina60091524 - 19 Sep 2024
Cited by 2 | Viewed by 3642
Abstract
Background and Objectives: The reduction of two-part oblique or spiral fractures of the distal femur using steel wire cerclage prior to plate osteosynthesis is a proven procedure. In addition to being useful in fracture reduction, wire cerclage was also shown to increase the [...] Read more.
Background and Objectives: The reduction of two-part oblique or spiral fractures of the distal femur using steel wire cerclage prior to plate osteosynthesis is a proven procedure. In addition to being useful in fracture reduction, wire cerclage was also shown to increase the stability of osteosynthesis. Nevertheless, metal corrosion and the allergenic potency of steel remain problematic disadvantages of this method. A biomechanical study was carried out to evaluate titanium cable cerclage as an alternative supplement for plate osteosynthesis of a distal femoral two-part fracture. Materials and Methods: An unstable AO/OTA 32-A2.3 fracture was created in eleven pairs of nonosteoporotic human cadaver femora. All the samples were treated with polyaxial angular stable plate osteosynthesis. One femur from each pair was randomly selected for an additional fracture fixation with multifilament titanium cable cerclage. Stepwise cyclic axial loading was applied in a load-to-failure mode using a servohydraulic testing machine. Results: All specimens (mean age: 80 years; range: 57–91 years) withstood a cycling force of at least 1800 N. With a mean load of 2982 N (95% CI: 2629–3335 N), the pressure forces resulting in osteosynthesis failure were significantly higher in specimens with an additional titanium cerclage (Group 1) than in samples that were solely treated with plate osteosynthesis (Group 2) at 2545 N (95% CI: 2257–2834 N) (p = 0.024). In both groups, cutting out the distal screws at the condyle region, resulting in shearing of the distal fragment proximal to the fracture line, was the most frequent cause of construct failure. Among the specimens assigned to Group 1, 36% exhibited a specific fracture pattern, namely, a fracture of the dorsal buttress above the cerclage. Analysis of axial stiffness (p = 0.286) and irreversible deformity of the specimens revealed no differences between the groups (p = 0.374). Conclusion: Titanium cable cerclage application, as a supplement to an angular stable plate, resulted in an increased load to failure. In terms of stability, the use of this adjunct for fracture fixation of supracondylar two-part oblique femoral fractures might, therefore, be an option, especially in patients who are sensitive to nickel. Full article
(This article belongs to the Special Issue New Strategies in the Management of Geriatric Bone Fracture)
Show Figures

Figure 1

26 pages, 5705 KB  
Article
Interlayer Performance, Viscoelastic Performance, and Road Performance Based on High-Performance Asphalt Composite Structures
by Yan Liang, Shuaishuai Ma and Yaqin Zhang
Buildings 2024, 14(7), 1885; https://doi.org/10.3390/buildings14071885 - 21 Jun 2024
Cited by 2 | Viewed by 1291
Abstract
Weaknesses generated in asphalt pavement structures have a serious impact on the service life of pavements. In order to improve such situations and achieve the goal of enhancing the durability of the pavement structure, this study assesses the performance of heavy-duty asphalt and [...] Read more.
Weaknesses generated in asphalt pavement structures have a serious impact on the service life of pavements. In order to improve such situations and achieve the goal of enhancing the durability of the pavement structure, this study assesses the performance of heavy-duty asphalt and high-viscosity asphalt, using four high-performance asphalt mixtures: heavy-duty AC-20, high-viscosity AC-20, heavy-duty SMA-13, and heavy-duty SMA-10. Three composite pavement structures were designed: 3 cm SMA-10 + 3 cm SMA-10, 4 cm SMA-13 + 4 cm SMA-10, and 6 cm SMA-13 + 4 cm AC-20. Interlayer performance analysis was conducted on single-layer and composite structures through oblique shear tests; dynamic modulus, fatigue life, and antirutting performance tests on asphalt pavement structural layers were designed and conducted, and the durability performance of high-performance asphalt pavement structural layers was evaluated. The experimental results show that the shear strength of heavy-duty AC is higher than that of heavy-duty SMA, the 4 + 4 combination structure has the best shear strength, the 6 + 4 combination structure has the best structural performance and fatigue resistance, and the 3 + 3 combination structure has the best high-temperature antirutting performance. The comprehensive performance of the 4 + 4 structure is the best among the three combined structures, followed by that of the 6 + 4 structure, and the performance of the 3 + 3 structure is the worst. In addition, this study used bonding energy as an evaluation index and verified the applicability of the bonding energy evaluation index by studying four types of single-layer pavement structures and three types of composite pavement structures. Full article
(This article belongs to the Special Issue Innovation in Pavement Materials: 2nd Edition)
Show Figures

Figure 1

22 pages, 7744 KB  
Article
Wave Basin Tests of a Multi-Body Floating PV System Sheltered by a Floating Breakwater
by Joep van der Zanden, Tim Bunnik, Ainhoa Cortés, Virgile Delhaye, Guillaume Kegelart, Thomas Pehlke and Balram Panjwani
Energies 2024, 17(9), 2059; https://doi.org/10.3390/en17092059 - 26 Apr 2024
Cited by 11 | Viewed by 2133
Abstract
The development of floating photovoltaic systems (FPV) for coastal and offshore locations requires a solid understanding of a design’s hydrodynamic performance through reliable methods. This study aims to extend insights into the hydrodynamic behavior of a superficial multi-body FPV system in mild and [...] Read more.
The development of floating photovoltaic systems (FPV) for coastal and offshore locations requires a solid understanding of a design’s hydrodynamic performance through reliable methods. This study aims to extend insights into the hydrodynamic behavior of a superficial multi-body FPV system in mild and harsh wave conditions through basin tests at scale 1:10, with specific interest in the performance of hinges that interconnect the PV panels. Particular effort is put into correctly scaling the elasticity of the flexible hinges that interconnect the PV modules. Tests of a 5 × 3 FPV matrix are performed, with and without shelter, by external floating breakwater (FBW). The results show that the PV modules move horizontally in the same phase when the wave length exceeds the length of the FPV system, but shorter waves result in relative motions between modules and, for harsh seas, in hinge buckling. Relative motions suggest that axial loads are highest for the hinges that connect the center modules in the system and for normal wave incidence, while shear loads are highest on the outward hinges and for oblique incidence. The FBW reduces hinge loads as it attenuates the high-frequency wave energy that largely drives relative motions between PV modules. Full article
(This article belongs to the Special Issue Floating PV Systems On and Offshore)
Show Figures

Figure 1

18 pages, 13896 KB  
Article
Investigating the Mechanical Deterioration Effect of Hard Sandstone Induced by Layer Structure under Uniaxial Compression
by Yun Cheng, Zhanping Song, Fahong Wu, Xiaoping Zhu and Wei Yuan
Buildings 2024, 14(1), 51; https://doi.org/10.3390/buildings14010051 - 24 Dec 2023
Cited by 5 | Viewed by 1265
Abstract
The deterioration of the surrounding rock at the tunnel bottom is a damage mechanics issue that occurs under disturbance load. To investigate the anisotropic characteristics of mechanical behavior and the AE response mechanism of layered sandstone, uniaxial compression tests and acoustic emission (AE) [...] Read more.
The deterioration of the surrounding rock at the tunnel bottom is a damage mechanics issue that occurs under disturbance load. To investigate the anisotropic characteristics of mechanical behavior and the AE response mechanism of layered sandstone, uniaxial compression tests and acoustic emission (AE) monitoring were conducted. The results show that the layer structure causes remarkable anisotropic characteristics in the wave velocities. The strain characteristics and mechanical parameters of layered sandstone exhibit obvious deterioration effects. The local strain and overall strain show a synergistic feature, with the local strain path being more complex and the deformation response being extremely sensitive. The peak stress and elastic modulus both exhibit V-type distribution rules, slowly decreasing first, then rapidly decreasing, and finally increasing rapidly, with the boundary points of the layer angle being 45° and 67.50°. The peak stress and elastic modulus show a nonlinear exponential correlation with the layer angle, and the sandstone belongs to the intermediate anisotropy level. The rupture pattern shows significant anisotropic characteristics, with the failure modes including tension failure, including tension failure I and tension failure Ⅱ, shear failure, and tension–shear composite failure. The fractal dimension shows a negative correlation with the layer deterioration effect. The AE activity exhibits a phased response characteristic to the aging deformation of layer structure. The more obvious the layer deterioration effect is, the longer the AE delay is. The AE intensity of tensile failure sandstone is generally greater than that of oblique shear failure. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

24 pages, 22303 KB  
Article
Surrounding Rock Deformation Mechanism and Control Technology for the Roadway in the Fault-Disturbed Zone under Special-Shaped Coal Pillars
by Chao Liu, Fangtian Wang, Zhenyu Zhang, Dongxu Zhu, Wenhua Hao, Tiankuo Tang, Xutong Zhang and Chenguang Zhu
Processes 2023, 11(12), 3264; https://doi.org/10.3390/pr11123264 - 22 Nov 2023
Cited by 3 | Viewed by 1408
Abstract
In order to explore the impact of residual special-shaped coal pillars and fault disturbances on the lower layered roadway, this study takes the short-distance coal seam mining in Luwa Coal Mine as the engineering background to explore the surrounding rock deformation mechanism along [...] Read more.
In order to explore the impact of residual special-shaped coal pillars and fault disturbances on the lower layered roadway, this study takes the short-distance coal seam mining in Luwa Coal Mine as the engineering background to explore the surrounding rock deformation mechanism along the mining roadway in the fault-disturbed zone under special-shaped coal pillars, it presents the roadway surrounding rock control technology and it conducts on-site industrial test verification. The study shows that the abutment pressures on the floor of special-shaped coal pillars are distributed as “three peaks and two ridges”. The part beneath coal pillars is mainly disturbed by vertical stresses, while the part below the coal pillar edge is co-affected by vertical stresses and shearing stresses, generating a stress concentration coefficient ranging from 1.26 to 1.38 in the lower coal seam. According to the superposed effects of special-shaped coal pillars and fault disturbance on the mining roadway, the mining roadway is divided into the lower section of goaf, the section crossing the coal pillar edge, the lower section of coal pillars, and the section obliquely crossing the coal pillar edge. According to the above sections, the segmental control strategies of “improving stress distribution on surrounding rock + reinforcing support on special sections” are proposed. A joint control technology of large-diameter drilling hole pressure relief and special section anchor cable reinforcement support was adopted to carry out on-site industrial testing and monitoring. Overall, the convergence rate on the roadway surrounding rock is controlled within 5%, and the deformation of roadway surrounding rock is under effective control. Full article
(This article belongs to the Special Issue Advanced Technologies of Deep Mining)
Show Figures

Figure 1

Back to TopTop