Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,617)

Search Parameters:
Keywords = particle dispersion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2652 KB  
Article
Preparation of Pt/xMnO2-CNTs Catalyst and Its Electrooxidation Performance in Methanol
by Guang Chen, Zhijun Teng, Hanqiao Xu and Hongwei Li
Catalysts 2025, 15(9), 864; https://doi.org/10.3390/catal15090864 (registering DOI) - 7 Sep 2025
Abstract
In this study, MnO2-CNTs composite support was prepared by citric acid reduction method, and then, Pt nanoparticles were loaded on the surface by ethylene glycol reduction method to obtain a series of Pt/xMnO2-CNTs catalysts. Structural characterization (TEM, XRD, HRTEM) [...] Read more.
In this study, MnO2-CNTs composite support was prepared by citric acid reduction method, and then, Pt nanoparticles were loaded on the surface by ethylene glycol reduction method to obtain a series of Pt/xMnO2-CNTs catalysts. Structural characterization (TEM, XRD, HRTEM) showed that Pt nanoparticles were uniformly dispersed on the surface of the catalyst with an average particle size of 3.6 nm. Electrochemical tests show that when the content of MnO2 is 20 wt.%, the Pt/20wt.%MnO2-CNTs catalyst has the best methanol oxidation performance, and its mass activity and long-term stability are 4.0 times and 5.41 times that of commercial Pt/C, respectively. The in situ FTIR results showed that MnO2 promoted the dissociation of water through synergistic effect, generated abundant OH species, accelerated the oxidation of CO intermediates, and inhibited the poisoning of Pt sites. In this study, it is clear that the excellent performance of Pt/xMnO2-CNTs is due to multiple synergistic effects. Modified carbon nanotubes facilitate proton conduction, Pt nanoparticles effectively activate methanol, and MnO2 modulates reaction intermediates via its bifunctional mechanism. This comprehensive mechanism understanding provides a theoretical basis for the design of high-performance catalysts for direct methanol fuel cells. Full article
Show Figures

Graphical abstract

23 pages, 13382 KB  
Article
Effects of Ion-Regulated Mechanisms on Calcite Precipitation in the Enzyme-Induced Carbonate Precipitation Treatment of Loess
by Xinwen Wang, Wenle Hu, Ke Chen and Weijing Wang
Buildings 2025, 15(17), 3222; https://doi.org/10.3390/buildings15173222 (registering DOI) - 7 Sep 2025
Abstract
This study examines the effects and mechanisms of different Enzyme-Induced Carbonate Precipitation (EICP) treatments on loess structure improvement. The study focuses on ordinary EICP and three modified methods using MgCl2, NH4Cl, and CaCl2. A series of unconfined [...] Read more.
This study examines the effects and mechanisms of different Enzyme-Induced Carbonate Precipitation (EICP) treatments on loess structure improvement. The study focuses on ordinary EICP and three modified methods using MgCl2, NH4Cl, and CaCl2. A series of unconfined compressive strength (UCS) tests, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and elemental mapping were used to assess both macroscopic performance and microscopic characteristics. The results indicate that ordinary EICP significantly enhances loess particle bonding by promoting calcite precipitation. MgCl2-modified EICP achieves the highest UCS (820 kPa) due to delayed urea hydrolysis and the formation of aragonite alongside calcite, which results in stronger and more continuous cementation. In contrast, NH4Cl reduces urease activity and reverses the reaction, which limits carbonate precipitation and weakens structural cohesion. Excessive CaCl2 leads to a “hijacking mechanism” where hydroxide ions form Ca(OH)2, restricting carbonate formation and diminishing the overall enhancement. This study highlights the mechanisms behind enhancement, degradation, and diversion in the EICP process. It also provides theoretical support for optimizing loess subgrade reinforcement. However, challenges such as uneven permeability, environmental variability, and long-term durability must be addressed before field-scale applications can be realized, necessitating further research. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

16 pages, 10602 KB  
Article
Effect of Ultra-Small Platinum Single-Atom Additives on Photocatalytic Activity of the CuOx-Dark TiO2 System in HER
by Elena D. Fakhrutdinova, Olesia A. Gorbina, Olga V. Vodyankina, Sergei A. Kulinich and Valery A. Svetlichnyi
Nanomaterials 2025, 15(17), 1378; https://doi.org/10.3390/nano15171378 (registering DOI) - 6 Sep 2025
Abstract
Improving the efficiency of photocatalysts for hydrogen production while minimizing the amount of noble metals used is a pressing issue in modern green energy. This study examines the effect of ultra-small Pt additives on increasing the efficiency of the CuOx-dark TiO [...] Read more.
Improving the efficiency of photocatalysts for hydrogen production while minimizing the amount of noble metals used is a pressing issue in modern green energy. This study examines the effect of ultra-small Pt additives on increasing the efficiency of the CuOx-dark TiO2 photocatalyst used in the hydrogen evolution reaction (HER). Initially, Pt was photoreduced from the hydroxonitrate complex (Me4N)2[Pt2(OH)2(NO3)8] onto the surface of nanodispersed CuOx powder obtained by pulsed laser ablation. Then, the obtained Pt-CuOx particles were dispersed on the surface of highly defective dark TiO2, so that the mass content of Pt in the samples varied in the range from 1.25 × 10−5 to 10−4. The prepared samples were examined using HRTEM, XRD, XPS, and UV-Vis DRS methods. It has been established that in the Pt-CuOx particles, platinum is mainly present in the form of single atoms (SAs), both as Pt2+ (predominantly) and Pt4+ species, which should facilitate electron transfer and contribute to the manifestation of the strong metal–support interaction (SMSI) effect between SA Ptn+ and CuOx. In turn, in the Pt-CuOx-dark TiO2 samples, surface defects (Ov) and surface OH groups on dark TiO2 particles act as “anchors”, promoting the spontaneous dispersion of CuOx in the form of sub-nanometer clusters with the reduction of Cu2+ to Cu1+ when localized near such Ov defects. During photocatalytic HER in aqueous glycerol solutions, irradiation was found to initiate a large number of catalytically active Pt0-CuOx-Ov-dark TiO2 centers, where the SMSI effect causes electron transfer from titania to SA Pt, thus promoting better separation of photogenerated charges. As a result, ultra-small additives of Pt led to up to a 1.34-fold increase in the amount of released hydrogen, while the maximum apparent quantum yield (AQY) reached 65%. Full article
Show Figures

Figure 1

13 pages, 4027 KB  
Article
Influence of Geological Origin on the Physicochemical Characteristics of Sepiolites
by Leticia Lescano, Silvina A. Marfil, Luciana A. Castillo and Silvia E. Barbosa
Minerals 2025, 15(9), 950; https://doi.org/10.3390/min15090950 - 5 Sep 2025
Viewed by 16
Abstract
In this study the influence of the geological formation environment on the physicochemical properties of two natural sepiolites, as collected, was investigated. The samples analyzed were a lacustrine-derived sample from Tolsa, Spain (ST), and a hydrothermal-derived sample from La Adela, Argentine (SA). Comprehensive [...] Read more.
In this study the influence of the geological formation environment on the physicochemical properties of two natural sepiolites, as collected, was investigated. The samples analyzed were a lacustrine-derived sample from Tolsa, Spain (ST), and a hydrothermal-derived sample from La Adela, Argentine (SA). Comprehensive characterization was carried out using chemical analysis (XRF), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and evaluations of hydrophobicity/hydrophilicity behavior. The results indicate that the ST sample exhibits a higher SiO2/MgO ratio and contains amorphous silica impurities, while the SA sample shows a composition more closely aligned with the theoretical stoichiometry of sepiolite. Furthermore, the SA sample demonstrates greater crystallinity compared to the ST sample. Morphological analysis revealed that ST consists of compact, aggregated fibrous structures, while SA is composed of disaggregated, needle-like fibers with high aspect ratios and nanometric diameters. Both samples display predominantly hydrophilic behavior; however, only the SA sample exhibits suspended particles at the interface, suggesting a slightly higher hydrophobic character than ST sample. These findings highlight the significant impact of the geological formation environment on the structural and surface characteristics of sepiolite, which, in turn, influence its performance in applications involving dispersion, adsorption, and interfacial interactions. Full article
Show Figures

Graphical abstract

19 pages, 4127 KB  
Article
Parametric Study on Effective Thermal Conductivity of Dispersed Disks with Internal Heat Sources
by Yuhao Liu, Tianchen Qiu and Jun Sun
Energies 2025, 18(17), 4719; https://doi.org/10.3390/en18174719 - 4 Sep 2025
Viewed by 140
Abstract
Composite materials are widely used in various fields due to their superior properties. Given their complex internal structures, they are often modeled as homogeneous materials in engineering applications to simplify temperature distribution analysis. The key parameter in this approach is effective thermal conductivity [...] Read more.
Composite materials are widely used in various fields due to their superior properties. Given their complex internal structures, they are often modeled as homogeneous materials in engineering applications to simplify temperature distribution analysis. The key parameter in this approach is effective thermal conductivity (ETC). Conventional ETC models, based on Fourier’s law or the effective field approach, tend to underestimate temperatures when applied to composites containing internal heat sources, such as nuclear fuels. Preliminary studies have been conducted on ETC models for composite plates and particle-dispersed spheres with internal heat sources, using average temperature as the conserved quantity instead of the heat flux. This study focuses on dispersed disks containing internal heat sources. The finite element method is used to calculate its average-temperature-based ETC. The influence of filler size, filling fraction, and component thermal conductivities on the ETC is analyzed. Additionally, the impact of internal heat sources on ETC is discussed based on the theoretical model for the ETC of a one-dimensional composite plate. This research enhances understanding of ETC in composites with internal heat sources, reveals the connection between conventional and temperature-based ETC models, and provides insights for developing an ETC model for dispersed disks. Full article
Show Figures

Figure 1

27 pages, 10300 KB  
Article
Investigation of Fenbendazole Solubility Using Particle Size Reduction Methods in the Presence of Soluplus®
by Amirhossein Karimi, Pedro Barea, Óscar Benito-Román, Beatriz Blanco, María Teresa Sanz, Clement L. Higginbotham and John G. Lyons
Pharmaceutics 2025, 17(9), 1163; https://doi.org/10.3390/pharmaceutics17091163 - 4 Sep 2025
Viewed by 264
Abstract
Background/Objectives: Fenbendazole is a potential cancer treatment and a proven antiparasitic in veterinary applications. However, its poor water solubility limits its application. In this study, potential fenbendazole solubility enhancement was investigated through size reduction methods. The effect of the presence of Soluplus [...] Read more.
Background/Objectives: Fenbendazole is a potential cancer treatment and a proven antiparasitic in veterinary applications. However, its poor water solubility limits its application. In this study, potential fenbendazole solubility enhancement was investigated through size reduction methods. The effect of the presence of Soluplus® on solubility was investigated as well. Methods: Solubility enhancement was explored using microfluidization and ultrasonication techniques. These techniques were applied to fenbendazole alone and in combination with Soluplus®. UV–Vis spectroscopy was used to determine solubility. Possible chemical reactions were checked using Fourier transform infrared spectroscopy (FT-IR). Differential scanning calorimetry (DSC) was conducted to analyze the physical structure and crystallinity of the samples. Scanning electron microscopy (SEM) was also utilized for characterization of the effect of the treated formulations and the size reduction method on morphology. The elements present in samples were identified with energy-dispersive X-ray spectroscopy (EDX) combined with SEM. A comparison of crystalline structure between the products was performed via X-ray powder diffraction (XRPD). Dynamic light scattering (DLS) was also used to measure the samples’ average particle size at different stages. Results: Both ultrasonication and microfluidization led to marginal increases in the solubility of neat fenbendazole. In contrast, formulations processed in the presence of Soluplus® demonstrated a greater enhancement in solubility. However, solubility improvement was not retained in the dried samples. The post-drying samples, irrespective of the presence of Soluplus®, showed nearly the same solubility as neat fenbendazole. Conclusions: Size-reduction methods, particularly when combined with Soluplus®, improved the solubility of fenbendazole. However, drying appeared to reverse these gains, regardless of the method used. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

12 pages, 1011 KB  
Article
Influence of Untreated and Microbially Degraded Mangrove Sediment Microplastics on Zebrafish (Danio rerio) Intestinal Histology and Immune and Antioxidant Biomarkers
by Xin-Yu Zheng, Wan Wei, Asim Muhammad, Min Zhang, Yan-Jun Chen, Jia-Hong Xie, Dan-Ju Kang and Jin-Jun Chen
Vet. Sci. 2025, 12(9), 854; https://doi.org/10.3390/vetsci12090854 - 4 Sep 2025
Viewed by 176
Abstract
MPs are pervasive pollutants in marine ecosystems, posing risks to aquatic organisms due to their small size and bioaccumulation potential. This study investigated the intestinal toxicity of MP particles extracted from mangrove sediments in zebrafish, comparing the effects before and after microbial [...] Read more.
MPs are pervasive pollutants in marine ecosystems, posing risks to aquatic organisms due to their small size and bioaccumulation potential. This study investigated the intestinal toxicity of MP particles extracted from mangrove sediments in zebrafish, comparing the effects before and after microbial degradation. Zebrafish were exposed to either undegraded MPs or microbially degraded MP extracts at concentrations of 0 (control), 2, 10, and 50 mg/L for 21 days in 10 L tanks (stocking density: 10 fish/L), with three replicate tanks per concentration. MPs were dispersed ultrasonically before addition to the water. Intestinal samples were collected on 7, 14, and 21 days for the analysis of immune response (tumor necrosis factor-alpha, TNF-α; interleukin-1 beta, IL-1β; interleukin-6, IL-6; interleukin-8, IL-8) and antioxidant activity (superoxide dismutase, SOD; catalase, CAT). Histopathological analysis revealed intestinal wall thinning, villus damage, and epithelial cell detachment in zebrafish exposed to both undegraded and degraded MP extracts; however, undegraded MPs induced more severe intestinal damage. Results indicated dynamic changes in cytokine expression: TNF-α decreased initially before increasing, while IL-1β and IL-8 first rose then declined. IL-6 peaked on day 7, dropped by day 14, and increased again on day 21. CAT expression decreased, whereas SOD increased only in the pre-degradation group. Microbial degradation reduced intestinal damage severity, with effects intensifying at higher MP exposure levels. These findings demonstrate that MPs can impair zebrafish digestive systems, but microbial degradation mitigates their toxicity. This study underscores the importance of biodegradation as a potential environmental remediation strategy and provides experimental evidence on MPs’ impact on aquatic organisms. Full article
(This article belongs to the Topic Recent Advances in Veterinary Pharmacology and Toxicology)
Show Figures

Figure 1

15 pages, 2419 KB  
Article
Development and 3D Printing of AESO-Based Composites Containing Olive Pit Powder
by Giovanna Colucci, Francesca Sacchi, Marta Checchi, Marianna Barbalinardo, Francesca Chiarini, Federica Bondioli, Carla Palumbo and Massimo Messori
J. Compos. Sci. 2025, 9(9), 479; https://doi.org/10.3390/jcs9090479 - 3 Sep 2025
Viewed by 234
Abstract
Bio-based polymeric composites were prepared by dispersing different amounts of olive pit (OP) powder within an acrylate epoxidized soybean oil (AESO) photocurable resin using tetrahydrofurfuryl acrylate (THFA) as diluent and (2,4,6-trimethylbenzoyl), phosphine oxide (BAPO) as photo-initiator, and they were photocured by Vat Photopolymerization [...] Read more.
Bio-based polymeric composites were prepared by dispersing different amounts of olive pit (OP) powder within an acrylate epoxidized soybean oil (AESO) photocurable resin using tetrahydrofurfuryl acrylate (THFA) as diluent and (2,4,6-trimethylbenzoyl), phosphine oxide (BAPO) as photo-initiator, and they were photocured by Vat Photopolymerization (VP) using a Liquid Crystal Display (LCD) 3D printer. Formulation viscosity was studied because of its important role in a VP process able to influence the printability of the final parts. Different 3D printed architectures were successfully realized with good resolution and accuracy, high level of detail, and flexibility. The effect of OP addition was investigated by thermal (TGA and DSC), morphological (SEM and PSD), viscoelastic (DMA), and mechanical (tensile testing) characterization. The filler led to an increase in the Tg, storage modulus, and tensile properties, underlining the stiffening effect induced by the OP particles onto the polymeric starting resin. This underlines the possibility to apply these bio-based composites in many application fields by valorizing agro-wastes, developing more sustainable materials, and taking advantages of VP 3D printing, such as low costs, minimal wastage, and customized geometry. Biocompatibility tests were also successfully carried out. The results clearly indicate that the AESO-based composites promote cell adhesion and viability. Full article
(This article belongs to the Special Issue Sustainable Polymer Composites: Waste Reutilization and Valorization)
Show Figures

Figure 1

18 pages, 1998 KB  
Article
Hybrid APF–PSO Algorithm for Regional Dynamic Formation of UAV Swarms
by Lei Zuo, Ying Wang, Yu Lu and Ruiwen Gu
Drones 2025, 9(9), 618; https://doi.org/10.3390/drones9090618 - 2 Sep 2025
Viewed by 219
Abstract
To address the challenges of dispersing aerial targets such as bird flocks at civilian airports and drones conducting low-altitude surveillance in critical areas, including ports and convention centers, this paper proposes a hybrid Artificial Potential Field-Particle Swarm Optimization (APF–PSO) algorithm. The proposed solution [...] Read more.
To address the challenges of dispersing aerial targets such as bird flocks at civilian airports and drones conducting low-altitude surveillance in critical areas, including ports and convention centers, this paper proposes a hybrid Artificial Potential Field-Particle Swarm Optimization (APF–PSO) algorithm. The proposed solution integrates the real-time collision-avoidance capability of the artificial potential field method with the global network-optimization characteristics of the particle swarm algorithm to maximize protective coverage. Simulation results demonstrate that the hybrid algorithm achieves optimal performance in dispersion of aerial targets based on protective coverage under safety constraints, confirming its superior performance. The key innovations lie in implementing a dynamic repulsion field with exponential gain for emergency maneuvers, introducing a vertical avoidance module to resolve deadlock issues, and establishing a novel decoupled cooperative paradigm for scalable aerial protection networks. Full article
(This article belongs to the Section Artificial Intelligence in Drones (AID))
Show Figures

Figure 1

27 pages, 5825 KB  
Article
A New One-Parameter Model by Extending Maxwell–Boltzmann Theory to Discrete Lifetime Modeling
by Ahmed Elshahhat, Hoda Rezk and Refah Alotaibi
Mathematics 2025, 13(17), 2803; https://doi.org/10.3390/math13172803 - 1 Sep 2025
Viewed by 230
Abstract
The Maxwell–Boltzmann (MB) distribution is fundamental in statistical physics, providing an exact description of particle speed or energy distributions. In this study, a discrete formulation derived via the survival function discretization technique extends the MB model’s theoretical strengths to realistically handle lifetime and [...] Read more.
The Maxwell–Boltzmann (MB) distribution is fundamental in statistical physics, providing an exact description of particle speed or energy distributions. In this study, a discrete formulation derived via the survival function discretization technique extends the MB model’s theoretical strengths to realistically handle lifetime and reliability data recorded in integer form, enabling accurate modeling under inherently discrete or censored observation schemes. The proposed discrete MB (DMB) model preserves the continuous MB’s flexibility in capturing diverse hazard rate shapes, while directly addressing the discrete and often censored nature of real-world lifetime and reliability data. Its formulation accommodates right-skewed, left-skewed, and symmetric probability mass functions with an inherently increasing hazard rate, enabling robust modeling of negatively skewed and monotonic-failure processes where competing discrete models underperform. We establish a comprehensive suite of distributional properties, including closed-form expressions for the probability mass, cumulative distribution, hazard functions, quantiles, raw moments, dispersion indices, and order statistics. For parameter estimation under Type-II censoring, we develop maximum likelihood, Bayesian, and bootstrap-based approaches and propose six distinct interval estimation methods encompassing frequentist, resampling, and Bayesian paradigms. Extensive Monte Carlo simulations systematically compare estimator performance across varying sample sizes, censoring levels, and prior structures, revealing the superiority of Bayesian–MCMC estimators with highest posterior density intervals in small- to moderate-sample regimes. Two genuine datasets—spanning engineering reliability and clinical survival contexts—demonstrate the DMB model’s superior goodness-of-fit and predictive accuracy over eleven competing discrete lifetime models. Full article
(This article belongs to the Special Issue New Advance in Applied Probability and Statistical Inference)
Show Figures

Figure 1

18 pages, 4331 KB  
Review
Research Progress on Laser Additive Manufacturing of Oxide Dispersion-Strengthened Alloys—A Review
by Qian Zheng, Yan Yin, Chao Lu, Xiaoli Cui, Yutong Gao, Heng Zhu, Zhong Li, Junwei Shi, Wenqing Shi and Di Tie
Materials 2025, 18(17), 4094; https://doi.org/10.3390/ma18174094 - 1 Sep 2025
Viewed by 366
Abstract
Oxide dispersion-strengthened (ODS) alloys are regarded as one of the most promising materials for Generation IV nuclear fission systems, owing to their exceptional attributes such as high strength, corrosion resistance, and irradiation tolerance. The traditional methods for fabricating oxide dispersion-strengthened (ODS) alloys are [...] Read more.
Oxide dispersion-strengthened (ODS) alloys are regarded as one of the most promising materials for Generation IV nuclear fission systems, owing to their exceptional attributes such as high strength, corrosion resistance, and irradiation tolerance. The traditional methods for fabricating oxide dispersion-strengthened (ODS) alloys are both time-consuming and costly. In contrast, additive manufacturing (AM) technologies enable precise control over material composition and geometric structure at the nanoscale, thereby enhancing the mechanical properties of components while reducing their weight. This novel approach offers significant advantages over conventional techniques, including reduced production costs, improved manufacturing efficiency, and more uniform distribution of oxide nanoparticles. This review begins by summarizing the state of the art in Fe-based and Ni-based ODS alloys fabricated via traditional routes. Subsequently, it examines recent progress in the AM of ODS alloys, including Fe-based, Ni-based, high-entropy alloys, and medium-entropy alloys, using powder bed fusion (PBF), directed energy deposition (DED), and wire arc additive manufacturing (WAAM). The microstructural characteristics, including oxide particle distribution, grain morphology, and alloy properties, are discussed in the context of different AM processes. Finally, critical challenges and future research directions for laser-based AM of ODS alloys are highlighted. Full article
Show Figures

Figure 1

18 pages, 3624 KB  
Article
Passive Droplet Generation in T-Junction Microchannel: Experiments and Lattice Boltzmann Simulations
by Xiang Li, Weiran Wu, Zhiqiang Dong, Yiming Wang and Peng Yu
Micromachines 2025, 16(9), 1011; https://doi.org/10.3390/mi16091011 - 31 Aug 2025
Viewed by 308
Abstract
The present study investigates passive microdroplet generation in a T-junction microchannel using microscopic observations, microscale particle image velocimetry (Micro-PIV) visualization, and lattice Boltzmann simulations. The key flow regimes, i.e., dripping, threading, and parallel flow, are characterized by analyzing the balance between hydrodynamic forces [...] Read more.
The present study investigates passive microdroplet generation in a T-junction microchannel using microscopic observations, microscale particle image velocimetry (Micro-PIV) visualization, and lattice Boltzmann simulations. The key flow regimes, i.e., dripping, threading, and parallel flow, are characterized by analyzing the balance between hydrodynamic forces and surface tension, revealing the critical role of the flow rate ratio of the continuous to dispersed fluids in regime transitions. Micro-PIV visualizes velocity fields and vortex structures during droplet formation, while a lattice Boltzmann model with wetting boundary conditions captures interface deformation and flow dynamics, showing good agreement with experiments in the dripping and threading regimes but discrepancies in the parallel flow regime due to neglected surface roughness. The present experimental results highlight non-monotonic trends in the maximum head interface and breakup positions of the dispersed fluid under various flow rates, reflecting the competition between the squeezing and shearing forces of the continuous fluid and the hydrodynamic and surface tension forces of the dispersed fluid. Quantitative analysis shows that the droplet size increases with the flow rate of continuous fluid but decreases with the flow rate of dispersed fluid, while generation frequency rises monotonically with the flow rate of dispersed fluid. The dimensionless droplet length correlates with the flow rate ratio, enabling tunable control over droplet size and flow regimes. This work enhances understanding of T-junction microdroplet generation mechanisms, offering insights for applications in precision biology, material fabrication, and drug delivery. Full article
(This article belongs to the Special Issue Flows in Micro- and Nano-Systems)
Show Figures

Figure 1

15 pages, 2193 KB  
Article
Room Temperature Surfactant-Free Synthesis of Cobalt-Doped CaMoO4 Nanoparticles: Structural and Microstructural Insights
by Said Abidi and Mohamed Benchikhi
Ceramics 2025, 8(3), 110; https://doi.org/10.3390/ceramics8030110 - 31 Aug 2025
Viewed by 231
Abstract
This study reports the successful synthesis of pure cobalt-substituted calcium molybdate powders (Co-doped CaMoO4) through a co-precipitation method conducted at room temperature, without the use of surfactants or hazardous organic solvents. The formation of solid solutions with x values ranging from [...] Read more.
This study reports the successful synthesis of pure cobalt-substituted calcium molybdate powders (Co-doped CaMoO4) through a co-precipitation method conducted at room temperature, without the use of surfactants or hazardous organic solvents. The formation of solid solutions with x values ranging from 0.00 to 0.08 was confirmed by X-ray diffraction, Rietveld refinement, and Raman spectroscopy analyses. Elemental analysis using energy-dispersive X-ray spectroscopy showed a strong correlation between the experimental and nominal stoichiometries. The synthesized molybdate powders consist of micrometer-sized particles exhibiting diverse morphologies, including microspheres, flower-like architectures, and dumbbell-shaped particles. These agglomerates are composed of primary particles smaller than 43 nm. The specific surface area increased from 3.59 m2/g for the undoped CaMoO4 to 10.74 m2/g for the 6% Co-doped CaMoO4. These nanostructured powders represent promising host materials for 4f ions, making them potential candidates for solid-state lighting applications. Full article
Show Figures

Figure 1

17 pages, 1931 KB  
Article
Improvement in the Stability of Perilla Seed Oil Microemulsion and Its Role in Fat Accumulation Reduction in Caenorhabditis elegans
by Junwei Pan, Yunzhou Tang, Ziqing Liang, Yong Cao and Yunjiao Chen
Colloids Interfaces 2025, 9(5), 56; https://doi.org/10.3390/colloids9050056 - 30 Aug 2025
Viewed by 180
Abstract
Perilla seed oil (PSO) possesses various physiological functions, such as lowering blood lipids and preventing cancer; however, its poor water solubility, dispersibility, and oxidative stability severely limit its application scope. Epigallocatechin gallate (EGCG) is a natural antioxidant abundant in tea leaves. In this [...] Read more.
Perilla seed oil (PSO) possesses various physiological functions, such as lowering blood lipids and preventing cancer; however, its poor water solubility, dispersibility, and oxidative stability severely limit its application scope. Epigallocatechin gallate (EGCG) is a natural antioxidant abundant in tea leaves. In this study, PSO–casein–EGCG microemulsions were prepared, and their stability and lipid-lowering effects were evaluated. The results showed that the PSO microemulsion had a particle size of 361.23 ± 14.85 nm, a zeta potential of −20.77 ± 0.68 mV, a polydispersity index (PDI) of 0.17 ± 0.07, and an encapsulation efficiency of 94.3%. PSO microemulsions remained stable at room temperature for 5 days without droplet aggregation. The stability of the microemulsions was good when the NaCl concentration was between 0.1 and 1 mM and the pH was between 5 and 9. PSO microemulsions enhanced the oxidative stability of PSO. Additionally, PSO microemulsions significantly reduced triglyceride levels in Caenorhabditis elegans (77.50%, p < 0.005). Finally, it was found that the average lipid droplet size of ZXW618 mutant nematodes decreased by 41.23% after PSO microemulsion treatment. Therefore, PSO microemulsions may reduce fat accumulation in C. elegans by decreasing lipid droplet size. This provides new insights for advancing the application of PSO in the food processing industry. Full article
(This article belongs to the Special Issue Recent Advances on Emulsions and Applications: 3rd Edition)
Show Figures

Graphical abstract

23 pages, 4458 KB  
Article
Ultrasonic Pulp Conditioning-Induced Nanoparticles: A Critical Driver for Sonication-Assisted Ultrafine Smithsonite Flotation
by Weiguang Zhou, Weiwei Cao, Chenwei Li, Yaoli Peng, Yanru Cui and Liuyang Dong
Minerals 2025, 15(9), 927; https://doi.org/10.3390/min15090927 - 30 Aug 2025
Viewed by 240
Abstract
Extensive studies have established that ultrasonic micro-jets and acoustic cavitation selectively intensify interfacial interactions at multiphase boundaries, thereby enhancing the flotation of soluble salt minerals and oxide ores. Although a growing body of evidence shows that pulp-borne nanoparticles (i.e., nanosolids, colloids, and nanoscale [...] Read more.
Extensive studies have established that ultrasonic micro-jets and acoustic cavitation selectively intensify interfacial interactions at multiphase boundaries, thereby enhancing the flotation of soluble salt minerals and oxide ores. Although a growing body of evidence shows that pulp-borne nanoparticles (i.e., nanosolids, colloids, and nanoscale gas nuclei) mediate these effects, their role in the flotation of ultrafine smithsonite after collector addition has not yet been systematically examined. To fill this gap, we compared the flotation response of ultrafine smithsonite under conventional stirring (SC) and ultrasonic conditioning (UC), using sodium oleate (NaOL) as the collector, and dissected the governing mechanisms across three pillars, mineral–NaOL interaction, particle aggregation, and frothability, with particular attention paid to how nanoparticles modulate each dimension. The flotation results show that flotation performance under UC is dictated by NaOL concentration. At low NaOL levels (i.e., below 4 × 10−4 M), UC depresses both recovery and kinetics relative to SC, while at high NaOL levels, the trend reverses and UC outperforms SC. Mechanistic analysis reveals that sonication erodes mineral surfaces and generates cavitation, flooding the pulp with various nanoparticles. When NaOL is scarce, zinc-containing components and zinc-rich nanosolids sequester the collector through non-selective adsorption and precipitation, leaving smithsonite poorly hydrophobized. Consequently, particle aggregation and pulp frothability are markedly inferior to those in the SC system, so the flotation recovery and kinetics remain lower. As the NaOL concentration rises, smithsonite becomes adequately hydrophobized, and the pulp fills with hydrophobic zinc-rich nanosolids, along with cavitation-induced gas nuclei or tiny bubbles. These nanoparticles now act as bridges, accelerating the aggregation of ultrafine smithsonite once sonication stops and agitation begins, while simultaneously improving frothability. Although the strong dispersive action of ultrasound still suppresses initial flotation kinetics, cumulative recovery ultimately surpasses that of SC. The findings delineate a nanoparticle-regulated flotation paradigm and establish a critical NaOL concentration window for effective UC in ultrafine smithsonite flotation. This framework is readily transferable to the beneficiation of other ultrafine, soluble oxidized minerals (rhodochrosite, dolomite, etc.). Full article
Show Figures

Figure 1

Back to TopTop