Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = phenylurea-cytokinin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5650 KB  
Article
Boron Supplementation and Phytohormone Application: Effects on Development, Fruit Set, and Yield in Macadamia Cultivar ‘A4’ (Macadamia integrifolia, M. tetraphylla)
by Zhang-Jie Zhou, Zi-Xuan Zhao, Jing-Jing Zhou, Fan Yang and Jin-Zhi Zhang
Plants 2025, 14(16), 2461; https://doi.org/10.3390/plants14162461 - 8 Aug 2025
Viewed by 371
Abstract
Macadamia (Macadamia integrifolia), Macadamia tetraphylla and hybrids, a crop of high economic and nutritional importance, faces challenges with low fruit set rates and severe fruit drop. To address this, we investigated the effects of exogenous plant growth regulators (PGRs) and boron [...] Read more.
Macadamia (Macadamia integrifolia), Macadamia tetraphylla and hybrids, a crop of high economic and nutritional importance, faces challenges with low fruit set rates and severe fruit drop. To address this, we investigated the effects of exogenous plant growth regulators (PGRs) and boron fertilizer on the development, fruit set, and yield of the A4 macadamia variety. The study was conducted in 2024 at the Lujiangba research base (China, Yunnan Province). Five treatments were applied during key growth stages: boron (B), brassinosteroids (BR), N-(2-Chloro-4-pyridyl)-N’-phenylurea (CPPU), 6-benzylaminopurine (6-BA), and gibberellic acid (GA3). Growth stages include flower bud formation, peak flowering, and fruiting. Our findings revealed that B treatment significantly increased pollen viability (95.69% improvement) and raceme length (23.97% increase), while BR enhanced flower count per raceme (26.37% increase) and CPPU improved flower retention (10.53% increase). Additionally, GA3 and 6-BA promoted leaf expansion in new shoots, increasing leaf length by 39.83% and 31.39%, respectively. Notably, B application significantly improved total yield (43.11% increase) and fruit number (39.12% increase), whereas BR maximized nut shell diameter (5.7% increase) and individual nut weight (19.9% increase). Furthermore, CPPU and 6-BA markedly improved initial fruit set rates, while GA3, BR, and B effectively reduced early fruit drop. Physiological analyses indicated that elevated soluble sugars and proteins in flowers correlated with higher initial fruit set, whereas increased endogenous cytokinin and GA3 levels improved fruit retention and reduced drop rates. Based on these findings, we propose an integrated approach to optimize productivity: applying 0.02% B at the floral bud stage, 2 mg/L 6-BA at full bloom, and a combination of 0.02% B and 0.2 mL/L BR during early fruit set. This strategy not only enhances yield but also mitigates fruit drop, offering practical solutions for macadamia production. Full article
(This article belongs to the Special Issue Development of Woody Plants)
Show Figures

Figure 1

18 pages, 2076 KB  
Article
Effect of Exogenous Plant Growth Regulators on Antioxidant Defense in Zucchini Cotyledons Under Different Light Regimes
by Asya Petrova, Zornitsa Katerova, Iskren Sergiev and Dessislava Todorova
Agriculture 2025, 15(12), 1258; https://doi.org/10.3390/agriculture15121258 - 10 Jun 2025
Viewed by 1396
Abstract
Epigeal cotyledons with excised embryonic axes are often used as a model system to study the processes of cell division and expansion. These processes are regulated by diverse phytohormones and signaling molecules. Phytohormones modulate antioxidant defense systems and interact with reactive oxygen species [...] Read more.
Epigeal cotyledons with excised embryonic axes are often used as a model system to study the processes of cell division and expansion. These processes are regulated by diverse phytohormones and signaling molecules. Phytohormones modulate antioxidant defense systems and interact with reactive oxygen species (ROS) to synchronize normal plant cell growth. This study provides new information concerning alterations in enzymatic antioxidants linked to the production and scavenging of ROS in excised epigeal cotyledons of zucchini grown on solutions of methyl jasmonate (MeJA) and cytokinins (CKs)—N6-benzyl adenine and N1-(2-chloropyridin-4-yl)-N2-phenylurea—in the presence or absence of light under laboratory conditions. The cotyledon material was used to determine the dynamics of selected biochemical parameters starting from the 2nd to the 6th day of incubation. In general, our results revealed that exogenous MeJA caused a reduction in the content of hydrogen peroxide (H2O2) and free proline, as well as in the activity of superoxide dismutase (SOD), guaiacol peroxidase (POX) and catalase (CAT) in dark-grown cotyledons. Applied alone, both cytokinins increased most of the parameters studied, except proline and protein levels. However, when MeJA was combined with CKs, it acted in a diverse manner, ranging from antagonistic to synergistic depending on the cytokinin type, parameter measured and light regime. Similar alterations were also found in the levels of leaf pigments in the cotyledons grown under light conditions. In general, the changes in the antioxidant enzyme activities due to light were more intense than those observed in dark-grown cotyledons. The data obtained show, for the first time, the involvement of the hormonal interplay between MeJA and CKs on the biochemical changes in antioxidant defense during cotyledon growth under different light conditions. Full article
Show Figures

Figure 1

16 pages, 1650 KB  
Article
A Multi-Year Study of Forchlorfenuron’s Effects on Physical Fruit Quality Parameters in A. chinensis var. chinensis
by Giovanni Mian, Michele Consolini, Antonio Cellini, Andrea Strano, Tommaso Magoni, Marco Mastroleo, Irene Donati and Francesco Spinelli
Agronomy 2025, 15(1), 215; https://doi.org/10.3390/agronomy15010215 - 16 Jan 2025
Cited by 3 | Viewed by 1583
Abstract
CPPU, N-(2-Chloro-4-pyridyl)-N-phenylurea, is a synthetic cytokinin extensively used to enhance fruit size and overall quality in several crops, including kiwifruit. This study aimed to investigate the effects of three different CPPU application strategies (2.3, 3.0, and 4.6 ppm) and two crop load levels [...] Read more.
CPPU, N-(2-Chloro-4-pyridyl)-N-phenylurea, is a synthetic cytokinin extensively used to enhance fruit size and overall quality in several crops, including kiwifruit. This study aimed to investigate the effects of three different CPPU application strategies (2.3, 3.0, and 4.6 ppm) and two crop load levels on key fruit quality parameters at harvest, as well as on post-harvest storage performance. Our results demonstrate that two applications of CPPU (4.6 ppm) significantly increased fruit weight, especially under standard crop-load conditions, likely due to more efficient resource allocation. Additionally, fruit firmness improved with two or three CPPU applications, probably because of enhanced cell wall development. Crop load consistently influenced fruit firmness, with lower loads resulting in softer fruits. The soluble solids content was not significantly affected by the two CPPU applications; however, it was notably influenced by crop load, with fruits from the standard crop load showing higher sugar accumulation. A similar trend was observed in fruit dry weight, where CPPU had a greater impact under standard crop loads. Regarding post-harvest performance, CPPU applications showed a limited effect on maintaining fruit firmness during the first five months of storage. Overall, CPPU can be a potential strategy to enhance fruit quality, but its effectiveness depends heavily on field management practices. Therefore, controlling field variables is essential to fully realize the benefits of CPPU and to avoid interference with the plant’s physiological responses. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

12 pages, 2072 KB  
Article
Search for Expression Marker Genes That Reflect the Physiological Conditions of Blossom End Enlargement Occurrence in Cucumber
by Rui Li, Runewa Atarashi, Agung Dian Kharisma, Nur Akbar Arofatullah, Yuki Tashiro, Junjira Satitmunnaithum, Sayuri Tanabata, Kenji Yamane and Tatsuo Sato
Int. J. Mol. Sci. 2024, 25(15), 8317; https://doi.org/10.3390/ijms25158317 - 30 Jul 2024
Viewed by 1258
Abstract
Blossom end enlargement (BEE) is a postharvest deformation that may be related to the influx of photosynthetic assimilates before harvest. To elucidate the mechanism by which BEE occurs, expression marker genes that indicate the physiological condition of BEE-symptomatic fruit are necessary. First, we [...] Read more.
Blossom end enlargement (BEE) is a postharvest deformation that may be related to the influx of photosynthetic assimilates before harvest. To elucidate the mechanism by which BEE occurs, expression marker genes that indicate the physiological condition of BEE-symptomatic fruit are necessary. First, we discovered that preharvest treatment with a synthetic cytokinin, N-(2-Chloro-4-pyridyl)-N’-phenylurea (CPPU), promoted fruit growth and suppressed BEE occurrence. This suggests that excessive assimilate influx is not a main cause of BEE occurrence. Subsequently, the expression levels of seven sugar-starvation marker genes, CsSEF1, AS, CsFDI1, CsPID, CsFUL1, CsETR1, and CsERF1B, were compared among symptomatic and asymptomatic fruits, combined with and without CPPU treatment. Only CsSEF1 showed a higher expression level in asymptomatic fruits than in symptomatic fruits, regardless of CPPU treatment. This was then tested using fruits stored via the modified-atmosphere packaging technique, which resulted in a lower occurrence of BEE, and the asymptomatic fruits showed a higher CsSEF1 expression level than symptomatic fruits, regardless of the packaging method. CsSEF1 codes a CCCH-type zinc finger protein, and an increase in the expression of CsSEF1 was correlated with a decrease in the fruit respiration rate. Thus, CsSEF1 may be usable as a BEE expression marker gene. Full article
(This article belongs to the Special Issue Genetics and Molecular Breeding of Cucurbitaceous Crops)
Show Figures

Figure 1

18 pages, 2968 KB  
Article
Improvement of Bioactive Polyphenol Accumulation in Callus of Salvia atropatana Bunge
by Izabela Grzegorczyk-Karolak, Wiktoria Ejsmont, Anna Karolina Kiss, Przemyslaw Tabaka, Wiktoria Starbała and Marta Krzemińska
Molecules 2024, 29(11), 2626; https://doi.org/10.3390/molecules29112626 - 3 Jun 2024
Cited by 6 | Viewed by 1882
Abstract
Callus cultures of the Iranian medicinal plant Salvia atropatana were initiated from three-week-old seedlings on Murashige and Skoog (MS) medium supplemented with α-naphthaleneacetic acid (NAA) and various cytokinins. Although all tested hormonal variants of the medium and explant enabled callus induction, the most [...] Read more.
Callus cultures of the Iranian medicinal plant Salvia atropatana were initiated from three-week-old seedlings on Murashige and Skoog (MS) medium supplemented with α-naphthaleneacetic acid (NAA) and various cytokinins. Although all tested hormonal variants of the medium and explant enabled callus induction, the most promising growth was noted for N-(2-chloro-4-pyridyl)-N′-phenylurea (CPPU)-induced calli. Three lines obtained on this medium (cotyledon line-CL, hypocotyl line—HL, and root line—RL) were preselected for further studies. Phenolic compounds in the callus tissues were identified using UPLC–MS (ultra-performance liquid chromatography–mass spectrometry) and quantified with HPLC (high-performance liquid chromatography). All lines exhibited intensive growth and contained twelve phenolic acid derivatives, with rosmarinic acid predominating. The cotyledon-derived callus line displayed the highest growth index values and polyphenol content; this was exposed to different light-emitting diodes (LED) for improving biomass accumulation and secondary metabolite yield. Under LED treatments, all callus lines exhibited enhanced RA and total phenolic content compared to fluorescent light, with the highest levels observed for white (48.5–50.2 mg/g dry weight) and blue (51.4–53.9 mg/g dry weight) LEDs. The selected callus demonstrated strong antioxidant potential in vitro based on the 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) tests. Our findings confirm that the S. atropatana callus system is suitable for enhanced rosmarinic acid production; the selected optimized culture provide high-quality plant-derived products. Full article
(This article belongs to the Special Issue Bioactive Phenolic and Polyphenolic Compounds, 3rd Edition)
Show Figures

Figure 1

22 pages, 3940 KB  
Article
Exogenous Cytokinin 4PU-30 Modulates the Response of Wheat and Einkorn Seedlings to Ultraviolet B Radiation
by Elisaveta Kirova, Irina Moskova, Vasilissa Manova, Yana Koycheva, Zoia Tsekova, Denitsa Borisova, Hristo Nikolov, Ventzeslav Dimitrov, Iskren Sergiev and Konstantina Kocheva
Plants 2024, 13(10), 1401; https://doi.org/10.3390/plants13101401 - 17 May 2024
Cited by 2 | Viewed by 1560
Abstract
Abiotic stress is responsible for a significant reduction in crop plant productivity worldwide. Ultraviolet (UV) radiation is a natural component of sunlight and a permanent environmental stimulus. This study investigated the distinct responses of young wheat and einkorn plants to excessive UV-B radiation [...] Read more.
Abiotic stress is responsible for a significant reduction in crop plant productivity worldwide. Ultraviolet (UV) radiation is a natural component of sunlight and a permanent environmental stimulus. This study investigated the distinct responses of young wheat and einkorn plants to excessive UV-B radiation (180 min at λmax 312 nm) following foliar pretreatment with 1 µM synthetic cytokinin 4PU-30. Results demonstrated that UV radiation significantly amplified hydrogen peroxide levels in both wheat and einkorn, with einkorn exhibiting a more pronounced increase compared to wheat. This elevation indicated the induction of oxidative stress by UV radiation in the two genotypes. Intensified antioxidant enzyme activities and the increased accumulation of typical stress markers and non-enzyme protectants were evidenced. Transcriptional activity of genes encoding the key antioxidant enzymes POX, GST, CAT, and SOD was also investigated to shed some light on their genetic regulation in both wheat and einkorn seedlings. Our results suggested a role for POX1 and POX7 genes in the UV-B tolerance of the two wheat species as well as a cytokinin-stimulated UV-B stress response in einkorn involving the upregulation of the tau subfamily gene GSTU6. Based on all our findings, it could be concluded that 4PU-30 had the potential of alleviating oxidative stress by attenuating the symptoms of superfluous UV-B illumination in the two examined plant species. Full article
(This article belongs to the Special Issue Abiotic Stresses in Cereals)
Show Figures

Figure 1

9 pages, 2567 KB  
Communication
New Hybrid Ethylenediurea (EDU) Derivatives and Their Phytoactivity
by Maxim S. Oshchepkov, Leonid V. Kovalenko, Antonida V. Kalistratova, Sergey V. Tkachenko, Olga N. Gorunova, Nataliya A. Bystrova and Konstantin A. Kochetkov
Int. J. Mol. Sci. 2024, 25(6), 3335; https://doi.org/10.3390/ijms25063335 - 15 Mar 2024
Cited by 2 | Viewed by 1252
Abstract
Natural and synthetic phytohormones are widely used in agriculture. The synthetic cytokinin ethylenediurea (EDU) induces protection in plants against ozone phytotoxicity. In our study, new hybrid derivatives of EDU were synthesized and tested for phytoactivity. The germination potential (Gp), germination of seeds (G), [...] Read more.
Natural and synthetic phytohormones are widely used in agriculture. The synthetic cytokinin ethylenediurea (EDU) induces protection in plants against ozone phytotoxicity. In our study, new hybrid derivatives of EDU were synthesized and tested for phytoactivity. The germination potential (Gp), germination of seeds (G), and relative water content in leaves (RWC), characterizing the drought resistance of plants, were determined. The results of laboratory studies showed that EDU and its hybrid derivatives have a positive effect on root length, the growth and development of shoots, as well as the ability of plants to tolerate stress caused by a lack of water. Full article
Show Figures

Graphical abstract

15 pages, 2708 KB  
Article
The Plant Growth Regulator 14-OH BR Can Minimize the Application Content of CPPU in Kiwifruit (Actinidia chinensis) ‘Donghong’ and Increase Postharvest Time without Sacrificing the Yield
by Yanling Wang, Baopeng Ma, Yuzhu Li, Dan Wu, Bo Du, Hang Wang, Peng Yang, Dan Ren, Xiaochun Wang and Jin Huang
Processes 2022, 10(11), 2345; https://doi.org/10.3390/pr10112345 - 10 Nov 2022
Cited by 3 | Viewed by 2704
Abstract
The application of the plant growth regulator 1-(2-chloro-4-pyridyl)-3-phenylurea (CPPU) is extensively used for red-fleshed kiwifruits or ‘Donghong’, but it has toxicological properties. Extra plant growth regulators (PGRs) were screened for partial substitution of CPPU (10 mg L−1) to the crops to [...] Read more.
The application of the plant growth regulator 1-(2-chloro-4-pyridyl)-3-phenylurea (CPPU) is extensively used for red-fleshed kiwifruits or ‘Donghong’, but it has toxicological properties. Extra plant growth regulators (PGRs) were screened for partial substitution of CPPU (10 mg L−1) to the crops to minimize the CPPU content. The results showed that CPPU at a concentration of 5 mg L−1 plus 14-hydroxylated brassinosteroid (14-OH BR) at a concentration of 0.15 mg L−1 has a nearly equal effect to CPPU at a concentration of 10 mg L−1; it maintains the kiwifruit yields and quality as well as increases the postharvest time. Transcriptome sequencing data revealed that the regulation of 14-OH BR on kiwifruit growth acts mainly by activating Brassinosteroid (BR) signaling to synergistically and antagonistically stimulate the signaling of other endogenous growth regulators, including auxin (IAA), abscisic acid (ABA), cytokinin (CK), gibberellin (GA), jasmonic acid (JA) and ethylene (ET). Full article
(This article belongs to the Special Issue Crops Chemical Control Principle and Technology)
Show Figures

Figure 1

20 pages, 6384 KB  
Article
Transcriptome Analysis Reveals the Regulatory Networks of Cytokinin in Promoting Floral Feminization in Castanea henryi
by Guo-Long Wu, Zhou-Jun Zhu, Qi Qiu, Xiao-Ming Fan and De-Yi Yuan
Int. J. Mol. Sci. 2022, 23(12), 6389; https://doi.org/10.3390/ijms23126389 - 7 Jun 2022
Cited by 12 | Viewed by 2715
Abstract
Castanea henryi is a monoecious plant with a low female-to-male ratio, which limits its yield. The phytohormone cytokinin (CK) plays a crucial role in flower development, especially gynoecium development. Here, the feminizing effect of CK on the development of C. henryi was confirmed [...] Read more.
Castanea henryi is a monoecious plant with a low female-to-male ratio, which limits its yield. The phytohormone cytokinin (CK) plays a crucial role in flower development, especially gynoecium development. Here, the feminizing effect of CK on the development of C. henryi was confirmed by the exogenous spraying of N-(2-chloro-4-pyridyl)-N’-phenylurea (CPPU). Spraying CPPU at 125 mg·L−1 thrice changed the male catkin into a pure female catkin, whereas at 5 mg·L−1 and 25 mg·L−1, only a part of the male catkin was transformed into a female catkin. A comparative transcriptome analysis of male catkins subjected to CPPU was performed to study the mechanism of the role of CKs in sex differentiation. Using Pearson’s correlation analysis between hormone content and hormone synthesis gene expression, four key genes, LOG1, LOG3, LOG7 and KO, were identified in the CK and GA synthesis pathways. Moreover, a hub gene in the crosstalk between JA and the other hormone signaling pathways, MYC2, was identified, and 15 flowering-related genes were significantly differentially expressed after CPPU treatment. These results suggest that CK interacts with other phytohormones to determine the sex of C. henryi, and CK may directly target floral organ recognition genes to control flower sex. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 5669 KB  
Article
Establishment of an Efficient Micropropagation System for Humulus lupulus L. cv. Cascade and Confirmation of Genetic Uniformity of the Regenerated Plants through DNA Markers
by Doina Clapa and Monica Hârța
Agronomy 2021, 11(11), 2268; https://doi.org/10.3390/agronomy11112268 - 10 Nov 2021
Cited by 18 | Viewed by 5122
Abstract
The demand for virus-free hop planting material has increased in the last few years due to its multipurpose uses. The present study aimed to establish an effective protocol for clonal propagation of cv. Cascade using only the cytokinins as PGRs in all stages [...] Read more.
The demand for virus-free hop planting material has increased in the last few years due to its multipurpose uses. The present study aimed to establish an effective protocol for clonal propagation of cv. Cascade using only the cytokinins as PGRs in all stages of micropropagation: (i) in vitro culture initiation using single-node micro-cuttings inoculated on modified Murashige and Skoog (MSm) medium solidified with Plant agar and supplemented with 0.5 mg L−1 6-benziyladenine (BA) with 76% recorded viability of nodal explants; (ii) in vitro multiplication of multinodal shoots on MSm medium gelled with Plant agar and supplemented with different types and concentrations of cytokinins: 2 mg L−1 kinetin (KIN), 0.7 mg L−1 1-(2-Chloro-4-pyridyl)-3-phenylurea) (1 CPPU), 2 mg L−1 meta-topoline (mT) and 0.5 mg L−1 BA, which was the best variant for shoot proliferation (9.48 ± 0.78 shoots/explant); (iii) rooting and acclimatization with the best results obtained by ex vitro rooting and acclimatization of plants in the same stage in perlite (96.00 ± 0.60% acclimatized rooted plants with 100% survival under greenhouse conditions). The true-to-type nature of in vitro raised plants with the mother plant was assessed by Random Amplified Polymorphic DNA (RAPD) and Start Codon Target Polymorphism (SCoT) molecular markers, and then their genetic uniformity were confirmed. Full article
(This article belongs to the Special Issue New Frontiers in Micropropagation)
Show Figures

Figure 1

23 pages, 13927 KB  
Article
Transcriptomic and Metabolomic Studies Reveal Mechanisms of Effects of CPPU-Mediated Fruit-Setting on Attenuating Volatile Attributes of Melon Fruit
by Jufen Li, Tao Lin, Dandan Ren, Tan Wang, Ying Tang, Yiwen Wang, Ling Xu, Pinkuan Zhu and Guobin Ma
Agronomy 2021, 11(5), 1007; https://doi.org/10.3390/agronomy11051007 - 19 May 2021
Cited by 9 | Viewed by 4449
Abstract
N1-(2-chloro-4-pyridyl)-N3-phenylurea (CPPU), a synthetic cytokinin-active compound, is widely applied to induce parthenocarpic fruit set and enhance melon fruit enlargement (Cucumis melo L.). CPPU may also influence fruit quality; however, the mechanisms through which this occurs remain unknown. We investigated the differences in [...] Read more.
N1-(2-chloro-4-pyridyl)-N3-phenylurea (CPPU), a synthetic cytokinin-active compound, is widely applied to induce parthenocarpic fruit set and enhance melon fruit enlargement (Cucumis melo L.). CPPU may also influence fruit quality; however, the mechanisms through which this occurs remain unknown. We investigated the differences in volatile emissions between parthenocarpic fruit set by CPPU (C) and seeded fruit set by artificial pollination (P). Gas chromatography–mass spectrometry (GC–MS) analysis revealed that six volatile organic compounds (VOCs) emitted by the P-group fruits were not detected in C-group fruits. The relative abundances of another 14 VOCs emitted by the CPPU-treated fruits were less than those in the P-group fruits. RNA sequencing analysis indicated that a total of 1027, 994, and 743 differentially expressed genes (DEGs) were detected in the C20 (treatment with 20 mg·L–1 CPPU) vs. P, P-C20 (pollination followed by 20 mg·L−1 CPPU treatment) vs. P, and P-C20 vs. C20 treatments, respectively. Compared with the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, the DEGs related to fatty acid degradation and metabolism, which contribute to volatile production, were enriched. In particular, DEGs such as carotenoid cleavage dioxygenase (CCD)-, lipoxygenase (LOX)-, alcohol dehydrogenase (ADH)-, and alcohol acyltransferase (ATT)-related genes were closely related to the formation of volatiles. In summary, our study provides a metabolic and transcriptomic atlas, reveals the impact of CPPU on VOCs, and enhances our understanding of the mechanisms of CPPU that contribute towards generally reducing the quality of melon fruit. Full article
Show Figures

Figure 1

Back to TopTop