Abiotic Stresses in Cereals

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Crop Physiology and Crop Production".

Deadline for manuscript submissions: closed (30 April 2024) | Viewed by 15255

Special Issue Editors


E-Mail Website
Guest Editor
Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), Alnarp Box 190, 23422 Lomma, Sweden
Interests: biotechnology crops; tissue cultures; monocots, dicots, and trees; bioreactor technology; abiotic stress
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
ICAR-National Institute of Abiotic Stress Management, School of Water Stress Management, Barmati-Pune 413115, India
Interests: abiotic stress; plant phenomics; under-utilised crops
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Abiotic stresses in plants are consequences of suboptimal levels of nonliving factors in the growing environment. Generally, these factors are integral parts of the atmosphere–plant–soil continuum and adversely affect plant growth and productivity. Climate change predictions point to the amplification of these atmospheric stresses concerning magnitude, duration and intensity and hence threat to global food security. Hence, the management of abiotic stress in agriculture is gaining momentum. While climate-smart practices are feasible options, climate-resilient crops are likely to be key drivers of future food production. Hence, designing crop plants for resilient agriculture can play a critical role. Exploring and exploiting the existing diversity and creation of new diversity through advanced techniques such as CRISPER-Cas is essential to identify potential genotypes of crops resilient to abiotic stresses. Though many scientific insights have been generated on mechanisms underlying abiotic stress tolerance in crop plants, much remains to be translated into the products for use in complementing crop improvement programs in harsh environments. This Special Issue on Abiotic Stress in Plants will highlight omics interventions for traits and in plants that confer resilience to abiotic stresses.

Dr. Beata Dedicova
Dr. Jagadish Rane
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • drought
  • high temperature
  • heavy metals
  • chill tolerance
  • waterlogging
  • plant nutrient imbalance
  • salinity
  • alkalinity
  • extreme solar radiation
  • mechanisms
  • traits
  • genes

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 2524 KiB  
Article
Silicon Dioxide Nanoparticles-Based Amelioration of Cd Toxicity by Regulating Antioxidant Activity and Photosynthetic Parameters in a Line Developed from Wild Rice
by Humera Ashraf, Fozia Ghouri, Jiabin Liang, Weiwei Xia, Zhiming Zheng, Muhammad Qasim Shahid and Xuelin Fu
Plants 2024, 13(12), 1715; https://doi.org/10.3390/plants13121715 - 20 Jun 2024
Cited by 7 | Viewed by 1474
Abstract
An extremely hazardous heavy metal called cadmium (Cd) is frequently released into the soil, causing a considerable reduction in plant productivity and safety. In an effort to reduce the toxicity of Cd, silicon dioxide nanoparticles were chosen because of their capability to react [...] Read more.
An extremely hazardous heavy metal called cadmium (Cd) is frequently released into the soil, causing a considerable reduction in plant productivity and safety. In an effort to reduce the toxicity of Cd, silicon dioxide nanoparticles were chosen because of their capability to react with metallic substances and decrease their adsorption. This study examines the processes that underlie the stress caused by Cd and how SiO2NPs may be able to lessen it through modifying antioxidant defense, oxidative stress, and photosynthesis. A 100 μM concentration of Cd stress was applied to the hydroponically grown wild rice line, and 50 μM of silicon dioxide nanoparticles (SiO2NPs) was given. The study depicted that when 50 μM SiO2NPs was applied, there was a significant decrease in Cd uptake in both roots and shoots by 30.2% and 15.8% under 100 μM Cd stress, respectively. The results illustrated that Cd had a detrimental effect on carotenoid and chlorophyll levels and other growth-related traits. Additionally, it increased the levels of ROS in plants, which reduced the antioxidant capability by 18.8% (SOD), 39.2% (POD), 32.6% (CAT), and 25.01% (GR) in wild rice. Nevertheless, the addition of silicon dioxide nanoparticles reduced oxidative damage and the overall amount of Cd uptake, which lessened the toxicity caused by Cd. Reduced formation of reactive oxygen species (ROS), including MDA and H2O2, and an increased defense system of antioxidants in the plants provided evidence for this. Moreover, SiO2NPs enhanced the Cd resistance, upregulated the genes related to antioxidants and silicon, and reduced metal transporters’ expression levels. Full article
(This article belongs to the Special Issue Abiotic Stresses in Cereals)
Show Figures

Figure 1

22 pages, 3940 KiB  
Article
Exogenous Cytokinin 4PU-30 Modulates the Response of Wheat and Einkorn Seedlings to Ultraviolet B Radiation
by Elisaveta Kirova, Irina Moskova, Vasilissa Manova, Yana Koycheva, Zoia Tsekova, Denitsa Borisova, Hristo Nikolov, Ventzeslav Dimitrov, Iskren Sergiev and Konstantina Kocheva
Plants 2024, 13(10), 1401; https://doi.org/10.3390/plants13101401 - 17 May 2024
Viewed by 1144
Abstract
Abiotic stress is responsible for a significant reduction in crop plant productivity worldwide. Ultraviolet (UV) radiation is a natural component of sunlight and a permanent environmental stimulus. This study investigated the distinct responses of young wheat and einkorn plants to excessive UV-B radiation [...] Read more.
Abiotic stress is responsible for a significant reduction in crop plant productivity worldwide. Ultraviolet (UV) radiation is a natural component of sunlight and a permanent environmental stimulus. This study investigated the distinct responses of young wheat and einkorn plants to excessive UV-B radiation (180 min at λmax 312 nm) following foliar pretreatment with 1 µM synthetic cytokinin 4PU-30. Results demonstrated that UV radiation significantly amplified hydrogen peroxide levels in both wheat and einkorn, with einkorn exhibiting a more pronounced increase compared to wheat. This elevation indicated the induction of oxidative stress by UV radiation in the two genotypes. Intensified antioxidant enzyme activities and the increased accumulation of typical stress markers and non-enzyme protectants were evidenced. Transcriptional activity of genes encoding the key antioxidant enzymes POX, GST, CAT, and SOD was also investigated to shed some light on their genetic regulation in both wheat and einkorn seedlings. Our results suggested a role for POX1 and POX7 genes in the UV-B tolerance of the two wheat species as well as a cytokinin-stimulated UV-B stress response in einkorn involving the upregulation of the tau subfamily gene GSTU6. Based on all our findings, it could be concluded that 4PU-30 had the potential of alleviating oxidative stress by attenuating the symptoms of superfluous UV-B illumination in the two examined plant species. Full article
(This article belongs to the Special Issue Abiotic Stresses in Cereals)
Show Figures

Figure 1

19 pages, 7680 KiB  
Article
Quantifying the Individual and Combined Effects of Short-Term Heat Stress at Booting and Flowering Stages on Nonstructural Carbohydrates Remobilization in Rice
by Aqib Mahmood, Wei Wang, Muhammad Ali Raza, Iftikhar Ali, Bing Liu, Leilei Liu, Yan Zhu, Liang Tang and Weixing Cao
Plants 2024, 13(6), 810; https://doi.org/10.3390/plants13060810 - 12 Mar 2024
Cited by 8 | Viewed by 1383
Abstract
Rice production is threatened by climate change, particularly heat stress (HS). Nonstructural carbohydrates (NSCs) remobilization is a key physiological mechanism that allows rice plants to cope with HS. To investigate the impact of short-term HS on the remobilization of nonstructural carbohydrates (NSCs) in [...] Read more.
Rice production is threatened by climate change, particularly heat stress (HS). Nonstructural carbohydrates (NSCs) remobilization is a key physiological mechanism that allows rice plants to cope with HS. To investigate the impact of short-term HS on the remobilization of nonstructural carbohydrates (NSCs) in rice, two cultivars (Huaidao-5 and Wuyunjing-24) were subjected to varying temperature regimes: 32/22/27 °C as the control treatment, alongside 40/30/35 °C and 44/34/39 °C, for durations of 2 and 4 days during the booting, flowering, and combined stages (booting + flowering) within phytotrons across the years 2016 and 2017. The findings revealed that the stem’s NSC concentration increased, while the panicle’s NSCs concentration, the efficiency of NSCs translocation from the stem, and the stem NSC contribution to grain yield exhibited a consistent decline. Additionally, sugar and starch concentrations increased in leaves and stems during late grain filling and maturity stages, while in panicles, the starch concentration decreased and sugar concentration increased. The heat-tolerant cultivar, Wuyunjing-24, exhibited higher panicle NSC accumulation under HS than the heat-sensitive cultivar, Huaidao-5, which had more stem NSC accumulation. The flowering stage was the most vulnerable to HS, followed by the combined and booting stages. Heat degree days (HDDs) were utilized to quantify the effects of HS on NSC accumulation and translocation, revealing that the flowering stage was the most affected. These findings suggest that severe HS makes the stem the primary carbohydrate storage sink, and alleviation under combined HS aids in evaluating NSC accumulation, benefiting breeders in developing heat-tolerant rice varieties. Full article
(This article belongs to the Special Issue Abiotic Stresses in Cereals)
Show Figures

Figure 1

12 pages, 1321 KiB  
Article
Effects of Waterlogging at Flowering Stage on the Grain Yield and Starch Quality of Waxy Maize
by Huan Yang, Xuemei Cai and Dalei Lu
Plants 2024, 13(1), 108; https://doi.org/10.3390/plants13010108 - 29 Dec 2023
Cited by 3 | Viewed by 1680
Abstract
Waterlogging is a common abiotic stress in global maize production. Maize flowering stage (from tasseling to silking) is more fragile to environmental stresses, and this stage frequently overlapped the plum rain season in the middle and lower reaches of Yangtze river in China [...] Read more.
Waterlogging is a common abiotic stress in global maize production. Maize flowering stage (from tasseling to silking) is more fragile to environmental stresses, and this stage frequently overlapped the plum rain season in the middle and lower reaches of Yangtze river in China and affect the yield and quality of spring-sown maize severely. In the present study, the soil moisture content under control and waterlogging conditions at the flowering stage was controlled by a negative-pressure water supply and controlling pot device in a pot trial in 2014–2015. The grain yield, starch content, and starch structural and functional properties under two soil moisture levels were compared using Suyunuo5 (SYN5) and Yunuo7 (YN7) as materials, which are the control hybrids of National waxy maize hybrid regional trials in Southern China. The results observed that the grain yield was reduced by 29.1% for SYN5 with waterlogging due to the decreased grain weight and numbers, which was significantly higher than that of YN7 (14.7%), indicated that YN7 was more tolerant to waterlogging. The grain starch content in YN7 was decreased by 9.4% when plants suffered waterlogging at the flowering stage, whereas the content in SYN5 was only decreased in 2014 and unaffected in 2015. The size of starch granules and proportion of small-molecule amylopectin with waterlogging at the flowering stage increased in SYN5 and decreased in YN7 in both years. The type of starch crystalline structure was not changed by waterlogging, whereas the relative crystallinity was reduced in SYN5 and increased in YN7. The pasting viscosities were decreased, and the pasting temperature was unaffected by waterlogging in general. The gelatinization enthalpy was unaffected by waterlogging in both hybrids in both years, whereas the retrogradation enthalpy and percentage in both hybrids were reduced by waterlogging in 2014 and unaffected in 2015. Between the two hybrids, YN7 has high pasting viscosities and low retrogradation percentage than SYN5, indicated its advantages on produce starch for more viscous and less retrograde food. In conclusion, waterlogging at the flowering stage reduced the grain yield, restricted starch accumulation, and deteriorated the pasting viscosity of waxy maize. Results provide information for utilization of waxy maize grain in food production. Full article
(This article belongs to the Special Issue Abiotic Stresses in Cereals)
Show Figures

Figure 1

20 pages, 2489 KiB  
Article
Calcium-Dependent Protein Kinase 5 (OsCPK5) Overexpression in Upland Rice (Oryza sativa L.) under Water Deficit
by Thaís Ignez da Cruz, Dhiôvanna Corrêia Rocha, Anna Cristina Lanna, Beata Dedicova, Rosana Pereira Vianello and Claudio Brondani
Plants 2023, 12(22), 3826; https://doi.org/10.3390/plants12223826 - 11 Nov 2023
Viewed by 1282
Abstract
Water deficit significantly affects global crop growth and productivity, particularly in water-limited environments, such as upland rice cultivation, reducing grain yield. Plants activate various defense mechanisms during water deficit, involving numerous genes and complex metabolic pathways. Exploring homologous genes that are linked to [...] Read more.
Water deficit significantly affects global crop growth and productivity, particularly in water-limited environments, such as upland rice cultivation, reducing grain yield. Plants activate various defense mechanisms during water deficit, involving numerous genes and complex metabolic pathways. Exploring homologous genes that are linked to enhanced drought tolerance through the use of genomic data from model organisms can aid in the functional validation of target species. We evaluated the upland rice OsCPK5 gene, an A. thaliana AtCPK6 homolog, by overexpressing it in the BRSMG Curinga cultivar. Transformants were assessed using a semi-automated phenotyping platform under two irrigation conditions: regular watering, and water deficit applied 79 days after seeding, lasting 14 days, followed by irrigation at 80% field capacity. The physiological data and leaf samples were collected at reproductive stages R3, R6, and R8. The genetically modified (GM) plants consistently exhibited higher OsCPK5 gene expression levels across stages, peaking during grain filling, and displayed reduced stomatal conductance and photosynthetic rate and increased water-use efficiency compared to non-GM (NGM) plants under drought. The GM plants also exhibited a higher filled grain percentage under both irrigation conditions. Their drought susceptibility index was 0.9 times lower than that of NGM plants, and they maintained a higher chlorophyll a/b index, indicating sustained photosynthesis. The NGM plants under water deficit exhibited more leaf senescence, while the OsCPK5-overexpressing plants retained their green leaves. Overall, OsCPK5 overexpression induced diverse drought tolerance mechanisms, indicating the potential for future development of more drought-tolerant rice cultivars. Full article
(This article belongs to the Special Issue Abiotic Stresses in Cereals)
Show Figures

Figure 1

17 pages, 2489 KiB  
Article
Water Stress Alters Physiological, Spectral, and Agronomic Indexes of Wheat Genotypes
by Cássio Jardim Tavares, Walter Quadros Ribeiro Junior, Maria Lucrécia Gerosa Ramos, Lucas Felisberto Pereira, Onno Muller, Raphael Augusto das Chagas Noqueli Casari, Carlos Antonio Ferreira de Sousa and Anderson Rodrigo da Silva
Plants 2023, 12(20), 3571; https://doi.org/10.3390/plants12203571 - 14 Oct 2023
Cited by 1 | Viewed by 1848
Abstract
Selecting drought-tolerant and more water-efficient wheat genotypes is a research priority, specifically in regions with irregular rainfall or areas where climate change is expected to result in reduced water availability. The objective of this work was to use high-throughput measurements with morphophysiological traits [...] Read more.
Selecting drought-tolerant and more water-efficient wheat genotypes is a research priority, specifically in regions with irregular rainfall or areas where climate change is expected to result in reduced water availability. The objective of this work was to use high-throughput measurements with morphophysiological traits to characterize wheat genotypes in relation to water stress. Field experiments were conducted from May to September 2018 and 2019, using a sprinkler bar irrigation system to control water availability to eighteen wheat genotypes: BRS 254; BRS 264; CPAC 01019; CPAC 01047; CPAC 07258; CPAC 08318; CPAC 9110; BRS 394 (irrigated biotypes), and Aliança; BR 18_Terena; BRS 404; MGS Brilhante; PF 020037; PF 020062; PF 120337; PF 100368; PF 080492; and TBIO Sintonia (rainfed biotypes). The water regimes varied from 22 to 100% of the crop evapotranspiration replacement. Water stress negatively affected gas exchange, vegetation indices, and grain yield. High throughput variables TCARI, NDVI, OSAVI, SAVI, PRI, NDRE, and GNDVI had higher yield and morphophysiological measurement correlations. The drought resistance index indicated that genotypes Aliança, BRS 254, BRS 404, CPAC 01019, PF 020062, and PF 080492 were more drought tolerant. Full article
(This article belongs to the Special Issue Abiotic Stresses in Cereals)
Show Figures

Figure 1

21 pages, 3799 KiB  
Article
Hydrogen Sulfide Alleviates Cadmium Stress by Enhancing Photosynthetic Efficiency and Regulating Sugar Metabolism in Wheat Seedlings
by Xiang Zheng, Bei Zhang, Ni Pan, Xue Cheng and Wei Lu
Plants 2023, 12(13), 2413; https://doi.org/10.3390/plants12132413 - 22 Jun 2023
Cited by 11 | Viewed by 1873
Abstract
Hydrogen sulfide (H2S) plays prominent multifunctional roles in the mediation of various physiological processes and stress responses to plants. In this study, hydroponic experiments were carried out to explore the effects of NaHS pretreatment on the growth of wheat (Triticum [...] Read more.
Hydrogen sulfide (H2S) plays prominent multifunctional roles in the mediation of various physiological processes and stress responses to plants. In this study, hydroponic experiments were carried out to explore the effects of NaHS pretreatment on the growth of wheat (Triticum aestivum L.) under 50 μM cadmium (Cd). Compared with Cd treatment alone, 50 μM NaHS pretreatment increased the plant height, soluble sugar content of shoots and roots, and dry weight of shoots and roots under Cd stress, while the Cd concentration of shoots and roots was significantly reduced by 18.1% and 25.9%, respectively. Meanwhile, NaHS pretreatment protected the photosynthetic apparatus by increasing the net photosynthetic rate and PSII electron transportation rate of wheat leaves under Cd stress. NaHS pretreatment significantly increased the soluble sugar content to maintain the osmotic pressure balance of the leaf cells. The gene expression results associated with photosynthetic carbon assimilation and sucrose synthesis in wheat leaves suggested that the NaHS pretreatment significantly up-regulated the expression of TaRBCL, TaRBCS, and TaPRK, while it down-regulated the expression of TaFBA, TaSuSy, TaSAInv, and TaA/NInv. In summary, NaHS pretreatment improved the resistance of wheat seedlings under Cd stress by increasing the rate of photosynthesis and regulating the expression of genes related to sugar metabolism. Full article
(This article belongs to the Special Issue Abiotic Stresses in Cereals)
Show Figures

Figure 1

17 pages, 20949 KiB  
Article
Effects of Spraying KH2PO4 on Flag Leaf Physiological Characteristics and Grain Yield and Quality under Heat Stress during the Filling Period in Winter Wheat
by Jinpeng Li, Zhongwei Li, Xinyue Li, Xiuqiao Tang, Huilian Liu, Jincai Li and Youhong Song
Plants 2023, 12(9), 1801; https://doi.org/10.3390/plants12091801 - 27 Apr 2023
Cited by 11 | Viewed by 1991
Abstract
As one of the most important wheat-producing areas in China, wheat is prone to heat stress during the grain filling period in the Huang-Huai-Hai Plain (3HP), which lowers yields and degrades the grain quality of wheat. To assess the effects of spraying potassium [...] Read more.
As one of the most important wheat-producing areas in China, wheat is prone to heat stress during the grain filling period in the Huang-Huai-Hai Plain (3HP), which lowers yields and degrades the grain quality of wheat. To assess the effects of spraying potassium dihydrogen phosphate (KH2PO4) on the physiological traits in flag leaves and grain yield (GY) and quality under heat stress during the filling period, we conducted a two-year field experiment in the winter wheat growing seasons of 2020–2022. In this study, spraying water combined with heat stress (HT), 0.3% KH2PO4 (KDP), and 0.3% KH2PO4 combined with heat stress (PHT) were designed, and spraying water alone was used as a control (CK). The dates for the spraying were the third and eleventh day after anthesis, and a plastic film shed was used to impose heat stress on the wheat plants during the grain filling period. The results showed that spraying KH2PO4 significantly improved the chlorophyll content and net photosynthesis rate (Pn) in flag leaves compared with the non-sprayed treatments. Compared with CK, the Pn in HT decreased by 8.97% after heat stress, while Pn in PHT decreased by 7.44% compared to that of KDP. The activities of superoxide dismutase, catalase, and peroxidase in flag leaves were significantly reduced when the wheat was subjected to heat stress, while malonaldehyde content increased, and the enzyme activities were significantly enhanced when KH2PO4 was sprayed. Heat stress significantly decreased the contribution rate of dry matter accumulation (DM) after anthesis of wheat to grain (CRAA), whereas spraying KH2PO4 significantly increased the CRAA and harvest index. At maturity, the DM in CK was significantly higher than that in HT, KDP was significantly higher than PHT, and KDP had the highest DM. Compared with CK, the GY in KDP significantly increased by 9.85% over the two years, while the GY in HT decreased by 11.44% compared with that of CK, and the GY in PHT decreased by 6.31% compared to that of KDP. Spraying KH2PO4 after anthesis primarily helped GY by maintaining a high thousand grain weight to lessen the negative effects of heat stress on wheat. Moreover, heat stress significantly reduced protein concentration, wet gluten content, dough development time, and hardness index in grains of mature, while spraying KH2PO4 maintained a sufficient grain quality under the conditions of achieving higher yields. Overall, spraying KH2PO4 after anthesis could enhance the heat stress resistance of wheat and maintain the photosynthetic capacity of flag leaves, ensuring the dry matter production and reducing the negative effects on grain yield and quality in the 3HP. Full article
(This article belongs to the Special Issue Abiotic Stresses in Cereals)
Show Figures

Figure 1

Review

Jump to: Research

31 pages, 3781 KiB  
Review
Trends and Directions in Oats Research under Drought and Salt Stresses: A Bibliometric Analysis (1993–2023)
by Haiyan Huang, Xiangtao Wang, Junqin Li, Yang Gao, Yuting Yang, Rui Wang, Zijun Zhou, Puchang Wang and Yujun Zhang
Plants 2024, 13(14), 1902; https://doi.org/10.3390/plants13141902 - 10 Jul 2024
Cited by 3 | Viewed by 1757
Abstract
With global climate change leading to increasing intensity and frequency of droughts, as well as the growing problem of soil salinization, these factors significantly affect crop growth, yield, and resilience to adversity. Oats are a cereal widely grown in temperate regions and are [...] Read more.
With global climate change leading to increasing intensity and frequency of droughts, as well as the growing problem of soil salinization, these factors significantly affect crop growth, yield, and resilience to adversity. Oats are a cereal widely grown in temperate regions and are rich in nutritive value; however, the scientific literature on the response of oat to drought and salt stress has not yet been analyzed in detail. This study comprehensively analyzed the response of oat to drought stress and salt stress using data from the Web of Science core database and bibliometric methods with R (version4.3.1), VOSviewer (version 1.6.19), and Citespace (version6.3.1.0) software. The number of publications shows an increasing trend in drought stress and salt stress in oat over the past 30 years. In the field of drought-stress research, China, the United States, and Canada lead in terms of literature publication, with the most academic achievements being from China Agricultural University and Canadian Agricultural Food University. The journal with the highest number of published papers is Field Crops Research. Oat research primarily focuses on growth, yield, physiological and biochemical responses, and strategies for improving drought resistance. Screening of drought-tolerant genotypes and transformation of drought-tolerant genes may be key directions for future oat drought research. In the field of salt-stress research, contributions from China, the United States, and India stand out, with the Chinese Academy of Agricultural Sciences and Inner Mongolia Agricultural University producing the most significant research results. The largest number of published articles has been found in the Physiologia Plantarum journal. Current oat salt-stress research primarily covers growth, physiological and biochemical responses, and salt-tolerance mechanisms. It is expected that future oat salt research will focus more on physiological and biochemical responses, as well as gene-editing techniques. Despite achievements under single-stress conditions, combined drought and salt-stress effects on oat remain understudied, necessitating future research on their interaction at various biological levels. The purpose of this study is to provide potential theoretical directions for oat research on drought and salt stress. Full article
(This article belongs to the Special Issue Abiotic Stresses in Cereals)
Show Figures

Figure 1

Back to TopTop