Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = oligodendroglial dysfunction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1646 KiB  
Review
Glial Markers of Suicidal Behavior in the Human Brain—A Systematic Review of Postmortem Studies
by Mana Yamamoto, Mai Sakai, Zhiqian Yu, Miharu Nakanishi and Hatsumi Yoshii
Int. J. Mol. Sci. 2024, 25(11), 5750; https://doi.org/10.3390/ijms25115750 - 25 May 2024
Cited by 4 | Viewed by 2193
Abstract
Suicide is a major public health priority, and its molecular mechanisms appear to be related to glial abnormalities and specific transcriptional changes. This study aimed to identify and synthesize evidence of the relationship between glial dysfunction and suicidal behavior to understand the neurobiology [...] Read more.
Suicide is a major public health priority, and its molecular mechanisms appear to be related to glial abnormalities and specific transcriptional changes. This study aimed to identify and synthesize evidence of the relationship between glial dysfunction and suicidal behavior to understand the neurobiology of suicide. As of 26 January 2024, 46 articles that met the inclusion criteria were identified by searching PubMed and ISI Web of Science. Most postmortem studies, including 30 brain regions, have determined no density or number of total Nissl-glial cell changes in suicidal patients with major psychiatric disorders. There were 17 astrocytic, 14 microglial, and 9 oligodendroglial studies using specific markers of each glial cell and further on their specific gene expression. Those studies suggest that astrocytic and oligodendroglial cells lost but activated microglia in suicides with affective disorder, bipolar disorders, major depression disorders, or schizophrenia in comparison with non-suicided patients and non-psychiatric controls. Although the data from previous studies remain complex and cannot fully explain the effects of glial cell dysfunction related to suicidal behaviors, they provide risk directions potentially leading to suicide prevention. Full article
(This article belongs to the Special Issue The Role of Glia in Neuropsychiatric Disorders)
Show Figures

Figure 1

18 pages, 1179 KiB  
Review
Role of Oligodendrocyte Lineage Cells in Multiple System Atrophy
by Jen-Hsiang T. Hsiao, Onur Tanglay, Anne A. Li, Aysha Y. G. Strobbe, Woojin Scott Kim, Glenda M. Halliday and YuHong Fu
Cells 2023, 12(5), 739; https://doi.org/10.3390/cells12050739 - 25 Feb 2023
Cited by 10 | Viewed by 5256
Abstract
Multiple system atrophy (MSA) is a debilitating movement disorder with unknown etiology. Patients present characteristic parkinsonism and/or cerebellar dysfunction in the clinical phase, resulting from progressive deterioration in the nigrostriatal and olivopontocerebellar regions. MSA patients have a prodromal phase subsequent to the insidious [...] Read more.
Multiple system atrophy (MSA) is a debilitating movement disorder with unknown etiology. Patients present characteristic parkinsonism and/or cerebellar dysfunction in the clinical phase, resulting from progressive deterioration in the nigrostriatal and olivopontocerebellar regions. MSA patients have a prodromal phase subsequent to the insidious onset of neuropathology. Therefore, understanding the early pathological events is important in determining the pathogenesis, which will assist with developing disease-modifying therapy. Although the definite diagnosis of MSA relies on the positive post-mortem finding of oligodendroglial inclusions composed of α-synuclein, only recently has MSA been verified as an oligodendrogliopathy with secondary neuronal degeneration. We review up-to-date knowledge of human oligodendrocyte lineage cells and their association with α-synuclein, and discuss the postulated mechanisms of how oligodendrogliopathy develops, oligodendrocyte progenitor cells as the potential origins of the toxic seeds of α-synuclein, and the possible networks through which oligodendrogliopathy induces neuronal loss. Our insights will shed new light on the research directions for future MSA studies. Full article
(This article belongs to the Special Issue Advances in Neurogenesis: 2nd Edition)
Show Figures

Figure 1

9 pages, 1232 KiB  
Case Report
Co-Occurrence of Multiple Sclerosis and Amyotrophic Lateral Sclerosis in an FUS-Mutated Patient: A Case Report
by Luigi Fiondella, Francesco Cavallieri, Elena Canali, Maria Paola Cabboi, Alessandro Marti, Francesca Sireci, Alena Fiocchi, Gloria Montanari, Sara Montepietra and Franco Valzania
Brain Sci. 2022, 12(5), 531; https://doi.org/10.3390/brainsci12050531 - 21 Apr 2022
Cited by 3 | Viewed by 3051
Abstract
A concomitant presentation of relapsing remitting multiple sclerosis (RRMS) and amyotrophic lateral sclerosis (ALS) is quite rare. However, a review of the literature showed an increased co-occurrence of both diseases, including in genetically determined cases. We report the case of a 49-year-old woman [...] Read more.
A concomitant presentation of relapsing remitting multiple sclerosis (RRMS) and amyotrophic lateral sclerosis (ALS) is quite rare. However, a review of the literature showed an increased co-occurrence of both diseases, including in genetically determined cases. We report the case of a 49-year-old woman with a history of RRMS who developed a progressive subacute loss of strength in her left arm. The patient’s father died from ALS, and her paternal uncle had Parkinson’s disease. Brain and cervical MRIs were performed, and new demyelinating lesions were excluded. Electromyography (EMG) of the upper limbs showed fibrillations and fasciculations in distal muscles of both arms. In the following months, the patient presented a progressive loss of strength in the proximal and distal muscles of the right arm and hyperreflexia in the lower limbs. EMG and central motor conduction were consistent with ALS. A genetic test was carried out, revealing a mutation in the FUS gene (exon 15; c. 1562 G>A). To our knowledge, the co-occurrence of MS and ALS in patients with FUS mutation is extremely rare. We hypothesize a common pathway for both diseases based on the possibility of a shared oligodendroglial dysfunction due to FUS mutation. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

18 pages, 1208 KiB  
Review
Autophagy in α-Synucleinopathies—An Overstrained System
by Lisa Fellner, Elisa Gabassi, Johannes Haybaeck and Frank Edenhofer
Cells 2021, 10(11), 3143; https://doi.org/10.3390/cells10113143 - 12 Nov 2021
Cited by 19 | Viewed by 4706
Abstract
Alpha-synucleinopathies comprise progressive neurodegenerative diseases, including Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). They all exhibit the same pathological hallmark, which is the formation of α-synuclein positive deposits in neuronal or glial cells. The aggregation of α-synuclein [...] Read more.
Alpha-synucleinopathies comprise progressive neurodegenerative diseases, including Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). They all exhibit the same pathological hallmark, which is the formation of α-synuclein positive deposits in neuronal or glial cells. The aggregation of α-synuclein in the cell body of neurons, giving rise to the so-called Lewy bodies (LBs), is the major characteristic for PD and DLB, whereas the accumulation of α-synuclein in oligodendroglial cells, so-called glial cytoplasmic inclusions (GCIs), is the hallmark for MSA. The mechanisms involved in the intracytoplasmic inclusion formation in neuronal and oligodendroglial cells are not fully understood to date. A possible mechanism could be an impaired autophagic machinery that cannot cope with the high intracellular amount of α-synuclein. In fact, different studies showed that reduced autophagy is involved in α-synuclein aggregation. Furthermore, altered levels of different autophagy markers were reported in PD, DLB, and MSA brains. To date, the trigger point in disease initiation is not entirely clear; that is, whether autophagy dysfunction alone suffices to increase α-synuclein or whether α-synuclein is the pathogenic driver. In the current review, we discuss the involvement of defective autophagy machinery in the formation of α-synuclein aggregates, propagation of α-synuclein, and the resulting neurodegenerative processes in α-synucleinopathies. Full article
(This article belongs to the Special Issue 10th Anniversary of Cells—Advances in Autophagy)
Show Figures

Figure 1

27 pages, 979 KiB  
Review
Defective Oligodendroglial Lineage and Demyelination in Amyotrophic Lateral Sclerosis
by Elisabeth Traiffort, Séverine Morisset-Lopez, Mireille Moussaed and Amina Zahaf
Int. J. Mol. Sci. 2021, 22(7), 3426; https://doi.org/10.3390/ijms22073426 - 26 Mar 2021
Cited by 14 | Viewed by 4935
Abstract
Motor neurons and their axons reaching the skeletal muscle have long been considered as the best characterized targets of the degenerative process observed in amyotrophic lateral sclerosis (ALS). However, the involvement of glial cells was also more recently reported. Although oligodendrocytes have been [...] Read more.
Motor neurons and their axons reaching the skeletal muscle have long been considered as the best characterized targets of the degenerative process observed in amyotrophic lateral sclerosis (ALS). However, the involvement of glial cells was also more recently reported. Although oligodendrocytes have been underestimated for a longer time than other cells, they are presently considered as critically involved in axonal injury and also conversely constitute a target for the toxic effects of the degenerative neurons. In the present review, we highlight the recent advances regarding oligodendroglial cell involvement in the pathogenesis of ALS. First, we present the oligodendroglial cells, the process of myelination, and the tight relationship between axons and myelin. The histological abnormalities observed in ALS and animal models of the disease are described, including myelin defects and oligodendroglial accumulation of pathological protein aggregates. Then, we present data that establish the existence of dysfunctional and degenerating oligodendroglial cells, the chain of events resulting in oligodendrocyte degeneration, and the most recent molecular mechanisms supporting oligodendrocyte death and dysfunction. Finally, we review the arguments in support of the primary versus secondary involvement of oligodendrocytes in the disease and discuss the therapeutic perspectives related to oligodendrocyte implication in ALS pathogenesis. Full article
(This article belongs to the Special Issue Amyotrophic Lateral Sclerosis)
Show Figures

Figure 1

19 pages, 1766 KiB  
Review
Oligodendroglial Energy Metabolism and (re)Myelination
by Vanja Tepavčević
Life 2021, 11(3), 238; https://doi.org/10.3390/life11030238 - 13 Mar 2021
Cited by 28 | Viewed by 7534
Abstract
Central nervous system (CNS) myelin has a crucial role in accelerating the propagation of action potentials and providing trophic support to the axons. Defective myelination and lack of myelin regeneration following demyelination can both lead to axonal pathology and neurodegeneration. Energy deficit has [...] Read more.
Central nervous system (CNS) myelin has a crucial role in accelerating the propagation of action potentials and providing trophic support to the axons. Defective myelination and lack of myelin regeneration following demyelination can both lead to axonal pathology and neurodegeneration. Energy deficit has been evoked as an important contributor to various CNS disorders, including multiple sclerosis (MS). Thus, dysregulation of energy homeostasis in oligodendroglia may be an important contributor to myelin dysfunction and lack of repair observed in the disease. This article will focus on energy metabolism pathways in oligodendroglial cells and highlight differences dependent on the maturation stage of the cell. In addition, it will emphasize that the use of alternative energy sources by oligodendroglia may be required to save glucose for functions that cannot be fulfilled by other metabolites, thus ensuring sufficient energy input for both myelin synthesis and trophic support to the axons. Finally, it will point out that neuropathological findings in a subtype of MS lesions likely reflect defective oligodendroglial energy homeostasis in the disease. Full article
(This article belongs to the Special Issue Myelin and Oligodendrocyte-Neuron Interactions)
Show Figures

Figure 1

Back to TopTop