Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = phasor compensation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3508 KB  
Article
Neural Network Based Power Meter Wiring Fault Recognition of Smart Grids Under Abnormal Reactive Power Compensation Scenarios
by Huizhe Zheng, Zhongshuo Lin, Huan Lin, Chaokai Huang, Xiaoqi Huang, Suna Ji and Xiaoshun Zhang
Energies 2025, 18(3), 545; https://doi.org/10.3390/en18030545 - 24 Jan 2025
Viewed by 931
Abstract
This paper explores the challenges of detecting wiring anomalies in three-phase, four-wire energy metering devices, especially when large amounts of reactive power compensation are involved. Traditional methods, such as the hexagon phasor diagram technique, perform well under standard loads, but struggle to adapt [...] Read more.
This paper explores the challenges of detecting wiring anomalies in three-phase, four-wire energy metering devices, especially when large amounts of reactive power compensation are involved. Traditional methods, such as the hexagon phasor diagram technique, perform well under standard loads, but struggle to adapt to new situations, such as over- or under-compensation. To overcome these limitations, this paper proposes a hybrid approach that combines mechanism-based knowledge with data-driven technologies, including backpropagation neural networks (BPNNs). This method improves the accuracy and efficiency of anomaly detection and can better adapt to a dynamic power environment. The result is improved universality of anomaly detection, which helps to achieve safer, more accurate, and more efficient smart grid operation in complex situations. Full article
Show Figures

Figure 1

19 pages, 9601 KB  
Article
A Practical Approach for Fault Location in Transmission Lines with Series Compensation Using Artificial Neural Networks: Results with Field Data
by Simone Aparecida Rocha, Thiago Gomes de Mattos and Eduardo Gonzaga da Silveira
Energies 2025, 18(1), 145; https://doi.org/10.3390/en18010145 - 2 Jan 2025
Cited by 1 | Viewed by 941
Abstract
This paper presents a new method for fault location in transmission lines with series compensation, using data from voltage and current measurements at both terminals, applied to artificial neural networks. To determine the fault location, we present the proposal of using current phasors, [...] Read more.
This paper presents a new method for fault location in transmission lines with series compensation, using data from voltage and current measurements at both terminals, applied to artificial neural networks. To determine the fault location, we present the proposal of using current phasors, obtained from the oscillography recorded during the short circuit, as the input to the neural network for training. However, the method does not rely on the internal voltage values of the sources or their respective equivalent Thevenin impedances to generate training files for the neural network in a transient simulator. The source data are not known exactly at the time of the short circuit in the transmission line, leading to greater errors when neural networks are applied to real electrical systems of utility companies, which reduces the dependency on electrical network parameters. To present the new method, a conventional fault location algorithm based on neural networks is initially described, highlighting how the dependency on source parameters can hinder the application of the artificial neural network in real cases encountered in utility electrical systems. Subsequently, the new algorithm is described and applied to simulated and real fault cases. Low errors are obtained in both situations, demonstrating its effectiveness and practical applicability. It is noted that the neural networks used for real cases are trained using simulated faults but without any data from the terminal sources. Although we expect the findings of this paper to have relevance in transmission lines with series compensation, the new method can also be applied to conventional transmission lines, i.e., without series compensation, as evidenced by the results presented. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

26 pages, 7116 KB  
Article
Virtual Generator to Replace Backup Diesel GenSets Using Backstepping Controlled NPC Multilevel Converter in Islanded Microgrids with Renewable Energy Sources
by J. Dionísio Barros, J. Fernando A. Silva and Luis Rocha
Electronics 2024, 13(22), 4511; https://doi.org/10.3390/electronics13224511 - 17 Nov 2024
Viewed by 1208
Abstract
This work presents an islanded microgrid energy system that uses backstepping control applied to neutral point clamped (NPC) multilevel converters coupled with batteries to behave as virtual generators, able to absorb surplus renewable energy, therefore increasing the penetration of renewable energy sources. Additionally, [...] Read more.
This work presents an islanded microgrid energy system that uses backstepping control applied to neutral point clamped (NPC) multilevel converters coupled with batteries to behave as virtual generators, able to absorb surplus renewable energy, therefore increasing the penetration of renewable energy sources. Additionally, on a charged battery the virtual generator allows turning-off the backup diesel generator set (GenSet). Aside from improving energy efficiency, the battery-connected multilevel converter aims to regulate frequency, improves power quality, and keeps the microgrid operational in the event of a GenSet failure. The backstepping controlled NPC multilevel converter emulates a virtual generator injecting power to perform as the primary and secondary microgrid frequency controller. Additionally, AC voltage control is implemented, which enables running the islanded microgrid only with multilevel converters, supplied by the battery while integrating solar and wind energy sources. Energy demand and renewable energy forecasts are used to manage the battery state-of-charge. Simulation results, obtained from switched and phasor models show that energy storage and the backstepping frequency control enables the compensation of power fluctuations from renewable energy sources. Furthermore, in the event of the main GenSet failure, the controlled virtual generator keeps the microgrid running for a few minutes, until another GenSet is ready to supply the microgrid. Therefore, the microgrid integration of the battery-connected multilevel converter results in a significant boost in energy efficiency by allowing the disconnection of the backup GenSet. Full article
(This article belongs to the Special Issue Multilevel Converters for Large-Scale Grid-Connected Systems)
Show Figures

Figure 1

23 pages, 1972 KB  
Article
A Corrective Controller for Improved Ratio-Based Frequency Support through Multiterminal High-Voltage Direct Current Grids
by Sai Gopal Vennelaganti, Sina Gharebaghi and Nilanjan Ray Chaudhuri
Electronics 2024, 13(19), 3927; https://doi.org/10.3390/electronics13193927 - 4 Oct 2024
Viewed by 1013
Abstract
A recently proposed droop controller design achieved approximate ratio-based frequency support through Multiterminal High-Voltage Direct Current (MTDC) grids connecting asynchronous AC areas. The design was performed via a reduced-order model, which neglects system losses. In this paper, to achieve improved tracking, a model-reference-estimation-based [...] Read more.
A recently proposed droop controller design achieved approximate ratio-based frequency support through Multiterminal High-Voltage Direct Current (MTDC) grids connecting asynchronous AC areas. The design was performed via a reduced-order model, which neglects system losses. In this paper, to achieve improved tracking, a model-reference-estimation-based corrective control approach is presented, which estimates the differences between the reduced and actual models and compensates for the same. The sufficient condition for perfect ratio tracking by the proposed controller in the presence of modeling uncertainty is established. It is shown that a continuous sliding-mode controller that is robust to bounded modeling uncertainty takes the form of the PI compensator in the proposed corrective control. The region of stability of the proposed controller is established through root locus and numerical eigenvalue analyses. Finally, the effectiveness of this corrective strategy is illustrated through time-domain simulations performed in a full-order model, which is a detailed phasor-based differential-algebraic representation of the AC-MTDC grid. Full article
(This article belongs to the Special Issue Power Electronics in Hybrid AC/DC Grids and Microgrids)
Show Figures

Figure 1

15 pages, 2888 KB  
Article
SVC Control Strategy for Transient Stability Improvement of Multimachine Power System
by Anica Šešok and Ivica Pavić
Energies 2024, 17(17), 4224; https://doi.org/10.3390/en17174224 - 23 Aug 2024
Viewed by 1562
Abstract
The increase in renewable energy sources (RESs) in power systems is causing significant changes in their dynamic behavior. To ensure the safe operation of these systems, it is necessary to develop new methods for preserving transient stability that follow the new system dynamics. [...] Read more.
The increase in renewable energy sources (RESs) in power systems is causing significant changes in their dynamic behavior. To ensure the safe operation of these systems, it is necessary to develop new methods for preserving transient stability that follow the new system dynamics. Fast-response devices such as flexible AC transmission systems (FACTSs) can improve the dynamic response of power systems. One of the most frequently used FACTS devices is the Static Var Compensator (SVC), which can improve a system’s transient stability with a proper control strategy. This paper presents a reactive power control strategy for an SVC using synchronized voltage phasor measurements and particle swarm optimization (PSO) to improve the transient stability of a multimachine power system. The PSO algorithm is based on the sensitivity analysis of bus voltage amplitudes and angles to the reactive power of the SVC. It determines the SVC reactive power required for damping active power oscillations of synchronous generators in fault conditions. The sensitivity coefficients can be determined in advance for the characteristic switching conditions of the influential part of the transmission network, and with the application of the PSO algorithm, enable quick and efficient finding of a satisfactory solution. This relatively simple and fast algorithm can be applied in real time. The proposed control strategy is tested on the IEEE 14-bus system using DIgSILENT PowerFactory. The simulation results show that an SVC with the proposed control strategy effectively minimizes the rotor angle oscillations of generators after large disturbances. Full article
Show Figures

Figure 1

18 pages, 5327 KB  
Article
Disturbance Rejection Control of Grid-Forming Inverter for Line Impedance Parameter Perturbation in Weak Power Grid
by Mayue Huang and Hui Li
Electronics 2024, 13(10), 1926; https://doi.org/10.3390/electronics13101926 - 14 May 2024
Cited by 1 | Viewed by 1483
Abstract
When a grid-forming (GFM) inverter is connected to a low- or medium-voltage weak power grid, the line impedance with resistive and inductive characteristics will cause power coupling. Typical GFM decoupling control strategies are designed under nominal line impedance parameters. However, there are deviations [...] Read more.
When a grid-forming (GFM) inverter is connected to a low- or medium-voltage weak power grid, the line impedance with resistive and inductive characteristics will cause power coupling. Typical GFM decoupling control strategies are designed under nominal line impedance parameters. However, there are deviations between the nominal line impedance and actual parameters, resulting in poor decoupling effects. Aiming at this problem, this paper proposes a power decoupling strategy based on a reduced-order extended state observer (RESO). Firstly, the power dynamic model of the GFM is established based on the dynamic phasor method. Then, the model deviation and power coupling due to line impedance parameter perturbation are estimated as internal disturbances of the system, and the disturbances are compensated on the basis of typical power control strategy and virtual impedance decoupling. Good decoupling performance is obtained under different impedance parameters, improving the control strategy’s robustness. Finally, the effectiveness of the proposed method is verified by the results of RT Box hardware-in-the-loop experiments. Full article
(This article belongs to the Special Issue Applications, Control and Design of Power Electronics Converters)
Show Figures

Figure 1

15 pages, 4860 KB  
Article
Fault Location Method for Distribution Network Using an Additional Inductance Strategy
by Zonglei Yang, Chao Xie and Chunya Yin
Electronics 2024, 13(4), 712; https://doi.org/10.3390/electronics13040712 - 9 Feb 2024
Cited by 1 | Viewed by 1776
Abstract
In distribution networks, time asynchrony exists between the phasor measuring unit (PMU) at both ends of a line, and the effective measurement time of the devices is short, leading to insufficient accuracy in phasor measurements. This paper proposes a fault location method for [...] Read more.
In distribution networks, time asynchrony exists between the phasor measuring unit (PMU) at both ends of a line, and the effective measurement time of the devices is short, leading to insufficient accuracy in phasor measurements. This paper proposes a fault location method for distribution networks that employ an additional inductance strategy to address the limited location accuracy caused by time asynchrony and the inadequate accuracy of phasor measurement devices. The method enhances the stability and accuracy of phase measurement by connecting an additional inductance after the online circuit breaker, thus extending the effective measurement time. It uses the symmetrical component method to obtain the positive-sequence and negative-sequence networks following a fault. Time asynchrony is treated as an equivalent asynchronous phase angle, which is then applied to the positive and negative-sequence voltage components. The impact of time asynchrony is mitigated by compensating for the phase angle difference using the ratio of the positive-sequence voltage component to the negative-sequence voltage component. This approach provides the fault location function and has improved the accuracy of fault location, which is advantageous for rapid fault repair. Full article
(This article belongs to the Special Issue Relay Protection Devices and Technologies for Power System)
Show Figures

Figure 1

17 pages, 1282 KB  
Article
Optimizing Instrument Transformer Performance through Adaptive Blind Equalization and Genetic Algorithms
by Denise Fonseca Resende, Leandro Rodrigues Manso Silva, Erivelton Geraldo Nepomuceno and Carlos Augusto Duque
Energies 2023, 16(21), 7354; https://doi.org/10.3390/en16217354 - 31 Oct 2023
Cited by 3 | Viewed by 1431
Abstract
In real-world scenarios, deviations in the frequency response of instrumentation transformers can lead to distorted harmonic measurements, highlighting the critical role harmonic measurement plays in assessing power quality. The blind channel equalization technique offers a potential solution to improve the frequency response of [...] Read more.
In real-world scenarios, deviations in the frequency response of instrumentation transformers can lead to distorted harmonic measurements, highlighting the critical role harmonic measurement plays in assessing power quality. The blind channel equalization technique offers a potential solution to improve the frequency response of a large number of instrumentation transformers already installed in substations. These transformers were designed to accurately measure only the fundamental phasor component. Therefore, in order to use them for harmonic phasor measurement, methodologies for reducing frequency distortion must be applied. In this work, we propose a novel approach to improve the frequency response of the instrument transformer using adaptive blind equalization. The blind technique can compensate for distortions caused by voltage and current transducers without requiring prior knowledge of input signals or circuit characteristics. The proposed methodology uses a Linear Prediction Filter to convert the colored noise present at the channel output into white noise. Furthermore, a genetic algorithm is used to find a pole to cancel possible zeroes present in the frequency response of some transducers. The main advantage of blind equalization with the genetic algorithm is its independence, operating without clear information about the channel or the input signal. Through extensive experimentation, we demonstrate the effectiveness of the proposed methodology in significantly reducing the absolute error in ratio and phase caused by current and voltage transformers. Simulated and laboratory experiments are presented in this paper. Full article
Show Figures

Figure 1

32 pages, 18169 KB  
Article
Variable Reactance Criteria to Mitigate Voltage Deviations in Power Transformers in Light- and Over-Load Conditions
by Marta Haro-Larrode
Machines 2023, 11(8), 797; https://doi.org/10.3390/machines11080797 - 2 Aug 2023
Cited by 3 | Viewed by 2032
Abstract
In this paper, variable reactance (VR) criteria are proposed to mitigate voltage deviations in power transformers under light-load inductive and capacitive conditions, as well as for over-load conditions. Under capacitive load conditions, power transformers are affected by the Ferranti effect as much as [...] Read more.
In this paper, variable reactance (VR) criteria are proposed to mitigate voltage deviations in power transformers under light-load inductive and capacitive conditions, as well as for over-load conditions. Under capacitive load conditions, power transformers are affected by the Ferranti effect as much as AC lines are and can suffer damage if a large over-voltage is present at the secondary winding. A classical solution for this is the installation of expensive and bulky inductive reactors at different locations of the AC lines to absorb the reactive power. Instead, this paper addresses VR techniques focused on power transformer reactance modification to compensate for the over-voltage. With these techniques, the Ferranti effect on power lines can also be reduced. Another benefit is the cancellation of over-voltages whose cause is different from the Ferranti effect, namely under inductive load conditions. In addition, they can also enhance the parallel operation of power transformers by allowing more flexibility for overload sharing among transformers. The VR techniques are derived from the Kapp phasor-diagram theory and have been validated experimentally at a small scale in the laboratory. When implemented in a big network, they can also improve the load-flow voltage and AC line-loading profiles and even increase the power factor of certain generators. Full article
(This article belongs to the Section Electromechanical Energy Conversion Systems)
Show Figures

Figure 1

18 pages, 1823 KB  
Article
Incremental Phase-Current Based Fault Passage Indication for Earth Faults in Resonant Earthed Networks
by Md Zakaria Habib and Nathaniel Taylor
Electricity 2023, 4(2), 96-113; https://doi.org/10.3390/electricity4020007 - 24 Mar 2023
Cited by 1 | Viewed by 3313
Abstract
We propose a method for the fault passage indication of earth faults in resonant-earthed networks, based on phase current measurements alone. This is particularly relevant for electricity distribution systems at medium-voltage levels. The method is based on the relative magnitudes of the phasor [...] Read more.
We propose a method for the fault passage indication of earth faults in resonant-earthed networks, based on phase current measurements alone. This is particularly relevant for electricity distribution systems at medium-voltage levels. The method is based on the relative magnitudes of the phasor changes in the phase currents due to the fault. It is tested for various network types and operation configurations by simulating the network in pscad and using the simulated currents as the input for an implementation of the method in matlab. In over-compensated networks, the method shows reliable detection of the fault passage, with good selectivity and sensitivity for both homogeneous and mixed (cable and overhead line) feeders. However, for the less common under-compensated systems, it has limitations that are described further in this study. The method has good potential for being cost effective since it requires only current measurements, from a single location, at a moderate sampling rate. Full article
Show Figures

Figure 1

21 pages, 6303 KB  
Article
A New Approach for Long-Term Stability Estimation Based on Voltage Profile Assessment for a Power Grid
by Alireza Pourdaryaei, Amidaddin Shahriari, Mohammad Mohammadi, Mohammad Reza Aghamohammadi, Mazaher Karimi and Kimmo Kauhaniemi
Energies 2023, 16(5), 2508; https://doi.org/10.3390/en16052508 - 6 Mar 2023
Cited by 10 | Viewed by 2624
Abstract
Load flow solutions refer to the steady-state stability of power systems and have a crucial role in the design and planning of slow-changing elements; e.g., in online tab changing actions, automatic generation control, over-excitation limiters and the power recovery characteristics of a load. [...] Read more.
Load flow solutions refer to the steady-state stability of power systems and have a crucial role in the design and planning of slow-changing elements; e.g., in online tab changing actions, automatic generation control, over-excitation limiters and the power recovery characteristics of a load. Therefore, the purpose of this work was to show the connectivity between load flow analysis and long-term voltage stability using a generator model by introducing a novel voltage stability assessment based on the multi-machine dynamic model along with the load flow study for a power grid. The Euclidean distance (ED) was used to introduce a new voltage stability index based on the voltage phasor profile for real-time monitoring purposes. The effects of reactive power compensation, in addition to load-generation patterns and network topology changes in the system behavior, could be seen clearly on the voltage profiles of the buses. Thus, the increased values for the EDs of the buses’ voltage amplitudes—from 0 to around 1.5 (p.u.)—implied that the system was approaching the voltage collapse point, corresponding to the Jacobian matrix singularity of the load flow equation. Moreover, the weakest load bus with respect to any system change was also identified. Indeed, the criticality of any network interruption was in direct proportion to this voltage stability index. The proposed method was validated using the IEEE 118-bus test system. Full article
(This article belongs to the Special Issue Stability Issues and Challenges in Modern Electric Power Systems)
Show Figures

Figure 1

17 pages, 7827 KB  
Article
A Virtual Direct Current Control Method of LCL-DAB DC-DC Converters for Fast Transient Response and No Backflow Power
by Mingxue Li, Zimeng Li, Yushun Zhao, Zixiang Wang, Chong Zhang, Shuo Feng and Dongsheng Yu
Appl. Sci. 2023, 13(4), 2075; https://doi.org/10.3390/app13042075 - 5 Feb 2023
Cited by 2 | Viewed by 2625
Abstract
The LCL-type dual active bridge (LCL-DAB) DC-DC converter is a promising part for DC micro-grids due to its high voltage gain and low bridge current, but the issues of backflow power elimination and transient response optimization deserve attention in its operation. In this [...] Read more.
The LCL-type dual active bridge (LCL-DAB) DC-DC converter is a promising part for DC micro-grids due to its high voltage gain and low bridge current, but the issues of backflow power elimination and transient response optimization deserve attention in its operation. In this article, a virtual direct current control (VDCC) method of the LCL-DAB converter for fast transient response and no backflow power is proposed, which can eliminate the backflow power and improve the transient response against the input voltage and load disturbances. With dual-phase-shift (DPS) modulation scheme, the voltage-current characteristics are first analyzed using the phasor method. The small-signal mathematic model of the LCL-DAB converter is then established. The power characteristic is derived so the design regions of no backflow power can be graphed. On this basis, an appropriate outer phase shift ratio can be estimated to ensure a wide range of no backflow power operation. Moreover, a virtual voltage is generated to compensate in the control loop, thus the transient response against disturbances of the LCL-DAB converter can be improved under no backflow power. Simulation and prototype experimental results are presented to verify the feasibility of the proposed VDCC method. Full article
(This article belongs to the Special Issue State-of-the-Art of Power Systems)
Show Figures

Figure 1

17 pages, 4527 KB  
Article
A Novel Synchrophasor Estimation Based on Enhanced All-Phase DFT with Iterative Compensation and Its Implementation
by Zengqin Li, Weifeng Zhang, Zhiyuan Zhuang and Tao Jin
Energies 2022, 15(19), 6964; https://doi.org/10.3390/en15196964 - 23 Sep 2022
Cited by 1 | Viewed by 1929
Abstract
Synchrophasor estimation was mostly used in transmission systems in the past, and it is difficult to directly apply an existing synchrophasor algorithm to a distribution system with a more complex structure and environment. A synchrophasor estimation algorithm with a high accuracy and fast [...] Read more.
Synchrophasor estimation was mostly used in transmission systems in the past, and it is difficult to directly apply an existing synchrophasor algorithm to a distribution system with a more complex structure and environment. A synchrophasor estimation algorithm with a high accuracy and fast response speed is required to complete the calculation of the phasor in the face of the complex and changeable power signal of a distribution network. Therefore, an enhanced all-phase discrete Fourier transform (e-apDFT) algorithm is proposed for a distribution system in this paper, and the algorithm is deployed in a phasor measurement unit (PMU) prototype based on digital signal processing (DSP). Aiming to solve the problem of the accuracy of the traditional apDFT being reduced when the response speed is fast due to the influence of a dense spectrum, the existing algorithm is improved through iteratively compensating the spectral interferences to the main bin produced by adjacent bins. The experimental results show that the e-apDFT algorithm still has a fast response speed and that its estimation accuracy is much better than that of the traditional apDFTs in the presence of adjacent harmonic components. The proposed algorithm also complies with the IEEE standards for P-class PMUs. Full article
Show Figures

Figure 1

17 pages, 5882 KB  
Article
A Negative Sequence Current Phasor Compensation Technique for the Accurate Detection of Stator Shorted Turn Faults in Induction Motors
by Syaiful Bakhri and Nesimi Ertugrul
Energies 2022, 15(9), 3100; https://doi.org/10.3390/en15093100 - 24 Apr 2022
Cited by 15 | Viewed by 4132
Abstract
Stator faults are the most critical faults in induction motors as they develop quickly hence requiring fast online diagnostic methods. A number of online condition monitoring techniques are proposed in the literature to respond to such faults, including the signature analysis of the [...] Read more.
Stator faults are the most critical faults in induction motors as they develop quickly hence requiring fast online diagnostic methods. A number of online condition monitoring techniques are proposed in the literature to respond to such faults, including the signature analysis of the stator current, vibration monitoring, flux leakage monitoring, negative sequence components of voltage and current and sequence components monitoring based on the identification of asymmetrical behavior in a machine. Negative sequence components of voltage and current and sequence components monitoring are commonly considered for the identification of asymmetrical behavior of induction motors. Negative sequence current analysis is a sensitive technique for the detection of shorted turns as it directly measures the asymmetry produced by the fault. However, the technique is sensitive to other asymmetrical faults and disturbances, which can also produce negative sequence currents. These disturbances include sensor errors, inherent asymmetry and voltage unbalance. This paper provides a comprehensive investigation of the disturbances using a motor model along with experimental measurements under varying load conditions. Then, a new phasor compensation technique is explained to eliminate such disturbances effectively. This technique enables the accurate detection of even relatively small shorted turn faults, even at an early stage. The technique is tested experimentally, and a set of practical results are given to validate the methods developed. Full article
(This article belongs to the Special Issue Early Detection of Faults in Induction Motors)
Show Figures

Figure 1

16 pages, 3900 KB  
Article
A Wide-Area Fuzzy Control Design with Latency Compensation to Mitigate Sub-Synchronous Resonance in DFIG-Based Wind Farms
by Yaser Bostani, Saeid Jalilzadeh, Saleh Mobayen, Afef Fekih and Wudhichai Assawinchaichote
Energies 2022, 15(4), 1402; https://doi.org/10.3390/en15041402 - 15 Feb 2022
Cited by 2 | Viewed by 1872
Abstract
This paper proposes an auxiliary damping control approach based on the wide-area measurement system (WAMS). Its main objective is to mitigate sub-synchronous resonance (SSR) in doubly fed induction generator (DFIG)-based wind farms connected to a series capacitive compensated transmission network. To mitigate the [...] Read more.
This paper proposes an auxiliary damping control approach based on the wide-area measurement system (WAMS). Its main objective is to mitigate sub-synchronous resonance (SSR) in doubly fed induction generator (DFIG)-based wind farms connected to a series capacitive compensated transmission network. To mitigate the delay in sending measurement signals, typically associated with wide-area measurement systems, a fuzzy logic wide-area damping controller (FLWADC) is considered to mitigate the time delay caused by the phasor measurement unit (PMU) measurement. The FLWADC is a supplementary signal at the stator voltage of the grid-side converter (GSC) of the DFIG-based wind farms. The FLWADC was executed by using the voltage and capacitor voltage variations of the series capacitive compensated transmission network. The effectiveness and validity of the proposed auxiliary damping control was verified using a modified scheme of the IEEE first benchmark model via time-area simulation analysis using MATLAB/Simulink. Full article
Show Figures

Figure 1

Back to TopTop