Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = oceanic eddy detection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5228 KB  
Article
Detection, Tracking, and Statistical Analysis of Mesoscale Eddies in the Bay of Bengal
by Hafez Ahmad, Felix Jose, Padmanava Dash and Shakila Islam Jhara
Oceans 2025, 6(3), 52; https://doi.org/10.3390/oceans6030052 - 20 Aug 2025
Viewed by 544
Abstract
Mesoscale eddies have a significant influence on primary productivity and upper-ocean variability, particularly in stratified and monsoon-driven basins like the Bay of Bengal (BoB). This study analyzes mesoscale eddies in the BoB from January 2010 to March 2020 using post-processed and gridded daily [...] Read more.
Mesoscale eddies have a significant influence on primary productivity and upper-ocean variability, particularly in stratified and monsoon-driven basins like the Bay of Bengal (BoB). This study analyzes mesoscale eddies in the BoB from January 2010 to March 2020 using post-processed and gridded daily sea surface height anomaly (SLA) data from the Copernicus Marine Environment Monitoring Service. We used a hybrid detection method combining the Okubo–Weiss parameter and SLA contour analysis to identify 1880 anticyclonic and 1972 cyclonic eddies. Cyclonic eddies were mainly found in the western BoB along the east Indian coast, while anticyclonic eddies were less frequent in this area. Analysis of eddy lifespans revealed that short-lived (1-week) eddies were nearly equally distributed between anticyclonic (48.81%) and cyclonic (51.19%) types. However, for longer-lived eddies, cyclonic eddies became more prevalent, comprising 83.33% of 30-week eddies. A notable, consistent eddy presence was observed east of Sri Lanka, influencing the East India Coastal Current. Most eddies (91%) propagated west/southwestward along the western slope of the Andaman Archipelago, likely influenced by ocean currents and coastal topography, with concentrations in the Andaman Sea and central BoB. These patterns suggest significant interactions between eddies, coastal upwelling zones, and boundary currents, impacting nutrient transport and marine ecosystem productivity. This study contributes valuable insights into the dynamics of ocean circulation and the impacts of eddies, which can inform fisheries management strategies, advance climate resilience measures, expand scientific knowledge, and guide policies related to conservation and sustainable resource utilization. Full article
Show Figures

Figure 1

21 pages, 14658 KB  
Article
Retrieval of Ocean Surface Currents by Synergistic Sentinel-1 and SWOT Data Using Deep Learning
by Kai Sun, Jianjun Liang, Xiao-Ming Li and Jie Pan
Remote Sens. 2025, 17(13), 2133; https://doi.org/10.3390/rs17132133 - 21 Jun 2025
Viewed by 532
Abstract
A reliable ocean surface current (OSC) estimate is difficult to retrieve from synthetic aperture radar (SAR) data due to the challenge of accurately partitioning the Doppler shifts induced by wind waves and OSC. Recent research on SAR-based OSC retrieval is typically based on [...] Read more.
A reliable ocean surface current (OSC) estimate is difficult to retrieve from synthetic aperture radar (SAR) data due to the challenge of accurately partitioning the Doppler shifts induced by wind waves and OSC. Recent research on SAR-based OSC retrieval is typically based on the assumption that the SAR Doppler shifts caused by wind waves and OSC are linearly superimposed. However, this assumption may lead to large errors in regions where nonlinear wave–current interactions are significant. To address this issue, we developed a novel deep learning model, OSCNet, for OSC retrieval. The model leverages Sentinel-1 Interferometric Wide (IW) Level 2 Ocean products collected from July 2023 to September 2024, combined with wave data from the European Centre for Medium-Range Weather Forecasts (ECMWF) and geostrophic currents from newly available SWOT Level 3 products. The OSCNet model is optimized by refining input ocean surface physical parameters and introducing a ResNet structure. Moreover, the Normalized Radar Cross-Section (NRCS) is incorporated to account for wave breaking and backscatter effects on Doppler shift estimates. The retrieval performance of the OSCNet model is evaluated using SWOT data. The mean absolute error (MAE) and root mean square error (RMSE) are found to be 0.15 m/s and 0.19 m/s, respectively. This result demonstrates that the OSCNet model enhances the retrieval of OSC from SAR data. Furthermore, a mesoscale eddy detected in the OSC map retrieved by OSCNet is consistent with the collocated sea surface chlorophyll-a observation, demonstrating the capability of the proposed method in capturing the variability of mesoscale eddies. Full article
Show Figures

Graphical abstract

29 pages, 7837 KB  
Article
Automated Eddy Identification and Tracking in the Northwest Pacific Based on Conventional Altimeter and SWOT Data
by Lan Zhang, Cheinway Hwang, Han-Yang Liu, Emmy T. Y. Chang and Daocheng Yu
Remote Sens. 2025, 17(10), 1665; https://doi.org/10.3390/rs17101665 - 9 May 2025
Viewed by 839
Abstract
Eddy identification and tracking are essential for understanding ocean dynamics. This study employed the elliptical Gaussian function (EGF) simulations and the py-eddy-tracker (PET) algorithm, validated by Surface Velocity Program (SVP) drifter data, to track eddies in the western North Pacific Ocean. The PET [...] Read more.
Eddy identification and tracking are essential for understanding ocean dynamics. This study employed the elliptical Gaussian function (EGF) simulations and the py-eddy-tracker (PET) algorithm, validated by Surface Velocity Program (SVP) drifter data, to track eddies in the western North Pacific Ocean. The PET method effectively identified large- and mesoscale eddies but struggled with submesoscale features, indicating areas for improvement. Simulated satellite altimetry by EGF, mirroring Surface Water and Ocean Topography (SWOT)’s high-resolution observations, confirmed PET’s capability in processing fine-scale data, though accuracy declined for submesoscale eddies. Over 22 years, 1,188,649 eddies were identified, mainly concentrated east of Taiwan. Temporal analysis showed interannual variability, more cyclonic than anticyclonic eddies, and a seasonal peak in spring, likely influenced by marine conditions. Short-lived eddies were uniformly distributed, while long-lived ones followed major currents, validating PET’s robustness with SVP drifters. The launch of the SWOT satellite in 2022 has enhanced fine-scale ocean studies, enabling the detection of submesoscale eddies previously unresolved by conventional altimetry. SWOT observations reveal intricate eddy structures, including small cyclonic features in the northwestern Pacific, demonstrating its potential for improving eddy tracking. Future work should refine the PET algorithm for SWOT’s swath altimetry, addressing data gaps and unclosed contours. Integrating SWOT with in situ drifters, numerical models, and machine learning will further enhance eddy classification, benefiting ocean circulation studies and climate modeling. Full article
(This article belongs to the Special Issue Satellite Remote Sensing for Ocean and Coastal Environment Monitoring)
Show Figures

Figure 1

22 pages, 28104 KB  
Article
Spatial and Temporal Characteristics of Mesoscale Eddies in the North Atlantic Ocean Based on SWOT Mission
by Aiqun Cui, Zizhan Zhang, Haoming Yan and Baomin Han
Remote Sens. 2025, 17(8), 1469; https://doi.org/10.3390/rs17081469 - 20 Apr 2025
Viewed by 663
Abstract
Mesoscale eddies play a crucial role as primary transporters of heat, salinity, and freshwater in oceanic systems. Utilizing the latest Surface Water and Ocean Topography (SWOT) dataset, this study employed the py-eddy-tracker (PET) algorithm to identify and track mesoscale eddies in the North [...] Read more.
Mesoscale eddies play a crucial role as primary transporters of heat, salinity, and freshwater in oceanic systems. Utilizing the latest Surface Water and Ocean Topography (SWOT) dataset, this study employed the py-eddy-tracker (PET) algorithm to identify and track mesoscale eddies in the North Atlantic (NA). Our investigation focused on evaluating the influence of applying varying filter wavelengths (800, 600, 400, and 200 km) for absolute dynamic topography (ADT) on the detection of spatiotemporal patterns and dynamic properties of mesoscale eddies, encompassing eddy kinetic energy (EKE), effective radius, rotational velocity, amplitude, lifespan, and propagation distance. The analysis reveals a cyclonic to anticyclonic eddy ratio of approximately 1.1:1 in the study region. The dynamic parameters of mesoscale eddies identified at filter wavelengths of 800 km and 600 km are similar, while a marked reduction in these parameters becomes evident at the 200 km wavelength. Parameter comparative analysis indicates that effective radius exhibits the highest sensitivity to wavelength reduction, followed by amplitude, whereas rotational velocity remains relatively unaffected by filtering variations. The lifespan distribution analysis shows that the majority of eddies persist for 7–21 days, with only a small number of robust mesoscale eddies maintaining activity beyond 45 days. These long-lived, strong mesoscale eddies are primarily generated in the high-energy current zones associated with the Gulf Stream (GS). Full article
Show Figures

Figure 1

20 pages, 10713 KB  
Article
Detecting Ocean Eddies with a Lightweight and Efficient Convolutional Network
by Haochen Sun, Hongping Li, Ming Xu, Tianyu Xia and Hao Yu
Remote Sens. 2024, 16(24), 4808; https://doi.org/10.3390/rs16244808 - 23 Dec 2024
Viewed by 1141
Abstract
As a ubiquitous mesoscale phenomenon, ocean eddies significantly impact ocean energy and mass exchange. Detecting these eddies accurately and efficiently has become a research focus in ocean remote sensing. Many traditional detection methods, rooted in physical principles, often encounter challenges in practical applications [...] Read more.
As a ubiquitous mesoscale phenomenon, ocean eddies significantly impact ocean energy and mass exchange. Detecting these eddies accurately and efficiently has become a research focus in ocean remote sensing. Many traditional detection methods, rooted in physical principles, often encounter challenges in practical applications due to their complex parameter settings, while effective, deep learning models can be limited by the high computational demands of their extensive parameters. Therefore, this paper proposes a new approach to eddy detection based on the altimeter data, the Ghost Attention Deeplab Network (GAD-Net), which is a lightweight and efficient semantic segmentation model designed to address these issues. The encoder of GAD-Net consists of a lightweight ECA+GhostNet and an Atrous Spatial Pyramid Pooling (ASPP) module. And the decoder integrates an Efficient Attention Network (EAN) module and an Efficient Ghost Feature Integration (EGFI) module. Experimental results show that GAD-Net outperforms other models in evaluation indices, with a lighter model size and lower computational complexity. It also outperforms other segmentation models in actual detection results in different sea areas. Furthermore, GAD-Net achieves detection results comparable to the Py-Eddy-Tracker (PET) method with a smaller eddy radius and a faster detection speed. The model and the constructed eddy dataset are publicly available. Full article
(This article belongs to the Special Issue Artificial Intelligence for Ocean Remote Sensing)
Show Figures

Figure 1

19 pages, 6806 KB  
Article
Mesoscale Eddy Properties in Four Major Western Boundary Current Regions
by Wei Cui, Jungang Yang and Chaojie Zhou
Remote Sens. 2024, 16(23), 4470; https://doi.org/10.3390/rs16234470 - 28 Nov 2024
Cited by 2 | Viewed by 1528
Abstract
Oceanic mesoscale eddies are a kind of typical geostrophic dynamic process which can cause vertical movement in water bodies, thereby changing the temperature, salinity, density, and chlorophyll concentration of the surface water in the eddy. Based on multisource remote sensing data and Argo [...] Read more.
Oceanic mesoscale eddies are a kind of typical geostrophic dynamic process which can cause vertical movement in water bodies, thereby changing the temperature, salinity, density, and chlorophyll concentration of the surface water in the eddy. Based on multisource remote sensing data and Argo profiles, this study analyzes and compares the mesoscale eddy properties in four major western boundary current regions (WBCs), i.e., the Kuroshio Extension (KE), the Gulf Stream (GS), the Agulhas Current (AC), and the Brazil Current (BC). The 30-year sea surface height anomaly (SSHA) data are used to identify mesoscale eddies in the four WBCs. Among the four WBCs, the GS eddies have the largest amplitude and the BC eddies have the smallest amplitude. Combining the altimeter-detected eddy results with the simultaneous observations of sea surface temperature, sea surface salinity, sea surface density, and chlorophyll concentration, the local impacts of eddy activities in each WBCs are analyzed. The eddy surface temperature and salinity signals are positively correlated with the eddy SSHA signals, while the eddy surface density and chlorophyll concentrations are negatively correlated with eddy SSHA signals. The correlation analysis of eddy surface signals in the WBCs reveals that eddies have regional differences in the surface signal changes of eddy activities. Based on the subsurface temperature and salinity information provided by Argo profiles, the analysis of the vertical thermohaline characteristics of mesoscale eddies in the four WBCs is carried out. Eddies in the four WBCs have deep influence on the vertical thermohaline characteristics of water masses, which is not only related to the strong eddy activities but also to the thick thermocline and halocline of water masses in the WBCs. Full article
(This article belongs to the Special Issue Recent Advances on Oceanic Mesoscale Eddies II)
Show Figures

Graphical abstract

24 pages, 33437 KB  
Article
Global Assessment of Mesoscale Eddies with TOEddies: Comparison Between Multiple Datasets and Colocation with In Situ Measurements
by Artemis Ioannou, Lionel Guez, Rémi Laxenaire and Sabrina Speich
Remote Sens. 2024, 16(22), 4336; https://doi.org/10.3390/rs16224336 - 20 Nov 2024
Cited by 3 | Viewed by 1716
Abstract
The present study introduces a comprehensive, open-access atlas of mesoscale eddies in the global ocean, as identified and tracked by the TOEddies algorithm implemented on a global scale. Unlike existing atlases, TOEddies detects eddies directly from absolute dynamic topography (ADT) without spatial filtering, [...] Read more.
The present study introduces a comprehensive, open-access atlas of mesoscale eddies in the global ocean, as identified and tracked by the TOEddies algorithm implemented on a global scale. Unlike existing atlases, TOEddies detects eddies directly from absolute dynamic topography (ADT) without spatial filtering, preserving the natural spatial variability and enabling precise, high-resolution tracking of eddy dynamics. This dataset provides daily information on eddy characteristics, such as size, intensity, and polarity, over a 30-year period (1993–2023), capturing complex eddy interactions, including splitting and merging events that often produce networks of interconnected eddies. This unique approach challenges the traditional single-trajectory perspective, offering a nuanced view of eddy life cycles as dynamically linked trajectories. In addition to traditional metrics, TOEddies identifies both the eddy core (characterized by maximum azimuthal velocity) and the outer boundary, offering a detailed representation of eddy structure and enabling precise comparisons with in situ data. To demonstrate its value, we present a statistical overview of eddy characteristics and spatial distributions, including generation, disappearance, and merging/splitting events, alongside a comparative analysis with existing global eddy datasets. Among the multi-year observations, TOEddies captures coherent, long-lived eddies with lifetimes exceeding 1.5 years, while highlighting significant differences in the dynamic properties and spatial patterns across datasets. Furthermore, this study integrates TOEddies with 23 years of colocalized Argo profile data (2000–2023), allowing for a novel examination of eddy-induced subsurface variability and the role of mesoscale eddies in the transport of global ocean heat and biogeochemical properties. This atlas aims to be a valuable resource for the oceanographic community, providing an open dataset that can support diverse applications in ocean dynamics, climate research, and marine resource management. Full article
(This article belongs to the Special Issue Recent Advances on Oceanic Mesoscale Eddies II)
Show Figures

Figure 1

17 pages, 8493 KB  
Article
Fine-Scale Eddies Detected by SWOT in the Kuroshio Extension
by Tianshi Du and Zhao Jing
Remote Sens. 2024, 16(18), 3488; https://doi.org/10.3390/rs16183488 - 20 Sep 2024
Cited by 7 | Viewed by 1910
Abstract
Conventional altimetry has greatly advanced our understanding of mesoscale eddies but falls short in studying fine-scale eddies (<150 km). The newly launched Surface Water and Ocean Topography (SWOT) altimeter, however, with its unprecedented high-resolution capabilities, offers new opportunities to observe these fine-scale eddies. [...] Read more.
Conventional altimetry has greatly advanced our understanding of mesoscale eddies but falls short in studying fine-scale eddies (<150 km). The newly launched Surface Water and Ocean Topography (SWOT) altimeter, however, with its unprecedented high-resolution capabilities, offers new opportunities to observe these fine-scale eddies. In this study, we use SWOT data to explore these previously elusive fine-scale eddies in the Kuroshio Extension. During SWOT’s fast sampling phase from 29 May 2023 to 10 July 2023, we identified an average of 4.5 fine-scale eddies within each 120 km wide swath. Cyclonic eddies, which are slightly more frequent than the anticyclonic ones (ratio of 1.16), have a similar mean radius of 23.4 km. However, cyclonic eddies exhibit higher amplitudes, averaging 3.5 cm compared to 2.8 cm for anticyclonic eddies. In contrast to the mesoscale eddies detected by conventional altimeters, the fine-scale eddies revealed by SWOT are characterized by smaller sizes and weaker amplitudes. This study offers a preliminary view of fine-scale eddy characteristics from space, highlighting SWOT’s potential to advance our understanding of these dynamic processes. Nonetheless, it also emphasizes the necessity for comprehensive analysis to fully exploit the satellite’s capabilities in monitoring and interpreting complex eddy behaviors. Full article
(This article belongs to the Special Issue Applications of Satellite Altimetry in Ocean Observation)
Show Figures

Figure 1

11 pages, 2354 KB  
Article
Influence of Abnormal Eddies on Seasonal Variations in Sonic Layer Depth in the South China Sea
by Xintong Liu, Chunhua Qiu, Tianlin Wang, Huabin Mao and Peng Xiao
Remote Sens. 2024, 16(15), 2845; https://doi.org/10.3390/rs16152845 - 2 Aug 2024
Viewed by 1475
Abstract
Sonic layer depth (SLD) is crucial in ocean acoustics research and profoundly influences sound propagation and Sonar detection. Carrying 90% of oceanic kinetic energy, mesoscale eddies significantly impact the propagation of acoustic energy in the ocean. Recent studies classified mesoscale eddies into normal [...] Read more.
Sonic layer depth (SLD) is crucial in ocean acoustics research and profoundly influences sound propagation and Sonar detection. Carrying 90% of oceanic kinetic energy, mesoscale eddies significantly impact the propagation of acoustic energy in the ocean. Recent studies classified mesoscale eddies into normal eddies (warm anticyclonic and cold cyclonic eddies) and abnormal eddies (cold anticyclonic and warm cyclonic eddies). However, the influence of mesoscale eddies, especially abnormal eddies, on SLD remains unclear. Based on satellite altimeter and reanalysis data, we explored the influence of mesoscale eddies on seasonal variations in SLD in the South China Sea. We found that the vertical structures of temperature anomalies within the eddies had a significant impact on the sound speed field. A positive correlation between sonic layer depth anomaly (SLDA) and eddy intensity (absolute value of relative vorticity) was investigated. The SLDA showed significant seasonal variations: during summer (winter), the proportion of negative (positive) SLDA increased. Normal eddies (abnormal eddies) had a more pronounced effect during summer and autumn (spring and winter). Based on mixed-layer heat budget analysis, it was found that the seasonal variation in SLD was primarily induced by air–sea heat fluxes. However, for abnormal eddies, the horizontal advection and vertical convective terms modulated the variations in the SLDA. This study provides additional theoretical support for mesoscale eddy–acoustic coupling models and advances our understanding of the impact of mesoscale eddies on sound propagation. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Ocean Observation (Third Edition))
Show Figures

Figure 1

20 pages, 6499 KB  
Article
Tracking Loop Current Eddies in the Gulf of Mexico Using Satellite-Derived Chlorophyll-a
by Corinne B. Trott, Bulusu Subrahmanyam, Luna Hiron and Olmo Zavala-Romero
Remote Sens. 2024, 16(12), 2234; https://doi.org/10.3390/rs16122234 - 19 Jun 2024
Cited by 2 | Viewed by 1877
Abstract
During the period of 2018–2022, there were six named Loop Current Eddy (LCE) shedding events in the central Gulf of Mexico (GoM). LCEs form when a large anticyclonic eddy (AE) separates from the main Loop Current (LC) and propagates westward. In doing so, [...] Read more.
During the period of 2018–2022, there were six named Loop Current Eddy (LCE) shedding events in the central Gulf of Mexico (GoM). LCEs form when a large anticyclonic eddy (AE) separates from the main Loop Current (LC) and propagates westward. In doing so, each LCE traps and advects warmer, saltier waters with lower Chlorophyll-a (Chl-a) concentrations than the surrounding Gulf waters. This difference in water mass permits the study of the effectiveness of using Chl-a from satellite-derived ocean color to identify LCEs in the GoM. In this work, we apply an eddy-tracking algorithm to Chl-a to detect LCEs, which we have validated against the traditional sea surface height-(SSH) based eddy-tracking approach with three datasets. We apply a closed-contour eddy-tracking algorithm to the SSH of two model products (HYbrid Coordination Ocean Model; HYCOM and Nucleus for European Modelling of the Ocean; NEMO) and absolute dynamic topography (ADT) from altimetry, as well as satellite-derived Chl-a data to identify the six named LCEs from 2018 to 2022. We find that Chl-a best characterizes LCEs in the summertime due to a basin-wide increase in the horizontal gradient of Chl-a, which permits a more clearly defined eddy edge. This study demonstrates that Chl-a can be effectively used to identify and track LC and LCEs in the GoM, serving as a promising source of information for regional data assimilative models. Full article
Show Figures

Graphical abstract

19 pages, 9502 KB  
Article
Statistical Analysis of Multi-Year South China Sea Eddies and Exploration of Eddy Classification
by Yang Jin, Meibing Jin, Dongxiao Wang and Changming Dong
Remote Sens. 2024, 16(10), 1818; https://doi.org/10.3390/rs16101818 - 20 May 2024
Cited by 4 | Viewed by 1871
Abstract
Mesoscale eddies are structures of seawater motion with horizontal scales of tens to hundreds of kilometers, impact depths of tens to hundreds of meters, and time scales of days to months. This study presents a statistical analysis of mesoscale eddies in the South [...] Read more.
Mesoscale eddies are structures of seawater motion with horizontal scales of tens to hundreds of kilometers, impact depths of tens to hundreds of meters, and time scales of days to months. This study presents a statistical analysis of mesoscale eddies in the South China Sea (SCS) from 1993 to 2021 based on eddies extracted from satellite remote sensing data using the vector geometry eddy detection method. On average, about 230 eddies with a wide spatial and temporal distribution are observed each year, and the numbers of CEs (52.2%) and AEs (47.8%) are almost similar, with a significant correlation in spatial distribution. In this article, eddies with a lifetime of at least 28 days (17% of the number of total eddies) are referred to as strong eddies (SEs). The SEs in the SCS that persist for several years in similar months and locations, such as the well-known dipole eddies consisting of CEs and AEs offshore eastern Vietnam, are defined as persistent strong eddies (PSEs). SEs and PSEs affect the thermohaline structure, current field, and material and energy transport in the upper ocean. This paper is important as it names the SEs and PSEs, and the naming of eddies can facilitate research on specific major eddies and improve public understanding of mesoscale eddies as important oceanic phenomena. Full article
(This article belongs to the Special Issue Recent Advances on Oceanic Mesoscale Eddies II)
Show Figures

Figure 1

25 pages, 5704 KB  
Article
A Metadata-Enhanced Deep Learning Method for Sea Surface Height and Mesoscale Eddy Prediction
by Rongjie Zhu, Biao Song, Zhongfeng Qiu and Yuan Tian
Remote Sens. 2024, 16(8), 1466; https://doi.org/10.3390/rs16081466 - 20 Apr 2024
Cited by 4 | Viewed by 2607
Abstract
Predicting the mesoscale eddies in the ocean is crucial for advancing our understanding of the ocean and climate systems. Establishing spatio-temporal correlation among input data is a significant challenge in mesoscale eddy prediction tasks, especially for deep learning techniques. In this paper, we [...] Read more.
Predicting the mesoscale eddies in the ocean is crucial for advancing our understanding of the ocean and climate systems. Establishing spatio-temporal correlation among input data is a significant challenge in mesoscale eddy prediction tasks, especially for deep learning techniques. In this paper, we first present a deep learning solution based on a video prediction model to capture the spatio-temporal correlation and predict future sea surface height data accurately. To enhance the performance of the model, we introduced a novel metadata embedding module that utilizes neural networks to fuse remote sensing metadata with input data, resulting in increased accuracy. To the best of our knowledge, our model outperforms the state-of-the-art method for predicting sea level anomalies. Consequently, a mesoscale eddy detection algorithm will be applied to the predicted sea surface height data to generate mesoscale eddies in future. The proposed solution achieves competitive results, indicating that the prediction error for the eddy center position is 5.6 km for a 3-day prediction and 13.6 km for a 7-day prediction. Full article
Show Figures

Figure 1

24 pages, 24628 KB  
Article
An Unprecedented Bloom of Oceanic Dinoflagellates (Karenia spp.) Inside a Fjord within a Highly Dynamic Multifrontal Ecosystem in Chilean Patagonia
by Ángela M. Baldrich, Patricio A. Díaz, Sergio A. Rosales, Camilo Rodríguez-Villegas, Gonzalo Álvarez, Iván Pérez-Santos, Manuel Díaz, Camila Schwerter, Michael Araya and Beatriz Reguera
Toxins 2024, 16(2), 77; https://doi.org/10.3390/toxins16020077 - 2 Feb 2024
Cited by 9 | Viewed by 3210
Abstract
At the end of summer 2020, a moderate (~105 cells L−1) bloom of potential fish-killing Karenia spp. was detected in samples from a 24 h study focused on Dinophysis spp. in the outer reaches of the Pitipalena-Añihue Marine Protected Area. [...] Read more.
At the end of summer 2020, a moderate (~105 cells L−1) bloom of potential fish-killing Karenia spp. was detected in samples from a 24 h study focused on Dinophysis spp. in the outer reaches of the Pitipalena-Añihue Marine Protected Area. Previous Karenia events with devastating effects on caged salmon and the wild fauna of Chilean Patagonia had been restricted to offshore waters, eventually reaching the southern coasts of Chiloé Island through the channel connecting the Chiloé Inland Sea to the Pacific Ocean. This event occurred at the onset of the COVID-19 lockdown when monitoring activities were slackened. A few salmon mortalities were related to other fish-killing species (e.g., Margalefidinium polykrikoides). As in the major Karenia event in 1999, the austral summer of 2020 was characterised by negative anomalies in rainfall and river outflow and a severe drought in March. Karenia spp. appeared to have been advected in a warm (14–15 °C) surface layer of estuarine saline water (S > 21). A lack of daily vertical migration patterns and cells dispersed through the whole water column suggested a declining population. Satellite images confirmed the decline, but gave evidence of dynamic multifrontal patterns of temperature and chl a distribution. A conceptual circulation model is proposed to explain the hypothetical retention of the Karenia bloom by a coastally generated eddy coupled with the semidiurnal tides at the mouth of Pitipalena Fjord. Thermal fronts generated by (topographically induced) upwelling around the Tic Toc Seamount are proposed as hot spots for the accumulation of swimming dinoflagellates in summer in the southern Chiloé Inland Sea. The results here provide helpful information on the environmental conditions and water column structure favouring Karenia occurrence. Thermohaline properties in the surface layer in summer can be used to develop a risk index (positive if the EFW layer is thin or absent). Full article
Show Figures

Figure 1

12 pages, 15633 KB  
Article
Evaluating the Detection of Oceanic Mesoscale Eddies in an Operational Eddy-Resolving Global Forecasting System
by Huier Mo, Yinghao Qin, Liying Wan, Yu Zhang, Xing Huang, Yi Wang, Jianyong Xing, Qinglong Yu and Xiangyu Wu
J. Mar. Sci. Eng. 2023, 11(12), 2343; https://doi.org/10.3390/jmse11122343 - 12 Dec 2023
Cited by 1 | Viewed by 1653
Abstract
In this study, a global analysis and forecasting system at 1/12° is built for operational oceanography at the National Marine Environmental Forecasting Center (NMEFC) by using the NEMO ocean model (NMEFC-NEMO). First, statistical analysis methods are designed to evaluate the performance of sea [...] Read more.
In this study, a global analysis and forecasting system at 1/12° is built for operational oceanography at the National Marine Environmental Forecasting Center (NMEFC) by using the NEMO ocean model (NMEFC-NEMO). First, statistical analysis methods are designed to evaluate the performance of sea level anomaly (SLA) forecasting. The results indicate that the NMEFC-NEMO performs well in SLA forecasting when compared with the Mercator-PSY4, Mercator-PSY3, UK-FOAM, CONCEPTS-GIOPS and Bluelink-OceanMAPS forecasting systems. The respective root-mean-squared errors (RMSEs) of NMEFC-NEMO (Mercator PSY4) are 0.0654 m (0.0663 m) and 0.0797 m (0.0767 m) for the lead times of 1 and 7 days. The anomaly correlation coefficients between forecasting and observations exceed 0.8 for the NMEFC-NEMO and Mercator-PSY4 systems, suggesting that the accuracy of SLA predicted using NMEFC-NEMO is comparable to Mercator PSY4 and superior to other forecasting systems. Moreover, the global spatial distribution of oceanic eddies are effectively represented in NMEFC-NEMO when compared to that in the HYCOM reanalysis, and the detection rate reaches more than 90% relative to HYCOM reanalysis. Regarding the strong eddies in the Kuroshio region, the NMEFC-NEMO reproduces the characteristic for anticyclonic and cyclonic eddies merging and splitting alternatively. As for the detective eddies in the Gulf Stream, NMEFC-NEMO effectively represents the spatial distribution of mesoscale eddies from different seasons. The amplitude of oceanic eddies, including both cyclones and anticyclones, were much stronger on 1 July 2019 than 1 January 2019. Overall, NMEFC-NEMO has a superior performance in SLA forecasting and effectively represents the oceanic mesoscale eddies for operational oceanography. Full article
(This article belongs to the Special Issue Advance in Circulation and Internal Wave Dynamics)
Show Figures

Figure 1

22 pages, 8223 KB  
Article
The Influence of Typhoon-Induced Wave on the Mesoscale Eddy
by Zeqi Zhao, Jian Shi, Weizeng Shao, Ru Yao and Huan Li
Atmosphere 2023, 14(12), 1804; https://doi.org/10.3390/atmos14121804 - 9 Dec 2023
Cited by 6 | Viewed by 1986
Abstract
The strong wind-induced current and sea level have influences on the wave distribution in a tropical cyclone (TC). In particular, the wave–current interaction is significant in the period in which the TC passed the mesoscale eddy. In this study, the wave fields of [...] Read more.
The strong wind-induced current and sea level have influences on the wave distribution in a tropical cyclone (TC). In particular, the wave–current interaction is significant in the period in which the TC passed the mesoscale eddy. In this study, the wave fields of Typhoon Chan-hom (2015) are hindcastly simulated using a coupled oceanic model that utilizes a nested triangle grid, i.e., the finite-volume community ocean model-simulating waves nearshore (FVCOM-SWAVE) model. The forcing wind field is composited from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data and the simulation using a parametric Holland model, denoted as H-E. The open boundary fields include tide data from TPOX.5 and the hybrid coordinate ocean model (HYCOM) global datasets, including sea surface temperature (SST), sea surface salinity, sea surface current, and sea level data. The simulated oceanic parameters (e.g., the significant wave height, SWH) are validated against the measurements from the Jason-2 altimeter, yielding a root mean square error (RMSE) of 0.58 m for the SWH, a correlation (COR) coefficient of 0.94, and a scatter index (SI) of 0.23. Similarly, the simulated SSTs are compared with the remote sensing products of the remote sensing system (REMSS) and the measurements from Argos, yielding an RMSE of <0.8 °C, a COR of >0.95, and an SI of <0.04. The significant zonal asymmetry of the wave distribution along the typhoon track is observed. The Stokes drift is calculated from the FVCOM-SWAVE simulation results, and then the contribution of the Stokes transport is estimated using the Ekman–Stokes numbers. It is found that the ratio of the Stokes transport to the total net transport can reach >80% near the typhoon center, and the ratio is reduced to approximately <20% away from the typhoon center, indicating that Stokes transport is an essential aspect in the water mixing during a TC. The mesoscale eddies are detected by the sea level anomalies (SLA) fusion data from AVISO. It is found that the significant wave heights, Stokes drift, and Stokes transport inside the eddy area were higher than those outside the eddy area. These parameters inside the cold mesoscale eddies were higher than t inside the warm mesoscale eddies. Otherwise, the SST mainly increased within the cold mesoscale eddies area, while decreased within the warm mesoscale eddies area. The influence of mesoscale eddies on the SST was in proportion to the eddy radius and eddy EKE. Full article
(This article belongs to the Special Issue Coastal Hazards and Climate Change)
Show Figures

Figure 1

Back to TopTop