Processing math: 100%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (216)

Search Parameters:
Keywords = optical combs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 10165 KiB  
Article
Experimental Guide for Compact Bow-Tie Femtosecond Solid-State Laser Development
by Vinícius Pereira Pinto, Giovana Trevisan Nogueira, Fátima Maria Mitsue Yasuoka and Jarbas Caiado de Castro Neto
Photonics 2025, 12(6), 548; https://doi.org/10.3390/photonics12060548 - 29 May 2025
Abstract
Bow-tie cavity configurations have gained significant attention due to their efficacy in facilitating stable resonator operation for applications requiring short pulse operation and high repetition rate pulses, offering versatility and reliability. While there is an extensive body of literature addressing the theoretical aspects [...] Read more.
Bow-tie cavity configurations have gained significant attention due to their efficacy in facilitating stable resonator operation for applications requiring short pulse operation and high repetition rate pulses, offering versatility and reliability. While there is an extensive body of literature addressing the theoretical aspects and applications of this laser configuration, there exists a gap in practical insights and systematic approaches guidance pertaining to the development and precision alignment of this laser type. The paper achieves this by compiling a range of analytical and optimization techniques for the bow-tie cavity configuration and delineating the necessary steps for the optimization required for continuous wave operation. This ultimately leads to the attainment of the pulsed regime through the Kerr Lens Mode-locking technique, offering a detailed account of the development, optimization, and performance evaluation of a Ti:Sapphire femtosecond laser cavity, using dispersion-compensating mirrors to produce a low-energy pulse of 1 nJ, a high repetition rate of 1 GHz, and a short pulse duration of 61 fs. This work can be useful for researchers and engineers seeking to embark on the development of compact and high-performance femtosecond lasers for a spectrum of applications, encompassing biomedical imaging, laser-assisted surgery, spectroscopy, and optical frequency combs. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

15 pages, 3629 KiB  
Article
Photonic-Aid Flexible Frequency-Hopping Signal Generator Based on Optical Comb Filtering
by Yixiao Zhou, Xuan Li, Shanghong Zhao, Guodong Wang, Ruiqiong Wang, Jialin Ma and Zihang Zhu
Photonics 2025, 12(6), 539; https://doi.org/10.3390/photonics12060539 - 26 May 2025
Viewed by 116
Abstract
A novel photonics-assisted technique for generating reconfigurable frequency hopping (FH) signals is proposed and demonstrated through optical comb filtering (OCF). The arithmetic progression of frequency difference between OCF passbands and optical frequency comb lines is exploited to enable wavelength selection controlled by an [...] Read more.
A novel photonics-assisted technique for generating reconfigurable frequency hopping (FH) signals is proposed and demonstrated through optical comb filtering (OCF). The arithmetic progression of frequency difference between OCF passbands and optical frequency comb lines is exploited to enable wavelength selection controlled by an intermediate frequency signal, with ultra-wideband FH signals subsequently being generated through optical heterodyning. Comprehensive theoretical and numerical investigations are conducted, demonstrating the successful generation of diverse FH waveforms including 5-, 10-, and 25-level stepped frequency signals, Costas-coded patterns, as well as complex wideband signals such as 30 GHz linear frequency modulated and 24 GHz sinusoidal chirped waveforms. Critical system considerations including laser frequency stability, FH speed, and parameter optimization are examined. Wide tunable bandwidth exceeding 30 GHz, good stability, and inherent compatibility with photonic integration is achieved, showing significant potential for advanced applications in cognitive radio and modern radar systems where high-performance frequency-agile signal generation is required. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

14 pages, 14034 KiB  
Article
Study on the Dynamic Characteristics of DM-DFBL Self-Delayed Feedback with an Optoelectronic Oscillation Loop
by Nian Xie, Guangfu Bai, Yuanfen Li, Gang Kuang, Shu Xu, Daokai Huang, Xiaonan Wei, Qingzhe Wu and Weichao Huang
Photonics 2025, 12(5), 479; https://doi.org/10.3390/photonics12050479 - 13 May 2025
Viewed by 193
Abstract
Nonlinear dynamical states generated by self-delayed feedback based on fiber structures have broad applications. However, fiber-based optoelectronic feedback or pure optical feedback systems exhibit long delays, and the coupling mechanisms between these two loops differ significantly from those in short-delay systems. A systematic [...] Read more.
Nonlinear dynamical states generated by self-delayed feedback based on fiber structures have broad applications. However, fiber-based optoelectronic feedback or pure optical feedback systems exhibit long delays, and the coupling mechanisms between these two loops differ significantly from those in short-delay systems. A systematic investigation of feedback coupling mechanisms under long-delay conditions is of great significance for optimizing such systems. In this paper, the nonlinear dynamic state generated by directly modulated distributed feedback semiconductor laser (DM-DFBL) self-delayed feedback with an optoelectronic oscillation loop is studied. Both numerical and experimental results show that the DM-DFBL’s dynamical states vary with changes in optical and electrical feedback intensities. In the self-delayed feedback, the DM-DFBL exhibits an evolutionary path from a chaos (CO) state to a period-one (P1) state and finally becomes a steady state with the decrease of optical feedback intensity. In the optoelectronic oscillation loop, the DM-DFBL generates a microwave frequency comb (MFC), a full-frequency oscillation, and a P1 state. Additionally, the dynamic state of the DM-DFBL can be disturbed, and the stability of the P1 state and the QP state can be enhanced when the optoelectronic oscillation loop is introduced. These conclusions contribute to the precise control of dynamic evolution. Full article
Show Figures

Figure 1

10 pages, 6739 KiB  
Article
High-Performance Microwave-Frequency Comb Generation Based on Directly Modulated Laser with Filtering Operations
by Qianyou Long, Yang Jiang, Jing Xu, Xiaohong Lan, Jinjian Feng, Jiancheng Yu, Yunkun Luo, Tingyi Jiang, Hui Zhang and Yu Wu
Photonics 2025, 12(5), 433; https://doi.org/10.3390/photonics12050433 - 30 Apr 2025
Viewed by 233
Abstract
In this paper, a scheme for generating high-quality tunable microwave-frequency combs (MFCs) is proposed. The proposed scheme is based on an initially non-flat MFC generated by a directly modulated laser operating in gain-switching status. Filtering operations are used to increase the flatness of [...] Read more.
In this paper, a scheme for generating high-quality tunable microwave-frequency combs (MFCs) is proposed. The proposed scheme is based on an initially non-flat MFC generated by a directly modulated laser operating in gain-switching status. Filtering operations are used to increase the flatness of the MFC. Concretely, by employing an optical bandpass filter and a two-tap negative-coefficient microwave photonic filter, the flatness of the MFC is significantly optimized. In the experiment, MFCs with adjustable comb spacing from 0.5 GHz to 1.6 GHz and bandwidths ranging from 0 to 26.5 GHz are generated. The flatness is better than ±2.5 dB for the MFC. The proposed scheme provides a simple, efficient, and high-performance solution for generating MFCs, making it a promising candidate for various applications requiring high-quality MFC sources. Full article
Show Figures

Figure 1

19 pages, 8444 KiB  
Review
Hybrid Photonic Integrated Circuits for Wireless Transceivers
by Tianwen Qian, Ben Schuler, Y. Durvasa Gupta, Milan Deumer, Efstathios Andrianopoulos, Nikolaos K. Lyras, Martin Kresse, Madeleine Weigel, Jakob Reck, Klara Mihov, Philipp Winklhofer, Csongor Keuer, Laurids von Emden, Marcel Amberg, Crispin Zawadzki, Moritz Kleinert, Simon Nellen, Davide de Felipe, Hercules Avramopoulos, Robert B. Kohlhaas, Norbert Keil and Martin Schelladd Show full author list remove Hide full author list
Photonics 2025, 12(4), 371; https://doi.org/10.3390/photonics12040371 - 12 Apr 2025
Viewed by 650
Abstract
Recent advancements in hybrid photonic integrated circuits (PICs) for wireless communications are reviewed, with a focus on innovations developed at Fraunhofer HHI. This work leverages hybrid integration technology, which combines indium phosphide (InP) active elements, silicon nitride (Si3N4) low-loss [...] Read more.
Recent advancements in hybrid photonic integrated circuits (PICs) for wireless communications are reviewed, with a focus on innovations developed at Fraunhofer HHI. This work leverages hybrid integration technology, which combines indium phosphide (InP) active elements, silicon nitride (Si3N4) low-loss waveguides, and high-efficient thermal-optical tunable polymers with micro-optical functions to achieve fully integrated wireless transceivers. Key contributions include (1) On-chip optical injection locking for generating phase-locked optical beat notes at 45 GHz, enabled by cascaded InP phase modulators and hybrid InP/polymer tunable lasers with a 3.8 GHz locking range. (2) Waveguide-integrated THz emitters and receivers, featuring photoconductive antennas (PCAs) with a 22× improved photoresponse compared to top-illuminated designs, alongside scalable 1 × 4 PIN-PD and PCA arrays for enhanced power and directivity. (3) Beam steering at 300 GHz using a polymer-based optical phased array (OPA) integrated with an InP antenna array, achieving continuous steering across 20° and a 10.6 dB increase in output power. (4) Demonstration of fully integrated hybrid wireless transceiver PICs combining InP, Si3N4, and polymer material platforms, validated through key component characterization, on-chip optical frequency comb generation, and coherent beat note generation at 45 GHz. These advancements result in compact form factors, reduced power consumption, and enhanced scalability, positioning PICs as an enabling technology for future high-speed wireless networks. Full article
(This article belongs to the Special Issue Advanced Technologies in Optical Wireless Communications)
Show Figures

Figure 1

11 pages, 2173 KiB  
Article
Optical Frequency Comb-Based 256-QAM WDM Coherent System with Digital Signal Processing Algorithm
by Babar Ali, Ghulam Murtaza, Hafiz Muhammad Bilal, Tariq Mahmood, Muhammad Rashid and Zaib Ullah
Chips 2025, 4(2), 16; https://doi.org/10.3390/chips4020016 - 10 Apr 2025
Viewed by 314
Abstract
This work presents a cost-effective optical frequency comb generator (CEOFCG) solution for generating multiple, equally spaced carriers in wavelength-division-multiplexing coherent optical fiber communication systems (WDM-COFCS). It enables the replacement of multiple laser sources with a single continuous-wave laser, eliminating the need for additional [...] Read more.
This work presents a cost-effective optical frequency comb generator (CEOFCG) solution for generating multiple, equally spaced carriers in wavelength-division-multiplexing coherent optical fiber communication systems (WDM-COFCS). It enables the replacement of multiple laser sources with a single continuous-wave laser, eliminating the need for additional amplification and filtering setups. The CEOFCG provides stable multicarrier spacing, broad phase coherence, and compatibility with advanced modulation formats, enhancing the performance of WDM-COFCS. Digital signal processing (DSP) techniques, including digital filtering, detection, and impairment compensation, contribute to high transmission and spectral efficiency (SE). The results demonstrate the potential of CEOFCG in achieving cost reduction, complexity reduction, high SE, and optimal utilization of optical fiber bandwidth, particularly in higher-order QAM-based COFCS. Full article
Show Figures

Figure 1

12 pages, 4080 KiB  
Article
Chaos Suppression in Optically Injected Semiconductor Lasers Through an Unequally Spaced Optical Frequency Comb
by Najm M. Al-Hosiny
Photonics 2025, 12(4), 357; https://doi.org/10.3390/photonics12040357 - 10 Apr 2025
Viewed by 307
Abstract
This study theoretically investigates the impact of comb spacing irregularity on the dynamics of optically injected semiconductor lasers using a rate equation model. Bifurcation analysis, time-domain simulations, spectral properties, and Mode Suppression Ratio (MSR) calculations reveal that equal spacing induces strong mode competition [...] Read more.
This study theoretically investigates the impact of comb spacing irregularity on the dynamics of optically injected semiconductor lasers using a rate equation model. Bifurcation analysis, time-domain simulations, spectral properties, and Mode Suppression Ratio (MSR) calculations reveal that equal spacing induces strong mode competition and chaos, while unequal spacing suppresses chaos and enhances stability. Interestingly, the Flipped comb exhibits similar behavior to the unequal comb, further supporting the conclusion that relative spacing—not spectral order—governs stability the Arbitrary combs, though lacking structured spacing, demonstrate intermediate suppression, indicating that breaking uniformity mitigates instability, but optimal spacing maximizes stabilization. Extending beyond previous studies on frequency comb injection, this work identifies spacing irregularity as a key mechanism for chaos control, offering new strategies for laser stabilization in optical communications and photonic integration. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

8 pages, 1555 KiB  
Communication
Tunable All-Fiber Femtosecond Electro-Optic Optical Frequency Comb Operating at 1.5 μm
by Aiguo Zhang, Ke Dai, Lin Huang, Liwen Sheng, Zhiming Liu, Yudong Cui, Xiang Hao and Yusheng Zhang
Photonics 2025, 12(4), 311; https://doi.org/10.3390/photonics12040311 - 28 Mar 2025
Viewed by 381
Abstract
We propose and demonstrate a tunable femtosecond electro-optic optical frequency comb by shaping a continuous-wave seed laser in an all-fiber configuration. The seed laser, operating at 1.5 μm, is first cascade-phase-modulated and subsequently de-chirped to generate low-contrast pulses of approximately 8 ps at [...] Read more.
We propose and demonstrate a tunable femtosecond electro-optic optical frequency comb by shaping a continuous-wave seed laser in an all-fiber configuration. The seed laser, operating at 1.5 μm, is first cascade-phase-modulated and subsequently de-chirped to generate low-contrast pulses of approximately 8 ps at a repetition rate of 5.95 GHz. These pulses are then refined into clean, high-quality picosecond pulses using a Mamyshev regenerator. The generated source is further amplified using an erbium–ytterbium-doped fiber amplifier operating in a highly nonlinear regime, yielding output pulses compressed to around 470 fs. Tunable continuously across a 5.7~6 GHz range with a 1 MHz resolution, the picosecond pulses undergo nonlinear propagation in the final amplification stage, leading to output pulses that can be further compressed to a few hundred femtoseconds. By using a tunable bandpass filter, the center wavelength and spectral bandwidth can be flexibly tuned. This system eliminates the need for mode-locked cavities, simplifying conventional ultrafast electro-optic combs by relying solely on phase modulation, while delivering femtosecond pulses at multiple-gigahertz repetition rates. Full article
(This article belongs to the Special Issue Advanced Lasers and Their Applications, 2nd Edition )
Show Figures

Figure 1

11 pages, 2797 KiB  
Communication
Generation of Flat Optical Frequency Comb Using Cascaded Electro-Optic Modulators
by Wei Lin, Bowen Zhu, Keqi Cao, Hang Yu, Xinyan Zhang, Jia Chen and Yu Liu
Photonics 2025, 12(3), 246; https://doi.org/10.3390/photonics12030246 - 10 Mar 2025
Viewed by 651
Abstract
Optical frequency combs have been widely used in spectrum analysis, coherent optical communication, and accurate distance measurement. We propose a straightforward method to improve the flatness of optical frequency combs. First, we derived the output of the optical signal for the configuration of [...] Read more.
Optical frequency combs have been widely used in spectrum analysis, coherent optical communication, and accurate distance measurement. We propose a straightforward method to improve the flatness of optical frequency combs. First, we derived the output of the optical signal for the configuration of a cascaded MZM and two PMs. Second, we identified the parameter value when the flatness was optimal after traversing different parameter spaces. The optimal flatness conditions could be automatically determined from an existing sample dataset by using neural networks and Bayesian optimization, which significantly reduced the calculation cost. Furthermore, a broad spectrum and low power consumption were also achieved. Finally, the generated optical frequency comb signal was divided into eight carriers with 50 GHz intervals, and the optical transmission system was verified by applying a 16-QAM modulation of 40 GBaud/s to each channel. The constellation diagram proved the feasibility of this optical comb generation scheme. Full article
(This article belongs to the Special Issue Optical and Photonic Devices: From Design to Nanofabrication)
Show Figures

Figure 1

12 pages, 2335 KiB  
Article
Theoretical and Experimental Analysis of Optical Frequency Combs Synchronized to a Microwave Reference Achieving 10−19-Level Additional Stability
by Xin Chen, Mingkun Li, Bingjie Rao, Xiguang Yang, Zhenyuan Hu, Ruifang Dong, Shougang Zhang and Pan Zhang
Photonics 2025, 12(3), 195; https://doi.org/10.3390/photonics12030195 - 25 Feb 2025
Viewed by 512
Abstract
This paper presents a combined theoretical and experimental method for noise suppression in the repetition frequency (fr) locking of erbium-doped fiber optical frequency combs (OFCs). This study proposed a novel mathematical model to bridge the noise relationship of fr [...] Read more.
This paper presents a combined theoretical and experimental method for noise suppression in the repetition frequency (fr) locking of erbium-doped fiber optical frequency combs (OFCs). This study proposed a novel mathematical model to bridge the noise relationship of fr between the free-running and locked modes, and analyzed this relationship from two perspectives: the additional phase noise and the frequency stability. In addition, to integrate theoretical modeling with experimental validation, this study designed fr locking strategy that uses a phase-locked loop (PLL) with PFD + PIID (a phase frequency detector and a proportional, first-order integer, second-order integer, first-order differential controller). Under synchronization of the fr with a microwave reference (REF), this study achieved OFC additional frequency stabilities of 2.81 × 10−15@1 s and 8.08 × 10−19@10,000 s at 200 MHz fundamental frequency locking and 4.25 × 10−16@1 s and 1.91 × 10−19@10,000 s at 1200 MHz harmonic locking. The simulated and experimental results are in good agreement, confirming the consistency of the theoretical model and experiment. This work provides a reliable theoretical model that can be used to predict stability for OFC locking and significantly improves the additional frequency stability of OFCs. Full article
(This article belongs to the Special Issue Advances in Dual-Comb Spectroscopy)
Show Figures

Figure 1

16 pages, 4586 KiB  
Article
Optically Referenced Microwave Generator with Attosecond-Level Timing Noise
by Lulu Yan, Jun Ruan, Pan Zhang, Bingjie Rao, Mingkun Li, Zhijing Du and Shougang Zhang
Photonics 2025, 12(2), 153; https://doi.org/10.3390/photonics12020153 - 13 Feb 2025
Viewed by 615
Abstract
Microwave sources based on ultrastable lasers and optical frequency combs (OFCs) exhibit ultralow phase noise and ultrahigh-frequency stability, which are important for many applications. Herein, we present a microwave source that is phase-locked to an ultrastable continuous-wave laser, with a relative frequency instability [...] Read more.
Microwave sources based on ultrastable lasers and optical frequency combs (OFCs) exhibit ultralow phase noise and ultrahigh-frequency stability, which are important for many applications. Herein, we present a microwave source that is phase-locked to an ultrastable continuous-wave laser, with a relative frequency instability of 7 × 1016 at 1 s. An Er:fiber-based OFC and an optic-to-electronic converter with low residual noise are employed to confer optical frequency stability on the 9.6 GHz microwave signal. Instead of using the normal cascaded Mach–Zehnder interferometer method, we developed a microwave regeneration method for converting optical pulses into microwave signals to further suppress the additional noise in the optic-to-electronic conversion process. The microwave regeneration method employs an optical-to-microwave phase detector based on a fiber-based Sagnac loop to produce the error signal between a 9.6 GHz dielectric resonator oscillator (DRO) and the OFC. The 9.6 GHz microwave (48th harmonic of the comb’s repetition rate) signal with the frequency stability of the ultrastable laser was achieved using a DRO that was phase-locked to the optical comb. Preliminary evaluations showed that the frequency instability of the frequency synthesizer from the optical to the 9.6 GHz microwave signal was approximately 2 × 1015 at 1 s, the phase noise was 106 dBc Hz−1 at 1 Hz, and the timing noise was approximately 9 as Hz−1/2 (phase noise approx. 125 dBc Hz−1). The 9.6 GHz signal from the photonic microwave source exhibited a short-term relative frequency instability of 2.1 × 1015 at 1 s, which is 1.5 times better than the previous results. Full article
(This article belongs to the Special Issue New Perspectives in Microwave Photonics)
Show Figures

Figure 1

8 pages, 2089 KiB  
Communication
Low-Noise Millimeter-Wave Down-Conversion Technology for Chip-Scaled Optical Clocks
by Shuai Li, Lulu Yan, Enrang Zheng, Zhijing Du, Jun Ruan and Shougang Zhang
Sensors 2025, 25(4), 1041; https://doi.org/10.3390/s25041041 - 10 Feb 2025
Viewed by 665
Abstract
This article reports on a millimeter-wave (MM-wave) signal down-conversion system with low phase noise for chip-scaled optical clocks. The system utilizes analog regenerative frequency division, low-noise fractional frequency division, and phase-locked frequency division techniques to down-convert a 100 GHz MM-wave signal to 100 [...] Read more.
This article reports on a millimeter-wave (MM-wave) signal down-conversion system with low phase noise for chip-scaled optical clocks. The system utilizes analog regenerative frequency division, low-noise fractional frequency division, and phase-locked frequency division techniques to down-convert a 100 GHz MM-wave signal to 100 MHz with phase noise of −117 dBc/Hz @100 Hz, −133 dBc/Hz @1 kHz, and 10 MHz with phase noise of −124 dBc/Hz @100 Hz and −143 dBc/Hz @1 kHz. The frequency stability of the signal down-converted to 100 MHz is 5.0 × 10−15 @ 1 s and 1.8 × 10−16 @ 1000 s, while the frequency stability of the 10 MHz signal is 5.7 × 10−14 @ 1 s and 5.9 × 10−16 @1000 s, both of which decrease to the 10−16 level at 10,000 s. This down-conversion system meets the frequency conversion requirements of state-of-the-art chip-based optical clocks and micro-cavity optical combs. Full article
Show Figures

Figure 1

16 pages, 4017 KiB  
Article
High-Performance Acousto-Optic Modulators for Improving the Recognition Accuracy of Weak Microwave Signals by Radio Frequency Identification Systems
by Weijia Zhang, Xueting Luo, Qiancheng Rao and Peng Jiang
Electronics 2025, 14(4), 658; https://doi.org/10.3390/electronics14040658 - 8 Feb 2025
Viewed by 601
Abstract
By leveraging the high sensitivity of acousto-optic modulators to microwave signals, their integration into RFID systems can significantly improve the detection of faint microwave signals. Traditional acousto-optic modulators, which use bidirectional uniform comb transducers (IDTs), suffer from a 50% microwave signal loss due [...] Read more.
By leveraging the high sensitivity of acousto-optic modulators to microwave signals, their integration into RFID systems can significantly improve the detection of faint microwave signals. Traditional acousto-optic modulators, which use bidirectional uniform comb transducers (IDTs), suffer from a 50% microwave signal loss due to the diffraction efficiency being less than 50%, complicating the accurate identification of already weak signals. This paper presents a solution to the 50% loss issue by replacing the IDT with a floating electrode unidirectional transducer (FEUDT), a key structure in detecting microwave signals. The resulting samples exhibited an optical waveguide insertion loss of 8.73 dB, a mode field diameter of 6.48 μm, an operating frequency of 141.2 MHz, and a diffraction efficiency of 61.72%, and required only 0.57 W of driving power. Comparative empirical tests with traditional transducers under identical conditions demonstrated that the FEUDT-based acousto-optic modulator surpassed the 50% diffraction efficiency limit of conventional modulators, which facilitated the detection of weak microwave signals. Full article
(This article belongs to the Special Issue RFID Applied to IoT Devices)
Show Figures

Graphical abstract

12 pages, 4233 KiB  
Article
Theoretical Investigation of Terahertz Spoof Surface-Plasmon-Polariton Devices Based on Ring Resonators
by Can Liu, Shenghao Gu, Mingming Sun, Ya Liu, Ying Zhang and Jiaguang Han
Photonics 2025, 12(1), 70; https://doi.org/10.3390/photonics12010070 - 15 Jan 2025
Viewed by 869
Abstract
Terahertz is one of the most promising technologies for high-speed communication and large-scale data transmission. As a classical optical component, ring resonators are extensively utilized in the design of band-pass and frequency-selective devices across various wavebands, owing to their unique characteristics, including optical [...] Read more.
Terahertz is one of the most promising technologies for high-speed communication and large-scale data transmission. As a classical optical component, ring resonators are extensively utilized in the design of band-pass and frequency-selective devices across various wavebands, owing to their unique characteristics, including optical comb generation, compactness, and low manufacturing cost. While substantial progress has been made in the study of ring resonators, their application in terahertz surface wave systems remains less than fully optimized. This paper presents several spoof surface plasmon polariton-based devices, which were realized using ring resonators at terahertz frequencies. The influence of both the radius of the ring resonator and the width of the waveguide coupling gap on the coupling coefficient are investigated. The band-stop filters based on the cascaded ring resonator exhibit a 0.005 THz broader frequency bandwidth compared to the single-ring resonator filter and achieve a minimum stopband attenuation of 28 dB. The add–drop multiplexers based on the asymmetric ring resonator enable selective surface wave outputs at different ports by rotating the ring resonator. The devices designed in this study offer valuable insights for the development of on-chip terahertz components. Full article
Show Figures

Figure 1

20 pages, 1163 KiB  
Review
The Challenges and Opportunities for Performance Enhancement in Resonant Fiber Optic Gyroscopes
by Sumathi Mahudapathi, Sumukh Nandan R, Gowrishankar R and Balaji Srinivasan
Sensors 2025, 25(1), 223; https://doi.org/10.3390/s25010223 - 3 Jan 2025
Viewed by 3655
Abstract
In the last decade, substantial progress has been made to improve the performance of optical gyroscopes for inertial navigation applications in terms of critical parameters such as bias stability, scale factor stability, and angular random walk (ARW). Specifically, resonant fiber optic gyroscopes (RFOGs) [...] Read more.
In the last decade, substantial progress has been made to improve the performance of optical gyroscopes for inertial navigation applications in terms of critical parameters such as bias stability, scale factor stability, and angular random walk (ARW). Specifically, resonant fiber optic gyroscopes (RFOGs) have emerged as a viable alternative to widely popular interferometric fiber optic gyroscopes (IFOGs). In a conventional RFOG, a single-wavelength laser source is used to generate counter-propagating waves in a ring resonator, for which the phase difference is measured in terms of the resonant frequency shift to obtain the rotation rate. However, the primary limitation of RFOG performance is the bias drift, which can be attributed to nonreciprocal effects such as Rayleigh backscattering, back-reflections, polarization instabilities, Kerr nonlinearity, and environmental fluctuations. In this paper, we review the challenges and opportunities of achieving performance enhancement in RFOGs. Full article
(This article belongs to the Special Issue Advances in Optical Fiber Sensors and Fiber Lasers)
Show Figures

Figure 1

Back to TopTop