Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = packed column bioreactor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1260 KB  
Article
Trichoderma harzianum Enzyme Production in Stirred Solid-State Bioreactors as a Strategy for Valorizing Water Hyacinth
by Nohemi López-Ramírez, Ernesto Favela-Torres, Tania Volke-Sepúlveda and Fernando Méndez-González
Waste 2025, 3(4), 30; https://doi.org/10.3390/waste3040030 - 25 Sep 2025
Abstract
Water hyacinth is an invasive weed that can valorize through the production of hydrolytic enzymes via solid-state culture. This study explores the application of Trichoderma harzianum in producing xylanases and endoglucanases on water hyacinth beds. Laboratory-scale packed-bed column bioreactors (PBCBs) with a capacity [...] Read more.
Water hyacinth is an invasive weed that can valorize through the production of hydrolytic enzymes via solid-state culture. This study explores the application of Trichoderma harzianum in producing xylanases and endoglucanases on water hyacinth beds. Laboratory-scale packed-bed column bioreactors (PBCBs) with a capacity of 8 grams of dry mass (gdm) were used to evaluate the effects of temperature (28–36 °C) and initial moisture content (65–80%) on microbial growth and enzyme production. High yields of biomass and enzymes were produced at 30 °C. Moreover, xylanase activity was enhanced in cultures with a moisture content of 65% (~71.24 U/gdm), and endoglucanase activity at 75–80% moisture (~20.13 U/gdm). The operational conditions identified for xylanase production were applied to 6 L bench-scale cross-flow internally stirred bioreactors, packed to 40% capacity with 450 gdm. Two stirring regimes were tested: intermittent and continuous. The results showed that continuous stirring promotes both microbial growth and xylanase activity. In fact, xylanase activity in continuous stirring conditions was comparable to that achieved in PBCBs. Consequently, continuous stirring enables a 56-fold increase in bioreactor capacity without compromising xylanase production. The approaches developed in this study can support the design of large-scale bioprocesses for the valorization of water hyacinth. Full article
Show Figures

Graphical abstract

10 pages, 727 KB  
Article
Continuous Primary Beer Fermentation with Yeast Immobilized in Alginate–Chitosan Microcapsules with a Liquid Core
by Vesela Shopska, Mina Dzhivoderova-Zarcheva and Georgi Kostov
Beverages 2024, 10(3), 87; https://doi.org/10.3390/beverages10030087 - 11 Sep 2024
Cited by 3 | Viewed by 2085
Abstract
The application of continuous fermentation with immobilized cells in brewing is a challenge because of problems with carrier selection and reactor design, which have economic impacts on the beer produced. Moreover, immobilization alters yeast physiology, which significantly affects beer flavor and aroma. Therefore, [...] Read more.
The application of continuous fermentation with immobilized cells in brewing is a challenge because of problems with carrier selection and reactor design, which have economic impacts on the beer produced. Moreover, immobilization alters yeast physiology, which significantly affects beer flavor and aroma. Therefore, the aim of this study was to investigate the feasibility of a continuous fermentation system, consisting of a packed bed column bioreactor, containing lager brewing yeast, immobilized in alginate–chitosan microcapsules with a liquid core, in the primary beer fermentation. The results showed that the system entered in a stationary mode on the 3rd day and worked stably in this mode for 6 days. The “green” beer was taken at every 24 h at the output of the reactor and used for secondary fermentation with the yeast cells leaked from the capsules during the primary fermentation. The extract consumption, ethanol production, and pH change during primary and secondary fermentation were investigated. Some of the secondary yeast metabolites such as vicinal diketones, higher alcohols, esters, and aldehydes in “green” and final beers were determined and it was found that the flavor profile of the final beer was comparable to two industrially produced Bulgarian beers. Full article
(This article belongs to the Section Malting, Brewing and Beer)
Show Figures

Figure 1

19 pages, 3626 KB  
Article
Sustainable Co-Production of Xylanase, Cellulase, and Pectinase through Agroindustrial Residue Valorization Using Solid-State Fermentation: A Techno-Economic Assessment
by Jazel Doménica Sosa-Martínez, Lourdes Morales-Oyervides, Julio Montañez, Juan Carlos Contreras-Esquivel, Nagamani Balagurusamy, Suresh Kumar Gadi and Ivan Salmerón
Sustainability 2024, 16(4), 1564; https://doi.org/10.3390/su16041564 - 13 Feb 2024
Cited by 8 | Viewed by 3548
Abstract
This work describes the evaluation of the solid-state fermentation (SSF) bioprocess utilizing brewery spent grain (BSG) and apple pomace (AP) as carbon sources and matrices for microorganism growth to produce xylanase, pectinase, and cellulase. The process was assessed at a larger scale by [...] Read more.
This work describes the evaluation of the solid-state fermentation (SSF) bioprocess utilizing brewery spent grain (BSG) and apple pomace (AP) as carbon sources and matrices for microorganism growth to produce xylanase, pectinase, and cellulase. The process was assessed at a larger scale by designing a packed column-type bioreactor equipped with sensors for monitoring critical parameters such as CO2 concentration, humidity, and temperature. Then, process simulation was used to evaluate the techno-economic feasibility of the bioprocess at an industrial scale. The analysis centered on evaluating which formulation, primarily containing xylanase (scenario 1), pectinase (scenario 2), or cellulase (scenario 3), yielded the most promising results for advancing to the commercial stage. Additionally, a sensitivity analysis was conducted to explore the influence of variations in raw material costs and enzyme prices. The obtained results at a higher scale were within the expected results obtained under optimum conditions. Scenario 1 exhibited strong economic viability with further optimization potential (base case: 5000 kg/batch with an ROI of 37.59%, payback time of 2.66 years, IRR of 26.8%, and net present value of USD 7,325,537). The sensitivity analysis revealed that changes in enzyme prices, particularly xylanase, could significantly influence the process’s profitability. This study also demonstrated the potential for cost optimization by selecting a more cost-effective inoculum media and optimizing water usage to enhance process efficiency and sustainability. Full article
Show Figures

Figure 1

17 pages, 4648 KB  
Article
Microbial Enhancement of Selenium Removal in Chemically Modified Zeolite Columns
by Herath Mudiyanselage Ishani P. Kulasekara, Yanyan Zhang and Charalambos Papelis
Water 2023, 15(10), 1837; https://doi.org/10.3390/w15101837 - 11 May 2023
Cited by 6 | Viewed by 2859
Abstract
Selenium (Se) is an essential micro-nutrient for living organisms, but elevated concentrations in water can adversely affect health. In this research, we investigate the removal of selenium oxyanions (selenate and selenite) in aqueous systems by integration of adsorption on modified zeolites and microbial [...] Read more.
Selenium (Se) is an essential micro-nutrient for living organisms, but elevated concentrations in water can adversely affect health. In this research, we investigate the removal of selenium oxyanions (selenate and selenite) in aqueous systems by integration of adsorption on modified zeolites and microbial reduction. Dynamic sorption-reduction experiments were conducted using two sets of zeolite columns for the removal of selenite and selenate oxyanions, respectively. In each case, one column was fully packed with natural, unmodified zeolites, while the other column was composed of 80% natural and 20% iron-coated zeolites, by mass. The initial selenium concentration, selenite (SeIV) or selenate (SeVI), was 790 μg/L, the pH was 7.5, and the flow rate was 3 mL/min. Initially, as expected, the higher selenate removal (34%) was observed with coated zeolite, twice as high compared to the results with unmodified zeolite. Maximum selenite removal was 89% in the column with modified zeolite. Within approximately 14 days, as the biofilm developed inside the columns, selenium reduction in all four columns reached approximately 99%. Biofilm microbial community composition, assessed by 16S rRNA sequencing, is consistent with the presence of mainly selenium-reducing bacteria (Veillonella, Bacteroides, and Escherichia). Selenium oxyanions were reduced to elemental selenium, visible within the bioreactors as red-color aggregates. Full article
Show Figures

Figure 1

16 pages, 16519 KB  
Article
Removal of a Mixture of Seven Volatile Organic Compounds (VOCs) Using an Industrial Pilot-Scale Process Combining Absorption in Silicone Oil and Biological Regeneration in a Two-Phase Partitioning Bioreactor (TPPB)
by Margaux Lhuissier, Annabelle Couvert, Patrick Dabert, Abdeltif Amrane, Abdoulaye Kane, Jean-Luc Audic and Eric Dumont
Energies 2022, 15(13), 4576; https://doi.org/10.3390/en15134576 - 23 Jun 2022
Cited by 10 | Viewed by 2607
Abstract
The treatment of a synthetic polluted gas containing seven volatile organic compounds (VOCs) was studied using a pilot plant in real industrial conditions. The process combined VOC absorption in silicone oil (PolyDiMethylSiloxane, i.e., PDMS), a biological regeneration of the PDMS in a two-phase [...] Read more.
The treatment of a synthetic polluted gas containing seven volatile organic compounds (VOCs) was studied using a pilot plant in real industrial conditions. The process combined VOC absorption in silicone oil (PolyDiMethylSiloxane, i.e., PDMS), a biological regeneration of the PDMS in a two-phase partitioning bioreactor (TPPB), and a phase separation including settling and centrifugation. The TPPB was operated at a water/PDMS volume ratio of 75/25. The VOCs treatment performance was efficient during the entire test, corresponding to 10 PDMS regeneration cycles. The analysis of the content of the aqueous phase and PDMS confirmed that VOCs are progressively degraded until mineralization. The nitrogen consumption and the characterization of the microorganisms highlighted possible anoxic functioning of the biomass within the first decanter. Moreover, although the absorption and biodegradation performances were very satisfactory, the separation of all phases, essential for the PDMS recycling, was problematic due to the production of biosurfactants by the microorganisms, leading to the formation of a stable emulsion and foaming episodes. As a consequence, the packed column showed slight fouling. However, no significant increase in the pressure drop of the packed bed, as well as no significant impact on VOC absorption efficiency was observed. Full article
Show Figures

Graphical abstract

17 pages, 5065 KB  
Article
Continuous Bioethanol Production by Fungi and Yeast Working in Tandem
by Valeria Rahamim, Faina Nakonechny, Aharon Azagury and Marina Nisnevitch
Energies 2022, 15(12), 4338; https://doi.org/10.3390/en15124338 - 14 Jun 2022
Cited by 6 | Viewed by 4405
Abstract
Biofuel is considered one of the most viable alternatives to fossil fuels derived from the dwindling petroleum resources that damage the environment. Bioethanol could be manufactured from agricultural wastes, thus providing inexpensive natural resources. Several strategies have been utilized to convert lignocellulosic hydrolysate [...] Read more.
Biofuel is considered one of the most viable alternatives to fossil fuels derived from the dwindling petroleum resources that damage the environment. Bioethanol could be manufactured from agricultural wastes, thus providing inexpensive natural resources. Several strategies have been utilized to convert lignocellulosic hydrolysate to bioethanol with various suspended microorganisms. In this study, we alternatively propose to encapsulate these microorganisms in bioreactor setups. An immobilized cell system can provide resistance to the inhibitors present in hydrolysates, enhance productivity, facilitate the separation process, and improve microorganism recycling. Herein, we developed a continuous bioethanol production process by encapsulating three types of micro-organisms: T. reesei, S. cerevisiae, and P. stipitis. These microorganisms were encapsulated in SBP (“Small Bioreactor Platform”) capsules and tested for their viability post encapsulation, biological activity, and bioethanol production. Encapsulating microorganisms in SBP capsules provided a confined protective environment for the microorganisms, facilitated their acclimation, and ensured their long-term prosperity and activity. An additional significant benefit of utilizing SBP capsules was the simultaneous availability of saccharification and fermentation over a very long time—about 2.5–3 months—with no need to renew the cells or encapsulating matrices. Two different configurations were tested. The first one consisted of columns packed with fungal cells and specific yeast cells together. In the second configuration, the fungal cells were separated from the yeast cells into two columns in series. The presented systems achieved an efficiency of 60–70%, suggesting the long-term prosperity and uninterrupted metabolic activity of the microorganisms. Full article
(This article belongs to the Special Issue Biotechnological Processes for Biofuel Production)
Show Figures

Graphical abstract

13 pages, 1923 KB  
Article
Enhanced Microbial Oxidation–Neutralization Treatment of Acid Mine Drainage Rich in Ferrous Ions (Fe2+)
by Wenjie He, Haibo Li, Yin Xu, Feng Zhong, Hao Dong and Min Wang
Int. J. Environ. Res. Public Health 2022, 19(11), 6543; https://doi.org/10.3390/ijerph19116543 - 27 May 2022
Cited by 3 | Viewed by 2189
Abstract
In this work, a method of enhanced packed-bed microbial oxidation–neutralization has been employed to treat Fe2+-rich acid mine drainage. The method features the use of a large number of immobile Acidithiobacillus ferrooxidans (A. ferrooxidans) in a bioreactor to promote [...] Read more.
In this work, a method of enhanced packed-bed microbial oxidation–neutralization has been employed to treat Fe2+-rich acid mine drainage. The method features the use of a large number of immobile Acidithiobacillus ferrooxidans (A. ferrooxidans) in a bioreactor to promote the oxidation of Fe2+ to Fe3+. Results show that when the influent Fe2+ concentration is about 900 mg/L and the Fe2+ oxidation efficiency tends to 100%, the maximum oxidation rate of Fe2+ in the bio-ceramsite, bio-volcanic stone, and bio-activated carbon packed columns are 301 mg/(L·h), 234 mg/(L·h), and 139 mg/(L·h), respectively. Compared with the direct neutralization method, the enhanced microbial oxidation–neutralization method has several advantages. Firstly, it oxidizes Fe2+ to Fe3+, directly neutralizing the acid mine drainage at low pH and reducing the consumption of neutralizer. Secondly, more economical CaCO3 can be used as neutralizer. Thirdly, it produces precipitates with high solid content (5.50%), good settling performance (SV30 = 4%), and small volume, and the capillary suction time (CST) is 8.9 s, which is easy to dehydrate. Full article
(This article belongs to the Special Issue Water Pollution: Human Health and Ecological Risks)
Show Figures

Figure 1

12 pages, 1256 KB  
Article
Production of Citric Acid by Aspergillus niger Cultivated in Olive Mill Wastewater Using a Two-Stage Packed Column Bioreactor
by Muhannad I. Massadeh, Khalid Fandi, Hanan Al-Abeid, Othman Alsharafat and Khaled Abu-Elteen
Fermentation 2022, 8(4), 153; https://doi.org/10.3390/fermentation8040153 - 30 Mar 2022
Cited by 12 | Viewed by 8334
Abstract
For building a sustainable fermentation process, it is essential to reduce dependence on natural resources and lower the amount of pollution that is created. The reuse of agro-industrial wastewater after possible treatment leads to the achievement of these goals concurrently. This study investigates [...] Read more.
For building a sustainable fermentation process, it is essential to reduce dependence on natural resources and lower the amount of pollution that is created. The reuse of agro-industrial wastewater after possible treatment leads to the achievement of these goals concurrently. This study investigates the production of citric acid and the cellulase enzyme by A. niger cultivated in olive mill wastewater (OMW) using a loofa sponge-packed column bioreactor. The process was conducted under batch conditions using a single-stage packed bioreactor and under continuous operation using two-stage packed-column bioreactors. Citric acid and cellulase enzyme production were enhanced when the culture was supplied with cellulose. Employing loofa sponge slices for cell entrapment/immobilization improved the efficiency of the process. The maximum citric acid concentration achieved was 16 g/L with a yield (YCit.A/BOD) of 38.5% and a productivity of 2.5 g/L/day. When the process parameters were translated into continuous operation employing two loofa sponge-packed column bioreactors, citric acid production was improved significantly to 25 g/L in a steady-state period of 5 days at a production rate of 3.6 g/L/day and an allover yield (YCit.A/BOD) of 57.5%. Cellulases and reducing sugars were continuously supplied to the second-stage bioreactor by the first-stage bioreactor, which in turn enhanced fungal growth and citric acid production. Full article
(This article belongs to the Topic Bioreactors: Control, Optimization and Applications)
Show Figures

Figure 1

27 pages, 2752 KB  
Review
Multiscale Eulerian CFD of Chemical Processes: A Review
by Son Ich Ngo and Young-Il Lim
ChemEngineering 2020, 4(2), 23; https://doi.org/10.3390/chemengineering4020023 - 31 Mar 2020
Cited by 51 | Viewed by 9746
Abstract
This review covers the scope of multiscale computational fluid dynamics (CFD), laying the framework for studying hydrodynamics with and without chemical reactions in single and multiple phases regarded as continuum fluids. The molecular, coarse-grained particle, and meso-scale dynamics at the individual scale are [...] Read more.
This review covers the scope of multiscale computational fluid dynamics (CFD), laying the framework for studying hydrodynamics with and without chemical reactions in single and multiple phases regarded as continuum fluids. The molecular, coarse-grained particle, and meso-scale dynamics at the individual scale are excluded in this review. Scoping single-scale Eulerian CFD approaches, the necessity of multiscale CFD is highlighted. First, the Eulerian CFD theory, including the governing and turbulence equations, is described for single and multiple phases. The Reynolds-averaged Navier–Stokes (RANS)-based turbulence model such as the standard k-ε equation is briefly presented, which is commonly used for industrial flow conditions. Following the general CFD theories based on the first-principle laws, a multiscale CFD strategy interacting between micro- and macroscale domains is introduced. Next, the applications of single-scale CFD are presented for chemical and biological processes such as gas distributors, combustors, gas storage tanks, bioreactors, fuel cells, random- and structured-packing columns, gas-liquid bubble columns, and gas-solid and gas-liquid-solid fluidized beds. Several multiscale simulations coupled with Eulerian CFD are reported, focusing on the coupling strategy between two scales. Finally, challenges to multiscale CFD simulations are discussed. The need for experimental validation of CFD results is also presented to lay the groundwork for digital twins supported by CFD. This review culminates in conclusions and perspectives of multiscale CFD. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics (CFD) of Chemical Processes)
Show Figures

Figure 1

12 pages, 1524 KB  
Article
Evaluation of Biogas Biodesulfurization Using Different Packing Materials
by Samir Prioto Tayar, Renata de Bello Solcia Guerrero, Leticia Ferraresi Hidalgo and Denise Bevilaqua
ChemEngineering 2019, 3(1), 27; https://doi.org/10.3390/chemengineering3010027 - 8 Mar 2019
Cited by 18 | Viewed by 3826
Abstract
The packing material selection for a bioreactor is an important factor to consider, since the characteristics of this material can directly affect the performance of the bioprocess, as well as the investment costs. Different types of low cost packing materials were studied in [...] Read more.
The packing material selection for a bioreactor is an important factor to consider, since the characteristics of this material can directly affect the performance of the bioprocess, as well as the investment costs. Different types of low cost packing materials were studied in columns to reduce the initial and operational costs of biogas biodesulfurization. The most prominent (PVC pieces from construction pipes) was applied in a bench-scale biotrickling filter to remove the H2S of the biogas from a real sewage treatment plant in Brazil, responsible for 90 thousand inhabitants. At the optimal experimental condition, the reactor presented a Removal Efficiency (RE) of up to 95.72% and Elimination Capacity (EC) of 98 gS·m−3·h−1, similar to open pore polyurethane foam, the traditional material widely used for H2S removal. These results demonstrated the high potential of application of this packing material in a full scale considering the robustness of the system filled with this support, even when submitted to high sulfide concentration, fluctuations in H2S content in biogas, and temperature variations. Full article
(This article belongs to the Special Issue Advances in Biogas Desulfurization)
Show Figures

Figure 1

12 pages, 2832 KB  
Article
Continuous Packed Bed Reactor with Immobilized β-Galactosidase for Production of Galactooligosaccharides (GOS)
by Barbara Rodriguez-Colinas, Lucia Fernandez-Arrojo, Paloma Santos-Moriano, Antonio O. Ballesteros and Francisco J. Plou
Catalysts 2016, 6(12), 189; https://doi.org/10.3390/catal6120189 - 30 Nov 2016
Cited by 46 | Viewed by 10645
Abstract
The β-galactosidase from Bacillus circulans was covalently attached to aldehyde-activated (glyoxal) agarose beads and assayed for the continuous production of galactooligosaccharides (GOS) in a packed-bed reactor (PBR). The immobilization was fast (1 h) and the activity of the resulting biocatalyst was 97.4 U/g [...] Read more.
The β-galactosidase from Bacillus circulans was covalently attached to aldehyde-activated (glyoxal) agarose beads and assayed for the continuous production of galactooligosaccharides (GOS) in a packed-bed reactor (PBR). The immobilization was fast (1 h) and the activity of the resulting biocatalyst was 97.4 U/g measured with o-nitrophenyl-β-d-galactopyranoside (ONPG). The biocatalyst showed excellent operational stability in 14 successive 20 min reaction cycles at 45 °C in a batch reactor. A continuous process for GOS synthesis was operated for 213 h at 0.2 mL/min and 45 °C using 100 g/L of lactose as a feed solution. The efficiency of the PBR slightly decreased with time; however, the maximum GOS concentration (24.2 g/L) was obtained after 48 h of operation, which corresponded to 48.6% lactose conversion and thus to maximum transgalactosylation activity. HPAEC-PAD analysis showed that the two major GOS were the trisaccharide Gal-β(1→4)-Gal-β(1→4)-Glc and the tetrasaccharide Gal-β(1→4)-Gal-β(1→4)-Gal-β(1→4)-Glc. The PBR was also assessed in the production of GOS from milk as a feed solution. The stability of the bioreactor was satisfactory during the first 8 h of operation; after that, a decrease in the flow rate was observed, probably due to partial clogging of the column. This work represents a step forward in the continuous production of GOS employing fixed-bed reactors with immobilized β-galactosidases. Full article
(This article belongs to the Special Issue Immobilized Enzymes: Strategies for Enzyme Stabilization)
Show Figures

Graphical abstract

Back to TopTop