Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (203)

Search Parameters:
Keywords = organosulfur compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4427 KB  
Article
Garlic-Derived Allicin Attenuates Parkinson’s Disease via PKA/p-CREB/BDNF/DAT Pathway Activation and Apoptotic Inhibition
by Wanchen Zeng, Yingkai Wang, Yang Liu, Xiaomin Liu and Zhongquan Qi
Molecules 2025, 30(15), 3265; https://doi.org/10.3390/molecules30153265 - 4 Aug 2025
Viewed by 481
Abstract
Allicin (ALC), a naturally occurring organosulfur compound derived from garlic (Allium sativum), exhibits potential neuroprotective properties. Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by degeneration of dopaminergic neurons and motor dysfunction. This study utilized bioinformatics and network pharmacology methods [...] Read more.
Allicin (ALC), a naturally occurring organosulfur compound derived from garlic (Allium sativum), exhibits potential neuroprotective properties. Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by degeneration of dopaminergic neurons and motor dysfunction. This study utilized bioinformatics and network pharmacology methods to predict the anti-PD mechanism of ALC and established in vivo and in vitro PD models using 6-hydroxydopamine (6-OHDA) for experimental verification. Network pharmacological analysis indicates that apoptosis regulation and the PKA/p-CREB/BDNF signaling pathway are closely related to the anti-PD effect of ALC, and protein kinase A (PKA) and dopamine transporter (DAT) are key molecular targets. The experimental results show that ALC administration can alleviate the cytotoxicity of SH-SY5Y induced by 6-OHDA and simultaneously improve the motor dysfunction and dopaminergic neuron loss in PD mice. In addition, ALC can also activate the PKA/p-CREB/BDNF signaling pathway and increase the DAT level in brain tissue, regulate the expression of BAX and Bcl-2, and reduce neuronal apoptosis. These results indicate that ALC can exert anti-PD effects by up-regulating the PKA/p-CREB/BDNF/DAT signaling pathway and inhibiting neuronal apoptosis, providing theoretical support for the application of ALC in PD. Full article
(This article belongs to the Topic Natural Products and Drug Discovery—2nd Edition)
Show Figures

Figure 1

23 pages, 3019 KB  
Review
Phase-Transfer Catalysis for Fuel Desulfurization
by Xun Zhang and Rui Wang
Catalysts 2025, 15(8), 724; https://doi.org/10.3390/catal15080724 - 30 Jul 2025
Viewed by 480
Abstract
This review surveys recent advances and emerging prospects in phase-transfer catalysis (PTC) for fuel desulfurization. In response to increasingly stringent environmental regulations, the removal of sulfur from transportation fuels has become imperative for curbing SOx emissions. Conventional hydrodesulfurization (HDS) operates under severe [...] Read more.
This review surveys recent advances and emerging prospects in phase-transfer catalysis (PTC) for fuel desulfurization. In response to increasingly stringent environmental regulations, the removal of sulfur from transportation fuels has become imperative for curbing SOx emissions. Conventional hydrodesulfurization (HDS) operates under severe temperature–pressure conditions and displays limited efficacy toward sterically hindered thiophenic compounds, motivating the exploration of non-hydrogen routes such as oxidative desulfurization (ODS). Within ODS, PTC offers distinctive benefits by shuttling reactants across immiscible phases, thereby enhancing reaction rates and selectivity. In particular, PTC enables efficient migration of organosulfur substrates from the hydrocarbon matrix into an aqueous phase where they are oxidized and subsequently extracted. The review first summarizes the deployment of classic PTC systems—quaternary ammonium salts, crown ethers, and related agents—in ODS operations and then delineates the underlying phase-transfer mechanisms, encompassing reaction-controlled, thermally triggered, photo-responsive, and pH-sensitive cycles. Attention is next directed to a new generation of catalysts, including quaternary-ammonium polyoxometalates, imidazolium-substituted polyoxometalates, and ionic-liquid-based hybrids. Their tailored architectures, catalytic performance, and mechanistic attributes are analyzed comprehensively. By incorporating multifunctional supports or rational structural modifications, these systems deliver superior desulfurization efficiency, product selectivity, and recyclability. Despite such progress, commercial deployment is hindered by the following outstanding issues: long-term catalyst durability, continuous-flow reactor design, and full life-cycle cost optimization. Future research should, therefore, focus on elucidating structure–performance relationships, translating batch protocols into robust continuous processes, and performing rigorous environmental and techno-economic assessments to accelerate the industrial adoption of PTC-enabled desulfurization. Full article
(This article belongs to the Special Issue Advanced Catalysis for Energy and a Sustainable Environment)
Show Figures

Figure 1

19 pages, 1292 KB  
Article
Enhancing Biomass Production and Biodesulfurization Efficiency of Rhodococcus qingshengii IGTS8: Evaluation of Batch, Repeated Batch and Fed-Batch Cultivation Techniques
by Konstantinos Dimos, Styliani Kalantzi, George Prasoulas, Panagiotis D. Gklekas, Olga Martzoukou, Dimitris G. Hatzinikolaou, Dimitris Kekos and Diomi Mamma
Appl. Sci. 2025, 15(15), 8349; https://doi.org/10.3390/app15158349 - 27 Jul 2025
Viewed by 469
Abstract
The batch, repeated batch and fed-batch cultivation strategies, in stirred tank bioreactors, were evaluated to maximize biomass production and the cells’ desulfurization activity (CDA) of Rhodococcus qingshengii IGTS8. The batch culture reached 2.62 g DCW/L biomass, with a productivity of 0.03 g DCW·L [...] Read more.
The batch, repeated batch and fed-batch cultivation strategies, in stirred tank bioreactors, were evaluated to maximize biomass production and the cells’ desulfurization activity (CDA) of Rhodococcus qingshengii IGTS8. The batch culture reached 2.62 g DCW/L biomass, with a productivity of 0.03 g DCW·L−1·h−1 and only 26% glycerol consumption. The repeated batch strategy reduced cultivation time during the first cycle, increasing biomass production by 15%, with 30% glycerol consumed and productivity 2.3 times higher than the batch process; however, subsequent cycles showed no further improvement. CDA peaked early in both modes but declined to 12–13 U/mg DCW by the end of the exponential growth phase. Fed-batch cultivation achieved 8.35 g DCW/L with 87% glycerol consumption, resulting in a threefold increase in volumetric productivity and a 1.7-fold higher specific growth rate compared with the batch mode. CDA remained stable during the fed-batch process and was approximately 40% higher compared with the batch and repeated batch processes. The fed-batch culture was used directly in a two-phase bubble column bioreactor for the desulfurization of dibenzothiophene (DBT), 4-methyl-dibenzothiophene (4-MDBT) and their mixture. The complete desulfurization of 1.4 mM DBT was achieved at a rate of 21.6 mmol DBT/kg DCW/h, while 0.9 mM 4-MDBT was fully converted but at a 2.5-fold lower rate. The simultaneous conversion of the DBT/4-MDBT mixture showed reduced efficiencies of 59.6% and 41.2%, respectively. Full article
Show Figures

Figure 1

15 pages, 1118 KB  
Article
Identification of Novel Bioactive Molecules in Black Chiloe’s Giant Garlic (Allium ampeloprasum L.) by Green Microwave-Assisted Extraction and Effect-Directed Analysis Using High-Performance Thin Layer Chromatography-Bioassay and Mass Spectrometry
by Joaquín Fernández-Martínez, David Arráez-Román, Darlene Peterssen, Gerald Zapata, Karem Henríquez-Aedo and Mario Aranda
Antioxidants 2025, 14(8), 913; https://doi.org/10.3390/antiox14080913 - 25 Jul 2025
Viewed by 455
Abstract
Black Chiloe’s giant garlic is a functional food produced by a mild Maillard reaction that contains relevant bioactive molecules like organosulfur compounds (OSCs) and (poly)phenols (PPs). Compared with raw garlic, black garlic has a higher content of PPs and S-allyl cysteine (SAC), a [...] Read more.
Black Chiloe’s giant garlic is a functional food produced by a mild Maillard reaction that contains relevant bioactive molecules like organosulfur compounds (OSCs) and (poly)phenols (PPs). Compared with raw garlic, black garlic has a higher content of PPs and S-allyl cysteine (SAC), a key OSC due to its bioactivities. The objective of the present work was to optimize by chemometric tools a green microwave-assisted extraction (MAE) of SAC and PPs present in black Chiloe’s giant garlic to detect and identify novel bioactive molecules with antioxidant and/or inhibitory activities over cyclooxygenase, α-glucosidase, and acetylcholinesterase enzymes. The MAE factors were optimized using a central composite design, establishing optimal PP and SAC yields at 67 °C, 0% ethanol, 12 min and 30 °C, 40% ethanol, 3 min, respectively. PP and SAC values were 9.19 ± 0.18 mg GAE/g DW and 2.55 ± 0.10 mg SAC/g DW. Applying effect-directed analysis using high-performance thin layer chromatography-bioassay and mass spectrometry, the bioactive molecules present in the MAE extract with antioxidant and inhibitory activities over cyclooxygenase, α-glucosidase, and acetylcholinesterase enzymes were identified as N-fructosyl-glutamyl-S-(1-propenyl)cysteine, N-fructosyl-glutamylphenylalanine, and Harmane. Full article
Show Figures

Figure 1

13 pages, 1022 KB  
Article
Fluorinated Analogs of Organosulfur Compounds from Garlic (Allium sativum): Synthesis and Chemistry
by Eric Block, Benjamin Bechand, Sivaji Gundala, Abith Vattekkatte and Kai Wang
Molecules 2025, 30(13), 2841; https://doi.org/10.3390/molecules30132841 - 2 Jul 2025
Viewed by 516
Abstract
We report the first syntheses—from commercially available 3-chloro-2-fluoroprop-1-ene (9)—of key garlic-derived compounds containing sp2-fluorine. We also report synthesis of fluoro-5,6-dihydrothiopyrans by trapping 2-fluorothioacrolein (15). Thus, difluoroallicin (12, S-(2-fluoro-2-propenyl) 2-fluoroprop-2-ene-1-sulfinothioate) is prepared by peracid oxidation [...] Read more.
We report the first syntheses—from commercially available 3-chloro-2-fluoroprop-1-ene (9)—of key garlic-derived compounds containing sp2-fluorine. We also report synthesis of fluoro-5,6-dihydrothiopyrans by trapping 2-fluorothioacrolein (15). Thus, difluoroallicin (12, S-(2-fluoro-2-propenyl) 2-fluoroprop-2-ene-1-sulfinothioate) is prepared by peracid oxidation of 1,2-bis(2-fluoro-2-propenyl)disulfane (11). S-2-Fluoro-2-propenyl-l-cysteine (2-fluorodeoxyalliin, 13), synthesized from cysteine and characterized by X-ray crystallography, is oxidized to its S-oxide, 2-fluoroalliin (22). The latter, with alliinase-containing powdered fresh garlic, gives a mixture of 12, allicin (1), and isomers of monofluoroallicin (23), indicating that 22 serves as a substrate for garlic alliinase. Upon heating, 12 generates transient 15, which dimerizes giving difluoro vinyl dithiins 6 and 7. Ethyl acrylate trapping of 15 affords 5- and 6-substituted 3-fluoro-5,6-dihydro-4H-thiopyrans (19 and 20). In 1,1,1,3,3,3-hexafluoro-2-propanol (HEFP) as solvent, 12 is converted into trifluoroajoene ((E,Z)-1-(2-fluoro-3-((2-fluoro-2-propenyl)sulfinyl)prop-1-en-1-yl)-2-(2-fluoro-2-propenyl)disulfane; 18). Liquid sulfur converts 11 to a (CH2=CFCH2)2Sn mixture (n = 4–15), characterized by UPLC-(Ag+)-coordination ion spray-mass spectrometry. Full article
Show Figures

Figure 1

19 pages, 3400 KB  
Article
Garlic Peel-Derived Phytochemicals Using GC-MS: Antioxidant, Anti-Inflammatory, and Anti-Apoptotic Effects in Ulcerative Colitis Rat Model
by Duaa A. Althumairy, Rasha Abu-Khudir, Afnan I. Alandanoosi and Gehan M. Badr
Pharmaceuticals 2025, 18(7), 969; https://doi.org/10.3390/ph18070969 - 27 Jun 2025
Viewed by 830
Abstract
Background/Objectives: Ulcerative colitis (UC) is a chronic, relapsing inflammatory bowel disease (IBD) that poses a significant gastroenterological challenge. Methods: This study investigates the protective effects of garlic peel extract (GPE) in a rat model of acetic acid (AA)-induced colitis. Rats received [...] Read more.
Background/Objectives: Ulcerative colitis (UC) is a chronic, relapsing inflammatory bowel disease (IBD) that poses a significant gastroenterological challenge. Methods: This study investigates the protective effects of garlic peel extract (GPE) in a rat model of acetic acid (AA)-induced colitis. Rats received oral GPE (100 mg/kg) for 14 days prior to AA administration, and this continued for 14 days post-induction. Results: GC-MS analysis of GPE identified several key phytochemicals, primarily methyl esters of fatty acids (62.47%), fatty acids (10.36%), fatty acid derivatives (6.75%), and vitamins (4.86%) as the major constituents. Other notable compounds included steroids, natural alcohols, organosulfur compounds, fatty aldehydes, carotenoids, sugars, and glucosinolates. GPE treatment significantly improved body weight and colon length. Biochemical analysis showed that GPE downregulated the levels of the pro-inflammatory cytokines interleukin-1 (IL-1), IL-6, IL-17, tumor necrosis factor-alpha (TNF-α), and nuclear factor-kappa B (NF-κB), compared to the colitis (AA) group. Additionally, GPE reduced the oxidative stress (OS) biomarkers, including myeloperoxidase (MPO) and malondialdehyde (MDA), as well as caspase-3, a marker for apoptosis. Furthermore, GPE treatment resulted in enhanced activities of the enzymatic antioxidants catalase (CAT) and superoxide dismutase (SOD), along with increased levels of the anti-inflammatory cytokine IL-10. These findings were supported by histological evidence. Conclusions: Collectively, GPE holds promise as a therapeutic strategy for UC, owing to its natural bioactive compounds and their potential synergistic anti-inflammatory, antioxidant, and anti-apoptotic effects. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

46 pages, 735 KB  
Review
Plant-Derived Phytobiotics as Emerging Alternatives to Antibiotics Against Foodborne Pathogens
by Kamila Rachwał and Klaudia Gustaw
Appl. Sci. 2025, 15(12), 6774; https://doi.org/10.3390/app15126774 - 16 Jun 2025
Cited by 1 | Viewed by 1417
Abstract
Growing consumer awareness of clean labels is driving demand for preservative-free products yet concerns about foodborne pathogens and microbiological safety remain significant. Plant-derived compounds with bioactive properties—phytobiotics—have emerged as promising alternatives or complements to conventional antimicrobial agents. This review discusses phytobiotics, including essential [...] Read more.
Growing consumer awareness of clean labels is driving demand for preservative-free products yet concerns about foodborne pathogens and microbiological safety remain significant. Plant-derived compounds with bioactive properties—phytobiotics—have emerged as promising alternatives or complements to conventional antimicrobial agents. This review discusses phytobiotics, including essential oils, polyphenols, alkaloids, and organosulfur compounds, highlighting their structural diversity and antimicrobial potential. Phytobiotics combat foodborne pathogens by disrupting cell structures, inhibiting biofilms and quorum sensing, and interfering with genetic and protein synthesis. Importantly, some phytobiotics exhibit synergistic effects when combined with antibiotics or other natural agents, enhancing overall antimicrobial efficacy. The impact of phytobiotics on the microbiota of food products and the gastrointestinal tract is also addressed, with attention to both beneficial modulation and possible unintended effects. Practical applications in food preservation and supplementation are analyzed, as well as challenges related to composition variability, stability, and interactions with food matrices. Nevertheless, modern technologies such as nanoencapsulation, complexation with polysaccharides, and advanced extraction methods are being developed to address these challenges and enhance the stability and bioavailability of phytobiotics. Continued investment in research and innovation is essential to fully harness the potential of phytobiotics in ensuring safe, natural, and sustainable food systems. Full article
(This article belongs to the Special Issue Advances in Food Safety and Microbial Control)
Show Figures

Figure 1

22 pages, 4812 KB  
Article
Inhibition of Triacylglycerol Accumulation and Oxidized Hydroperoxides in Hepatocytes by Allium cepa (Bulb)
by Dya Fita Dibwe, Saki Oba, Satomi Monde and Shu-Ping Hui
Antioxidants 2025, 14(6), 653; https://doi.org/10.3390/antiox14060653 - 29 May 2025
Viewed by 692
Abstract
Recent studies have demonstrated that dietary plant extracts can inhibit the development of lipid droplets (LDs) and oxidized LDs (oxLDs) in hepatic cells. These findings suggest that such extracts may be beneficial in combating metabolic dysfunction-associated fatty liver disease (MAFLD) and its more [...] Read more.
Recent studies have demonstrated that dietary plant extracts can inhibit the development of lipid droplets (LDs) and oxidized LDs (oxLDs) in hepatic cells. These findings suggest that such extracts may be beneficial in combating metabolic dysfunction-associated fatty liver disease (MAFLD) and its more advanced stage, metabolic dysfunction-associated steatohepatitis (MASH). We examined nine Allium extracts (ALs: AL1–9) to assess their capacity to decrease lipid droplet accumulation (LDA) and oxidative stress by suppressing lipid formation and oxidation in liver cells. Among the Allium extracts tested, AL6 exhibited significant inhibitory effects against LDA. Furthermore, we employed our lipidomic method to assess the accumulation and suppression of intracellular triacylglycerol (TAG) and oxidized TAG hydroperoxide [TG (OOH) n = 3] by AL6 in liver cells under oleic acid (OA) and linoleic acid (LA) loading conditions. These findings indicate that foods derived from Allium species prevent the formation of lipid droplets by decreasing intracellular lipids and lipid hydroperoxides in the hepatocytes. Analysis of the metabolome of bioactive lipid droplet accumulation inhibition (LDAI) AL6 using LC-MS/MS and 1D-NMR [1H, 13C, DEPT 90, and 135] techniques revealed that AL6 is primarily composed of carbohydrates, glucosidic metabolites, and organosulfur compounds, with small amounts of polyols, fatty acyls, small peptides, and amino acids. This implies that AL6 could be a valuable resource for developing functional foods and drug discovery targeting metabolic dysfunction-associated fatty liver disease (MAFLD)/metabolic dysfunction-associated steatohepatitis (MASH) and related disorders. Full article
(This article belongs to the Special Issue Potential Health Benefits of Dietary Antioxidants)
Show Figures

Figure 1

16 pages, 6103 KB  
Article
Volatile Flavor of Tricholoma matsutake from the Different Regions of China by Using GC×GC-TOF MS
by Yunli Feng, Shaoxiong Liu, Yuan Fang, Jianying Li, Ming Ma, Zhenfu Yang, Lue Shang, Xiang Guo, Rong Hua and Dafeng Sun
Foods 2025, 14(10), 1824; https://doi.org/10.3390/foods14101824 - 21 May 2025
Viewed by 642
Abstract
Two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOF MS) was employed to analyze the volatile flavor compounds (VOCs) of Tricholoma matsutake samples from six different geographical regions: CX (Chuxiong), DL (Dali), DQ (Diqing), JL (Yanji), SC (Xiaojin) and XZ (Linzhi). The result indicate [...] Read more.
Two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOF MS) was employed to analyze the volatile flavor compounds (VOCs) of Tricholoma matsutake samples from six different geographical regions: CX (Chuxiong), DL (Dali), DQ (Diqing), JL (Yanji), SC (Xiaojin) and XZ (Linzhi). The result indicate that a total of 2730 kinds of VOCs were identified from the fruiting bodies of six T. matsutake samples. The primary types of volatile organic compounds identified were 349 alcohols, 92 aldehydes, 146 carboxylic_acids, 311 esters, 742 organoheterocyclic compounds, 630 hydrocarbons, 381 ketones, 51 organic acids, and 28 derivatives and organosulfur compounds. Furthermore, PCA and PLS-DA analysis from the GC×GC-ToF-MS showed that samples from different regions could be distinguished by their VOCs. Network analysis revealed that 33 aroma compounds were identified as markers for distinguishing the samples from the six regions. The sensory attributes sweet, fruity, green, waxy, and floral were found to be more significant to the flavor profile of T. matsutake. 1-Nonanol, 2-Nonanone, Nonanoic acid, ethyl ester, 1-Undecanol, 2-Undecanone, Octanoic acid, ethyl ester, 2H-Pyran, and tetrahy-dro-4-methyl-2-(2-methyl-1-propenyl)- primarily contribute to the differences in the aroma characteristics among six T. matsutake samples. The results also provide a theoretical and practical foundation for the flavor compounds of these precious edible fungi in different regions. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

21 pages, 1526 KB  
Article
Strawberry Tree Fruit Residue as Carbon Source Towards Sustainable Fuel Biodesulfurization by Gordonia alkanivorans Strain 1B
by Susana M. Paixão, Tiago P. Silva, Francisco Salgado and Luís Alves
Molecules 2025, 30(10), 2137; https://doi.org/10.3390/molecules30102137 - 13 May 2025
Viewed by 515
Abstract
Biodesulfurization (BDS) is a clean technology that uses microorganisms to efficiently remove sulfur from recalcitrant organosulfur compounds present in fuels (fossil fuels or new-generation fuels resulting from pyrolysis and hydrothermal liquefaction). One of the limitations of this technology is the low desulfurization rates. [...] Read more.
Biodesulfurization (BDS) is a clean technology that uses microorganisms to efficiently remove sulfur from recalcitrant organosulfur compounds present in fuels (fossil fuels or new-generation fuels resulting from pyrolysis and hydrothermal liquefaction). One of the limitations of this technology is the low desulfurization rates. These result in the need for greater amounts of biocatalyst and lead to increased production costs. To mitigate this issue, several approaches have been pursued, such as the use of alternative carbon sources (C-sources) from agro-industrial waste streams or the co-production of high-added-value products by microorganisms. The main goal of this work is to assess the potential of strawberry tree fruit residue (STFr) as an alternative C-source for a BDS biorefinery using Gordonia alkanivorans strain 1B, a well-known desulfurizing bacterium with high biotechnological potential. Hence, the first step was to produce sugar-rich liquor from the STFr and employ it in shake-flask assays to evaluate the influence of different pretreatments (treatments with 1–4% activated charcoal for prior phenolics removal) on metabolic parameters and BDS rates. Afterwards, the liquor was used as the C-source in chemostat assays, compared to commercial sugars, to develop and optimize the use of STFr-liquor as a viable C-source towards cost-effective biocatalyst production. Moreover, the high-market-value bioproducts simultaneously produced during microbial growth were also evaluated. In this context, the best results, considering both the production of biocatalysts with BDS activity and simultaneous bioproduct production (carotenoids and gordofactin biosurfactant/bioemulsifier) were achieved when strain 1B was cultivated in a chemostat with untreated STFr-liquor (5.4 g/L fructose + glucose, 6:4 ratio) as the C-source and in a sulfur-free mineral-minimized culture medium at a dilution rate of 0.04 h−1. Cells from this steady-state culture (STFr L1) achieved the highest desulfurization with 250 mM of dibenzothiophene as a reference organosulfur compound, producing a maximum of ≈213 mM of 2-hydroxibyphenil (2-HBP) with a corresponding specific rate (q2-HBP) of 6.50 µmol/g(DCW)/h (where DCW = dry cell weight). This demonstrates the potential of STFr as a sustainable alternative C-source for the production of cost-effective biocatalysts without compromising BDS ability. Additionally, cells grown in STFr L1 also presented the highest production of added-value products (338 ± 15 µg/g(DCW) of carotenoids and 8 U/mL of gordofactin). These results open prospects for a future G. alkanivorans strain 1B biorefinery that integrates BDS, waste valorization, and the production of added-value products, contributing to the global economic viability of a BDS process and making BDS scale-up a reality in the near future. Full article
(This article belongs to the Special Issue Advances in Biomass Chemicals: Transformation and Valorization)
Show Figures

Graphical abstract

2 pages, 132 KB  
Retraction
RETRACTED: Block et al. Fluorinated Analogs of Organosulfur Compounds from Garlic (Allium sativum): Synthesis, Chemistry and Anti-Angiogenesis and Antithrombotic Studies. Molecules 2017, 22, 2081
by Eric Block, Benjamin Bechand, Sivaji Gundala, Abith Vattekkatte, Kai Wang, Shaymaa S. Mousa, Kavitha Godugu, Murat Yalcin and Shaker A. Mousa
Molecules 2025, 30(9), 2005; https://doi.org/10.3390/molecules30092005 - 30 Apr 2025
Viewed by 347
Abstract
The Journal retracts the article “Fluorinated Analogs of Organosulfur Compounds from Garlic (Allium sativum): Synthesis, Chemistry and Anti-Angiogenesis and Antithrombotic Studies” [...] Full article
16 pages, 1396 KB  
Review
Therapeutic Potential of Alpha-Lipoic Acid: Unraveling Its Role in Oxidative Stress and Inflammatory Conditions
by Aqsa Shahid, Khadeeja Nasir and Madhav Bhatia
Curr. Issues Mol. Biol. 2025, 47(5), 322; https://doi.org/10.3390/cimb47050322 - 30 Apr 2025
Viewed by 5359
Abstract
Alpha-lipoic acid (ALA) is an essential organosulfur compound with a wide range of therapeutic applications, particularly in conditions involving inflammation and oxidative stress. In this review, we describe our current understanding of the multifaceted role of ALA in several inflammatory diseases (acute pancreatitis, [...] Read more.
Alpha-lipoic acid (ALA) is an essential organosulfur compound with a wide range of therapeutic applications, particularly in conditions involving inflammation and oxidative stress. In this review, we describe our current understanding of the multifaceted role of ALA in several inflammatory diseases (acute pancreatitis, arthritis, osteoarthritis, asthma, and sepsis), cardiovascular disorders (CVDs), and neurological conditions. The dual redox nature of ALA, shared with its reduced form dihydrolipoic acid (DHLA), underpins its powerful antioxidant and anti-inflammatory properties, including reactive oxygen species scavenging, metal chelation, and the regeneration of endogenous antioxidants such as glutathione. A substantial body of evidence from preclinical and clinical studies suggests that ALA modulates the key signaling pathways involved in inflammation and cellular stress responses, making it a promising candidate for mitigating inflammation and its systemic consequences. Notably, we also discuss a novel perspective that attributes some of the therapeutic effects of ALA to its ability to release hydrogen sulfide (H2S), a gaseous signaling molecule. This mechanism may offer further insights into the efficacy of ALA in the treatment of several diseases. Together, these findings support the potential of ALA as a multifunctional agent for managing inflammatory and oxidative stress-related diseases. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Biology 2025)
Show Figures

Figure 1

9 pages, 1485 KB  
Article
Sulfide Oxidation to Sulfone Using Sodium Chlorite and Hydrochloric Acid in Organic Solvents
by Yuki Itabashi, Shuto Ogata, Tsuyoshi Inoue, Haruyasu Asahara and Kei Ohkubo
Molecules 2025, 30(9), 1912; https://doi.org/10.3390/molecules30091912 - 25 Apr 2025
Viewed by 1038
Abstract
Organosulfur compounds are appealing owing to the diverse oxidation states accessible by sulfur, allowing the precise adjustment of their properties. In this study, we report a practical oxidation method that converts sulfides to sulfones by generating chlorine dioxide in situ from sodium chlorite [...] Read more.
Organosulfur compounds are appealing owing to the diverse oxidation states accessible by sulfur, allowing the precise adjustment of their properties. In this study, we report a practical oxidation method that converts sulfides to sulfones by generating chlorine dioxide in situ from sodium chlorite (NaClO2) and hydrochloric acid (HCl) in organic solvents. Diphenyl sulfide was effectively oxidized to diphenyl sulfone in yields of up to 96% under optimized conditions, with high selectivity in ethyl acetate and acetonitrile solvents. The method is compatible with a wide range of substrates, including various aryl, benzyl, and alkyl sulfides, although reactivity diminishes with sterically hindered or electron-rich substrates. This scalable and environmentally friendly process overcomes challenges associated with aqueous oxidants, such as substrate solubility and side reactions, providing a robust alternative for sulfone synthesis. Full article
(This article belongs to the Special Issue Organosulfur and Organoselenium Chemistry II)
Show Figures

Figure 1

20 pages, 1867 KB  
Article
Aromatic and Nutritional Composition of Edible Flowers of Garden Garlic and Wild Leek
by Telmo Marcelo Zambrano Núñez, Adriana Margarita Morales Noriega, María Dolores García-Martínez and María Dolores Raigón Jiménez
Horticulturae 2025, 11(3), 323; https://doi.org/10.3390/horticulturae11030323 - 15 Mar 2025
Cited by 1 | Viewed by 1389
Abstract
Many of the flowers of ornamental and wild plants are edible. Flowers provide colors, flavors and textures to foods and serve as a potential source of bioactive compounds such as polyphenols, flavonoids and pigments, which exert a very high antioxidant activity. The cultivation [...] Read more.
Many of the flowers of ornamental and wild plants are edible. Flowers provide colors, flavors and textures to foods and serve as a potential source of bioactive compounds such as polyphenols, flavonoids and pigments, which exert a very high antioxidant activity. The cultivation of edible flowers is a production alternative that is on the rise. The main objective of this work has been to study the nutritional and aromatic value of garden garlic (Tulbaghia violacea) and wild leek (Allium ampeloprasum). The crops were carried out in the region of L’Horta Nord (Valencia, Spain), using organic production techniques. The proximate composition, antioxidant capacity, metal content and volatile fraction of the flowers were determined. The flowers of ornamental garlic and wild leek have been shown to be a source of fiber and even protein, with very low lipid content. There is no accumulation of heavy metals in these flowers. Organosulfur compounds are the chemical family of volatile components that predominate in these flowers, representing 98% of the volatile fraction of garden garlic flowers and 68.5% in wild leek flowers. The powerful antioxidant activity of the flowers studied and their relationship with a very significant aromatic fraction of sulfur components is well suited to the current trend of searching for natural and healthy foods with nutraceutical properties. It is recommended to continue studying the bioavailability of floral components and understand their effect on health, as well as organosulfur compounds for physiological functions. Full article
Show Figures

Figure 1

23 pages, 2874 KB  
Article
Phenotypic, Biochemical, and Molecular Diversity Within a Local Emblematic Greek Allium sativum L. Variety
by Anastasia Papadopoulou, Anastasia Boutsika, Francesco Reale, Silvia Carlin, Urska Vrhovsek, Eleftheria Deligiannidou, Aliki Xanthopoulou, Eirini Sarrou, Ioannis Ganopoulos and Ifigeneia Mellidou
Horticulturae 2025, 11(3), 304; https://doi.org/10.3390/horticulturae11030304 - 11 Mar 2025
Viewed by 814
Abstract
Garlic, an asexually propagated crop, exhibits significant variation in its commercial traits and bioactive compounds. Despite its horticultural significance, the genetic pool available for breeding strategies is limited. This study aimed to assess the existing diversity within a popular garlic landrace from the [...] Read more.
Garlic, an asexually propagated crop, exhibits significant variation in its commercial traits and bioactive compounds. Despite its horticultural significance, the genetic pool available for breeding strategies is limited. This study aimed to assess the existing diversity within a popular garlic landrace from the region of “Nea Vissa”, Evros, Greece, focusing on phenotypic, biochemical, and molecular variation. In particular, bulb morphology, nutritional content, and organosulfur profiles were evaluated, along with genetic characterization using simple sequence repeat (SSR) markers to analyze intra-specific genetic variation. Our results revealed three distinct genetic clusters with moderate to low intra-varietal diversity. Morphological and biochemical characterization showed significant intra-specific diversity in both bulb morphology and nutritional content. Solid-phase microextraction (SPME) coupled with gas chromatography–mass spectrometry (GC–MS) analysis identified key volatile compounds, including allyl methyl disulfide and trisulfide, 1,2-dithiacyclopentene, cis-1-propenyl propyl disulfide, and cis-1-propenyl methyl disulfide in high abundances, suggesting that these were the predominant compounds characterizing the population. Our findings could be implemented to further enhance key phytonutrients in the local garlic population through breeding programs, targeting clones with high nutritional value and improved flavor and supporting germplasm conservation and utilization. Full article
(This article belongs to the Section Protected Culture)
Show Figures

Figure 1

Back to TopTop