Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = out-of-plane seismic effects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
55 pages, 3852 KB  
Review
Review of the Influence of the Interaction Between In-Plane and Out-of-Plane Behaviors on the Seismic Response of Non-Framed Unreinforced Masonry Walls
by Amirhossein Ghezelbash, Jan G. Rots and Francesco Messali
Buildings 2025, 15(16), 2874; https://doi.org/10.3390/buildings15162874 - 14 Aug 2025
Cited by 1 | Viewed by 503
Abstract
This study reviews existing research on the effects of the interaction between in-plane (IP) and out-of-plane (OOP) behaviors on the seismic response of non-framed unreinforced masonry (URM) structures. During earthquakes, masonry buildings exhibit complex behaviors. First, walls may experience simultaneous IP and OOP [...] Read more.
This study reviews existing research on the effects of the interaction between in-plane (IP) and out-of-plane (OOP) behaviors on the seismic response of non-framed unreinforced masonry (URM) structures. During earthquakes, masonry buildings exhibit complex behaviors. First, walls may experience simultaneous IP and OOP actions, or pre-existing IP and OOP damage, deformation, or loads that can alter their unidirectional IP or OOP seismic response. Second, the IP and OOP action of one wall can affect the behavior of its intersecting walls. However, the effects of these behaviors, referred to as “direct IP-OOP interactions” and “Flange effects”, respectively, are often disregarded in design and assessment provisions. To address this gap, this study explores findings from experimental and numerical research conducted at the wall level currently available in the literature, identifying the nature of these interaction effects and the key parameters that affect their extent. The available body of work includes only a few experimental studies on interaction effects, whereas numerical investigations are more extensive. However, most numerical studies focus on how OOP pre-damage/deformation influences the IP behaviors (OOP/IP interactions) and the role of flanges in IP response (F/IP interactions), leaving significant gaps in understanding the effects of IP pre-damage/deformation on the OOP response (IP/OOP interactions) and the OOP response in the presence of flanges (F/OOP interactions). Among the parameters studied, boundary conditions, wall height-to-length aspect ratio, and vertical overburden are found to have the most significant influence on interaction effects because of their relevance for the IP and OOP failure mechanisms. Other parameters, such as the restriction of top uplift, the presence of openings, or changes in slenderness ratio, are not comprehensively studied, and the available data are insufficient for definitive conclusions. Methodologies available in the literature for extrapolating the findings observed at the wall level to building-level analyses are reviewed. The current predictive equations primarily address the effects of OOP pre-load and Flange effects on IP response. Furthermore, only a few macro-element models are proposed for cost-effective, large-scale building simulations. To bridge these gaps, future research must expand experimental investigations, develop more comprehensive design and assessment equations, and refine numerical modeling techniques for building-level applications. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

29 pages, 5942 KB  
Article
The Seismic Performance of Earthen Historical Buildings in Seismic-Prone Regions: The Church of Santo Tomás de Aquino in Rondocan as a Complex Example
by Elesban Nochebuena-Mora, Nuno Mendes, Matteo Salvalaggio and Paulo B. Lourenço
Appl. Sci. 2025, 15(13), 7624; https://doi.org/10.3390/app15137624 - 7 Jul 2025
Viewed by 703
Abstract
Adobe churches are representative of Andean architectural heritage, yet their structural vulnerability to seismic events remains a significant concern. This study evaluates the seismic performance of the 17th-century Church of Santo Tomás de Aquino in Rondocan, Peru, an adobe building that underwent conservation [...] Read more.
Adobe churches are representative of Andean architectural heritage, yet their structural vulnerability to seismic events remains a significant concern. This study evaluates the seismic performance of the 17th-century Church of Santo Tomás de Aquino in Rondocan, Peru, an adobe building that underwent conservation work in the late 1990s. The assessment combines in situ inspections and experimental testing with advanced nonlinear numerical modeling. A finite-element macro-model was developed and calibrated using sonic and ambient vibration tests to replicate the observed structural behavior. Nonlinear static (pushover) analyses were performed in the four principal directions to identify failure mechanisms and to evaluate seismic capacity using the Peruvian seismic code. Kinematic limit analyses were conducted to assess out-of-plane mechanisms using force- and displacement-based criteria. The results revealed critical vulnerabilities in the rear façade and lateral walls, particularly in terms of out-of-plane collapse, while the main façade exhibited a higher capacity but a brittle failure mode. This study illustrates the value of advanced numerical simulations, calibrated with field data, as effective tools for assessing seismic vulnerability in historic adobe buildings. The outcomes highlight the necessity of strengthening measures to balance life safety requirements with preservation goals. Full article
Show Figures

Figure 1

19 pages, 4332 KB  
Article
Numerical Simulation and Experimental Validation of Masonry Walls Strengthened with Stiff-Type Polyurea Under Seismic Loads
by Tae-Hee Lee, Jong-Wook Kim, Sangwon Lee and Jang-Ho Jay Kim
Appl. Sci. 2025, 15(12), 6912; https://doi.org/10.3390/app15126912 - 19 Jun 2025
Viewed by 494
Abstract
The deterioration of aging masonry structures poses significant challenges to structural safety, particularly under seismic loading. In response to the growing need for effective retrofitting solutions, stiff-type polyurea (STPU) has emerged as a promising material due to its high tensile strength, durability, and [...] Read more.
The deterioration of aging masonry structures poses significant challenges to structural safety, particularly under seismic loading. In response to the growing need for effective retrofitting solutions, stiff-type polyurea (STPU) has emerged as a promising material due to its high tensile strength, durability, and rapid application characteristics. This study investigates the seismic performance of masonry walls retrofitted with STPU through both shaking table tests and finite element analysis (FEA). Three types of specimens (non-strengthened, STPU-strengthened, and STPU + GFRP-strengthened walls) were subjected to out-of-plane seismic loading with additional mass loading to simulate real-world conditions. Experimental results demonstrated that STPU significantly improved the ductility and seismic resistance of masonry walls, with the STPU + GFRP hybrid system showing the highest performance. A simplified micro-model using ABAQUS successfully captured the primary failure modes and load-bearing behavior observed in the experiments. Furthermore, a parametric study on STPU thickness identified 2 mm as the most efficient thickness considering both strengthening effect and material economy. These findings confirm the effectiveness of STPU as a retrofitting material and demonstrate the reliability of the proposed numerical modeling approach in predicting the seismic response of retrofitted masonry structures. Full article
(This article belongs to the Special Issue Simplified Seismic Analysis of Complex Civil Structures)
Show Figures

Figure 1

14 pages, 2681 KB  
Article
An Investigation into the Impact of Time-Varying Non-Conservative Loads on the Seismic Stability of Concrete-Filled Steel-Tube Arch Bridges
by Xu Han, Bing Han, Yikuan He, Pengfei Li and Huibing Xie
Buildings 2024, 14(9), 2739; https://doi.org/10.3390/buildings14092739 - 31 Aug 2024
Cited by 1 | Viewed by 1491
Abstract
When the arch rib of the mid-bearing through and lower-bearing through arch bridges undergoes out-of-plane deformation, it is usually subject to the resilience force provided by the flexible hanger, which is known as the “non-conservative force effect” of the suspender. In contrast to [...] Read more.
When the arch rib of the mid-bearing through and lower-bearing through arch bridges undergoes out-of-plane deformation, it is usually subject to the resilience force provided by the flexible hanger, which is known as the “non-conservative force effect” of the suspender. In contrast to the static condition, in the dynamic scenario, the time-varying non-conservative force exerted by the flexible suspender becomes more complex due to dynamic changes in external load. Moreover, the difference in fundamental frequency and vibration period between the bridge system and arch rib may influence the stress distribution within the arch rib during ground motion. This paper investigates the impact of time-varying non-conservative forces on the dynamic stability of arch ribs in concrete-filled steel tube (CFST) bridges under seismic loads. Specifically, it examines the influence of different seismic waveforms, frequency disparities between bridge slabs and arch ribs, and suspender stiffness on the non-conservative effect. The results reveal significant disparities in the impact of non-conservative forces exerted by the suspender during seismic events with identical intensity but varying frequency characteristics. The influence of non-conservative forces on the dynamic stability of bridges escalates as deck stiffness increases, while it remains relatively unaffected by changes in suspender stiffness. Full article
Show Figures

Figure 1

25 pages, 51862 KB  
Article
Conservation Assessment of the Stone Blocks in the Northeast Corner of the Karnak Temples in Luxor, Egypt
by Abdelrhman Fahmy, Eduardo Molina-Piernas and Salvador Domínguez-Bella
Minerals 2024, 14(9), 890; https://doi.org/10.3390/min14090890 - 30 Aug 2024
Cited by 4 | Viewed by 3521
Abstract
The Karnak Temples complex, a monumental site dating back to approximately 1970 BC, faces significant preservation challenges due to a confluence of mechanical, environmental, and anthropogenic factors impacting its stone blocks. This study provides a comprehensive evaluation of the deterioration affecting the northeast [...] Read more.
The Karnak Temples complex, a monumental site dating back to approximately 1970 BC, faces significant preservation challenges due to a confluence of mechanical, environmental, and anthropogenic factors impacting its stone blocks. This study provides a comprehensive evaluation of the deterioration affecting the northeast corner of the complex, revealing that the primary forms of damage include split cracking and fracturing. Seismic activities have induced out-of-plane displacements, fractures, and chipping, while flooding has worsened structural instability through uplift and prolonged water exposure. Soil liquefaction and fluctuating groundwater levels have exacerbated the misalignment and embedding of stone blocks. Thermal stress and wind erosion have caused microstructural decay and surface degradation and contaminated water sources have led to salt weathering and chemical alterations. Multi-temporal satellite imagery has revealed the influence of vegetation, particularly invasive plant species, on physical and biochemical damage to the stone. This study utilized in situ assessments to document damage patterns and employed satellite imagery to assess environmental impacts, providing a multi-proxy approach to understanding the current state of the stone blocks. This analysis highlights the urgent need for a multi-faceted conservation strategy. Recommendations include constructing elevated platforms from durable materials to reduce soil and water contact, implementing non-invasive cleaning and consolidation techniques, and developing effective water management and contamination prevention measures. Restoration should focus on repairing severely affected blocks with historically accurate materials and establishing an open museum setting will enhance public engagement. Long-term preservation will benefit from regular monitoring using 3D scanning and a preventive conservation schedule. Future research should explore non-destructive testing and interdisciplinary collaboration to refine conservation strategies and ensure the sustained protection of this invaluable historical heritage. Full article
Show Figures

Figure 1

27 pages, 12841 KB  
Article
The Influence of the Aggregate Configuration on the Seismic Assessment of Unreinforced Masonry Buildings in Historic Urban Areas
by Valentina Cima, Valentina Tomei, Ernesto Grande and Maura Imbimbo
Sustainability 2024, 16(10), 4172; https://doi.org/10.3390/su16104172 - 16 May 2024
Cited by 6 | Viewed by 1421
Abstract
Unreinforced masonry (URM) buildings in historic urban areas of European countries are generally clustered in an aggregate configuration and are often characterized by façade walls mutually interconnected with adjacent ones. As a result, the seismic performance of buildings in an aggregate configuration can [...] Read more.
Unreinforced masonry (URM) buildings in historic urban areas of European countries are generally clustered in an aggregate configuration and are often characterized by façade walls mutually interconnected with adjacent ones. As a result, the seismic performance of buildings in an aggregate configuration can be affected by the mutual interaction between the adjacent units. This interaction, often called the aggregate effect, could significantly influence the level of the seismic vulnerability of URM buildings in aggregate configuration toward in-plane and out-of-plane mechanisms, the latter being the object of the present paper. Traditional methods for assessing the seismic vulnerability of URM buildings neglect the interactions between adjacent buildings, potentially underestimating the actual vulnerability. This study aims to derive fragility curves specific for UMR buildings in aggregate configuration and proposes an innovative methodology that introduces the aggregate effect into an analytical approach, previously developed by the authors for isolated URM buildings. The aggregate effect is modeled by accounting for the friction forces arising among adjacent facades during the development of out-of-plane overturning mechanisms by considering different scenarios, based on how façade walls interact with neighboring structures (e.g., whether they are connected to transverse and/or lateral coplanar ones). The proposed approach is applied to a real case study of an Italian historical center. The obtained results demonstrate that the aggregate effect significantly influences the fragility curves of URM buildings arranged in aggregate configurations. This highlights the importance of considering this effect and the usefulness of the proposed approach for large-scale assessments of seismic vulnerability in historic urban areas, contributing to sustainable disaster risk prevention. Full article
Show Figures

Figure 1

18 pages, 9579 KB  
Article
Simplified Model Study of Autoclaved Aerated Concrete Masonry Flexible Connection Infilled Frames with Basalt Fiber Grating Strips
by Xin Wang, Lihong Xiong and Zhuoxin Wang
Buildings 2024, 14(4), 1033; https://doi.org/10.3390/buildings14041033 - 8 Apr 2024
Cited by 1 | Viewed by 1582
Abstract
Infilled walls and frames typically employ closely spaced rigid connection, which, under seismic actions, can lead to adverse effects such as amplified seismic responses, overall torsion, and the formation of weak layers in the structure. Flexible connection isolating the infilled walls from the [...] Read more.
Infilled walls and frames typically employ closely spaced rigid connection, which, under seismic actions, can lead to adverse effects such as amplified seismic responses, overall torsion, and the formation of weak layers in the structure. Flexible connection isolating the infilled walls from the frames can effectively mitigate the adverse effects of rigid connections. In order to reduce the structural mass and seismic impacts, Autoclaved Aerated Concrete (AAC) masonry flexible connection infilled walls have been widely researched. However, most AAC masonry flexible connection infilled walls require complex process operations for AAC blocks, which is not conducive to practical applications in engineering. Therefore, an AAC flexible connection infilled wall with Basalt Fiber Grating (BFG) strips instead of steel bars, with simplified process operations, has been proposed. Existing finite element models for BFG strip-reinforced AAC masonry flexible connection infilled walls employ solid elements, which are difficult to apply to large-scale structural simulations; moreover, existing simplified models for flexible connection infilled walls cannot simulate out-of-plane loading. In this paper, based on homogenization methods, using simplified elements to simulate components, a simplified model for the BFG strip-reinforced AAC masonry flexible connection infilled frame is proposed. Utilizing this model, stress analyses under both in-plane and out-of-plane loading are conducted and compared with corresponding experimental results. The results indicate that the in-plane simplified model (ISM) fits well with the experimental results in terms of hysteresis curves, with similar relationships between stiffness degradation and strength attenuation. The displacement force curve of the out-of-plane simplified model (OSM) before reaching the peak load is in good agreement with the experimental results. The maximum plastic range of OSM is 5% smaller than the test results, and it can be considered that the plastic ranges of the two are comparable, manifesting the models’ capability to adequately manifest arching behavior. The simplified model enables simulation of out-of-plane loading and provides a new approach for modeling large-scale frame structures with flexible connection infilled wall. Full article
(This article belongs to the Special Issue Research on the Seismic Performance of Reinforced Concrete Structures)
Show Figures

Figure 1

26 pages, 10676 KB  
Article
Seismic Response of Reinforced-Concrete One-Storey Precast Industrial Buildings with Horizontal Cladding Panels
by Matija Gams, Gabrijela Starešinič and Tatjana Isaković
Buildings 2023, 13(10), 2519; https://doi.org/10.3390/buildings13102519 - 4 Oct 2023
Cited by 2 | Viewed by 1766
Abstract
An extensive parametric study of the seismic response of one-storey precast buildings with horizontal cladding panels frequently used in Central Europe was conducted to analyse the panels’ influence on the overall response of buildings and to find out if the panels can be [...] Read more.
An extensive parametric study of the seismic response of one-storey precast buildings with horizontal cladding panels frequently used in Central Europe was conducted to analyse the panels’ influence on the overall response of buildings and to find out if the panels can be considered non-structural elements when they are attached to the main building with the connections typically used in practice in Central Europe. The studied structural system consisted of reinforced concrete columns and beams connected by dowels. Horizontal cladding panels were attached to columns using one of the most frequently used isostatic fastening systems. The top connections provided out-of-plane stability, and the bottom connections supported the panel in the vertical direction. The parametric study was preceded by extensive experimental research, including cyclic tests on connections and full-scale shaking table tests of whole buildings. The results of experiments were used to reveal the basic response mechanisms of panels and connections and to develop, validate and calibrate numerical models employed in the parametric study presented herein. Fifteen generalised structures with different masses and heights were subjected to 30 accelerograms with two peak ground acceleration (PGA) intensities of 0.3 g and 0.5 g, corresponding to significant damage and near-collapse limit states. The effects of the construction imperfections in connections, the silicon sealant panel-to-panel connections and different types of connections of the bottom panel to the foundation were analysed. The crucial parameter influencing the response was the displacement capacity of the connections, which was considerably affected by the construction imperfections and, consequently, difficult to estimate. It has been observed that in some buildings, particularly in shorter structures with smaller mass, cladding panels can have a somewhat more notable influence on the overall response. However, in general, when the considered types of connections are used, the panels can be considered as non-structural elements, which do not importantly influence the response of the main building. Owing to structural imperfections and relatively short available gaps, the failure of the considered top connections and falling of the panels is very likely in the high seismicity regions. In the most adverse cases, it can occur even in the moderate seismicity regions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 6427 KB  
Review
Review of Out-of-Plane Strengthening Techniques of Unreinforced Masonry Walls
by Athanasia K. Thomoglou, P. Jagadesh and Maristella E. Voutetaki
Fibers 2023, 11(9), 78; https://doi.org/10.3390/fib11090078 - 19 Sep 2023
Cited by 17 | Viewed by 4158
Abstract
When a seismic load is applied horizontally or laterally on unreinforced masonry walls (URM), the walls behave in two different ways, viz., in-plane (IP) and out-of-plane (OoP). This review beneficially provides a literature overview of the most cited research papers on Scopus, and [...] Read more.
When a seismic load is applied horizontally or laterally on unreinforced masonry walls (URM), the walls behave in two different ways, viz., in-plane (IP) and out-of-plane (OoP). This review beneficially provides a literature overview of the most cited research papers on Scopus, and the database is evaluated with VOSviewer software for scientometric analysis. This review paper delves into the practical applications of various types of reinforcement for masonry walls, specifically focusing on four commonly used systems: externally bonded strengthening techniques using fiber-reinforced polymers (FRP), steel-reinforced grout (SRG), fabric-reinforced cementitious mortar (FRCM), and textile-reinforced mortars (TRM). The main objective of the paper is to explore the efficacy of these reinforcement techniques in strengthening masonry walls, and to provide a comprehensive overview of their respective advantages and limitations. A further detailed study of the extent of the literature is performed about the effect of the different strengthening systems on the mechanical properties of different categories of masonry walls like a cement block, stone, and clay brick are described and categorized. The efficiency of OoP strengthening can depend on various factors, such as the types of masonry units, the rendering mortar, the type of strengthening system, the bond between the different materials interfaces, the geometry of the wall, and the loading conditions. By utilizing the practical method of Dematel (Decision-making trial and evaluation laboratory) analysis, this review can delve deeply into the impact of various factors and precisely identify the crucial components of the cause-and-effect connection. The results indicate that the bond between material interfaces is the critical factor. This meticulous and structured review offers valuable perspectives for researchers and engineers, showcasing current research trends and presenting potential avenues for future exploration. Full article
Show Figures

Graphical abstract

30 pages, 33153 KB  
Article
Effect of Geometric Parameters on the Behavior of Eccentric RC Beam–Column Joints
by Mostafa A. Abdel-Latif, Amr A. Nassr, Wojciech Sumelka, Mohamed M. Mohamed, Aly G. Abd El-Shafi and Eslam Soliman
Buildings 2023, 13(8), 1980; https://doi.org/10.3390/buildings13081980 - 2 Aug 2023
Cited by 5 | Viewed by 2643
Abstract
Over the last century, the seismic behavior of reinforced concrete (RC) beam–column joints has drawn many researchers’ attention due to their complex stress state. Such joints should possess sufficient capacity and ductility to ensure integrity and safety when subjected to cyclic loading during [...] Read more.
Over the last century, the seismic behavior of reinforced concrete (RC) beam–column joints has drawn many researchers’ attention due to their complex stress state. Such joints should possess sufficient capacity and ductility to ensure integrity and safety when subjected to cyclic loading during seismic events. In the literature, while most studies have focused on the behavior of concentric beam–column joints, few studies investigated the response of eccentric beam–column joints, in which the beam’s centerline is offset from the centerline of the column. Recent earthquakes demonstrated severe damage in eccentric beam–column joints due to their brittle torsional behavior, which may threaten the ductility required for the overall structural performance. To investigate the effect of brittle failure on the strength, ductility, and stability of eccentric beam–column joints, nonlinear finite element (FE) models were developed and validated. The FE model was employed to study the effect of some geometric parameters on the global and local behaviors of beam–column joints, including the joint type (exterior and interior), the column aspect ratio, and the joint aspect ratio. The results show that the joint aspect ratio, which is the ratio of beam-to-column depth, has a predominant effect on the failure behavior of the joint. Additionally, the increase in column aspect ratio alters the failure mode from brittle joint shear failure to ductile beam-hinge, although there is an increase in the joint torsional moment. The current study also showed that interior joints exhibited a higher out-of-plane moment as well as more extensive column torsion cracks compared to exterior joints. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

57 pages, 18496 KB  
Article
Experimental Research Studies on Seismic Behaviour of Confined Masonry Structures: Current Status and Future Needs
by Juan Jose Pérez Gavilán Escalante, Svetlana Brzev, Eric Fernando Espinosa Cazarin, Sara Ganzerli, Daniel Quiun and Matthew T. Reiter
Buildings 2023, 13(7), 1776; https://doi.org/10.3390/buildings13071776 - 12 Jul 2023
Cited by 12 | Viewed by 6430
Abstract
Confined masonry (CM) is a construction system that consists of loadbearing masonry wall panels enclosed by vertical and horizontal reinforced concrete confining elements. The presence of these confining elements distinguishes CM from unreinforced masonry systems, and makes this technology suitable for building construction [...] Read more.
Confined masonry (CM) is a construction system that consists of loadbearing masonry wall panels enclosed by vertical and horizontal reinforced concrete confining elements. The presence of these confining elements distinguishes CM from unreinforced masonry systems, and makes this technology suitable for building construction in regions subject to intense seismic or wind activity. CM construction has been used in many countries and regions, and has performed well in past earthquakes. The purpose of this paper is to review experimental research studies related to the seismic in-plane and out-of-plane behaviour of CM structures. The authors identify the key design and construction parameters considered in previous research studies and perform statistical analyses to establish their influence on the seismic performance of CM walls. For the purposes of this study, the authors compiled databases of previous experimental studies on CM wall specimens, which were used for statistical analyses. Finally, the paper discusses research gaps and the need for future research studies that would contribute to the understanding of seismic behaviour and failure mechanisms of CM walls. Full article
(This article belongs to the Special Issue Seismic Behaviour of Reinforced and Confined Masonry Buildings)
Show Figures

Figure 1

28 pages, 10610 KB  
Article
A Practice-Oriented Proposal to Consider the Flange Effect in Equivalent Frame Modeling of Masonry Buildings
by Serena Cattari, Sara Alfano and Sergio Lagomarsino
Buildings 2023, 13(2), 462; https://doi.org/10.3390/buildings13020462 - 8 Feb 2023
Cited by 8 | Viewed by 2296
Abstract
This paper focuses on the so-called “flange effect” in unreinforced masonry buildings when the connection among walls is good, thus forming a 3D assembly of intersecting piers (with L-, C-, T-, or I-shaped cross-sections). Given the direction of the horizontal seismic action, the [...] Read more.
This paper focuses on the so-called “flange effect” in unreinforced masonry buildings when the connection among walls is good, thus forming a 3D assembly of intersecting piers (with L-, C-, T-, or I-shaped cross-sections). Given the direction of the horizontal seismic action, the presence of such flanges (the piers loaded out-of-plane) can influence the response of the in-plane loaded pier (the web) in terms of failure modes, maximum strength, and displacement capacity. Specific rules are proposed in codes to evaluate the effective width of the flange, for the in-plane verification of a single masonry wall. However, in the case of 3D equivalent frame (EF) modeling of the whole building, all the intersecting piers should be considered entirely, to model the response in both the orthogonal directions as well as the torsional behavior, but this may lead to overestimating the flange effect if a perfect connection is assumed. This paper investigates the capability of simulating the actual behavior in EF models by introducing an elastic shear connection at the intersection between two piers using an “equivalent beam”, coupling the nodes at the top of piers. A practice-oriented analytical formulation is proposed to calibrate such a flange effect on the basis of the geometric features and material properties of the web and the flange. Its reliability is tested at the scale of simple 3D assemblies and entire buildings as well. Finite element parametric analyses on masonry panels with symmetrical I- and T-shaped cross-sections have been performed to investigate the axial load redistribution between the flanges and the web and the consequent repercussion on the overall performance of the web. The results have proven that, after a calibration of the shear connection, the variation of axial force between the web and the flanges is correctly reproduced and the strength criteria for 2D panels provide reliable results. Finally, in the conclusions, some practical hints for simulating an imperfect wall-to-wall connection are also provided, since this case is relevant in historic masonry buildings, which are characterized by different masonry types, transformations over time, and already-cracked conditions. Full article
Show Figures

Figure 1

18 pages, 13129 KB  
Article
Numerical Model Calibration and a Parametric Study Based on the Out-Of-Plane Drift Capacity of Stone Masonry Walls
by Ibrahim Serkan Misir and Gokhan Yucel
Buildings 2023, 13(2), 437; https://doi.org/10.3390/buildings13020437 - 4 Feb 2023
Cited by 7 | Viewed by 2731
Abstract
Failure under seismic action generally occurs in the form of out-of-plane collapses of walls before reaching their in-plane strength in historical stone masonry buildings. Consistent finite element (FE) macro modeling has emerged as a need for use in seismic assessments of these walls. [...] Read more.
Failure under seismic action generally occurs in the form of out-of-plane collapses of walls before reaching their in-plane strength in historical stone masonry buildings. Consistent finite element (FE) macro modeling has emerged as a need for use in seismic assessments of these walls. This paper presents the numerical model calibration of U-shaped multi-leaf stone masonry wall specimens tested under ambient vibrations and out-of-plane (OOP) load reversals. The uncertain elastic parameters were obtained by manual calibration of the numerical models based on ambient vibration test (AVT) data of the specimens. To obtain nonlinear calibration parameters, static pushover analyses were performed on FE models simulating quasi-static tests. The calibrated numerical models matched well with the experimental results in terms of load–drift response and damage distribution. As a result, the modulus of elasticity and tensile and compressive degrading strength parameters of masonry walls were proposed. A parametric study was conducted to examine the effects of different materials and geometric properties (tensile strength, aspect ratio, slenderness ratio, and geometric scale) on the OOP behavior of stone masonry walls. A quite different strain distribution was obtained in the case of a large aspect ratio, while it was determined that the geometric scale had no effect on the strain distribution. Tensile strength was the dominant parameter affecting the load–drift response of the models. Within the presented work, a practical tool for out-of-plane seismic assessment has been proposed for the structures covered in this paper. Full article
(This article belongs to the Special Issue Seismic Vulnerability Analysis and Mitigation of Building Systems)
Show Figures

Graphical abstract

17 pages, 1981 KB  
Article
Optimal Design Formula for Tuned Mass Damper Based on an Analytical Solution of Interaction between Soil and Structure with Rigid Foundation Subjected to Plane SH-Waves
by Liguo Jin, Bowei Li, Siqi Lin and Guangning Li
Buildings 2023, 13(1), 17; https://doi.org/10.3390/buildings13010017 - 21 Dec 2022
Cited by 6 | Viewed by 6754
Abstract
The tuned mass damper (TMD) is widely used for vibration mitigation, especially in high-rise buildings where significant soil-structure interaction (SSI) effects are usually involved. This creates a need to consider SSI effects in TMD design. In this work, a novel design framework for [...] Read more.
The tuned mass damper (TMD) is widely used for vibration mitigation, especially in high-rise buildings where significant soil-structure interaction (SSI) effects are usually involved. This creates a need to consider SSI effects in TMD design. In this work, a novel design framework for TMD systems with SSI effects is proposed. For response evaluations, structure-TMD systems are modeled as a two-degrees-of-freedom (2DOF) system, standing on a rigid foundation and subject to out-of-plane SH seismic wave inputs in a homogeneous half-space. Closed-form analytical solutions of its displacement and acceleration responses are derived, and the H2-norm of the system transfer function is introduced to quantify the performances of TMDs. The TMD design problem is then formulated and solved by optimizing the performances. Considering that aspects other than response mitigation, e.g., strokes, damper device costs, etc., may be critical to TMD damping ratios, a design framework is developed by firstly making an informed selection on TMD damping ratios, and subsequently tuning TMD frequency ratios through calibrated formulae. In addition, TMD strokes versus TMD damping ratios are investigated to facilitate the determination of TMD damping ratios. A case study based on a real-existing building system is carried out to illustrate the application of the proposed design framework. The framework has proven to be highly efficient and effective and suitable to for use in practical engineering. Full article
Show Figures

Figure 1

27 pages, 15674 KB  
Article
A Method for the Definition of Emergency Rescue Routes Based on the Out-of-Plane Seismic Collapse of Masonry Infills in Reinforced-Concrete-Framed Buildings
by Mauro Francini, Sara Gaudio, Carolina Salvo, Fabio Mazza and Angelo Donnici
Sustainability 2022, 14(22), 15420; https://doi.org/10.3390/su142215420 - 20 Nov 2022
Viewed by 2487
Abstract
One of the main goals of disaster management planning is to ensure the effectiveness of the emergency measures when a hazard occurs. This happens only if the decision-makers use operational tools considering the structural characteristics of urban systems. Starting from these assumptions, the [...] Read more.
One of the main goals of disaster management planning is to ensure the effectiveness of the emergency measures when a hazard occurs. This happens only if the decision-makers use operational tools considering the structural characteristics of urban systems. Starting from these assumptions, the authors proposed an emergency management method based on the integrated work between two different scientific sectors, the urban planning and construction engineering sectors. The proposed method aims to evaluate the practicability of the strategic road network, as well as defining the emergency rescue routes based on the out-of-plane (OOP) seismic collapse of masonry infills (MIs) in reinforced concrete (RC)-framed buildings. The OOP failure of MIs is predicted according to an innovative MI macro-model. The authors test the method on a geographic area in the municipality of Gioia Tauro (Reggio Calabria, Italy). The results show that due to the collapse of MIs, the functionality of the strategic road network in emergency conditions can be compromised, causing losses of the urban systems’ performance. Based on the obtained results, the authors recommend that decision-makers use the proposed methodology to identify the vulnerable rescue paths and to locate the strategic infrastructure while spending the financial resources in a more effective way. Full article
Show Figures

Figure 1

Back to TopTop