Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = phonon frequency tunability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1309 KB  
Article
Thermal Conductivity of Graphene Moiré Superlattices at Small Twist Angles: An Approach-to-Equilibrium Molecular Dynamics and Boltzmann Transport Study
by Lorenzo Manunza, Riccardo Dettori, Antonio Cappai and Claudio Melis
C 2025, 11(3), 46; https://doi.org/10.3390/c11030046 - 30 Jun 2025
Viewed by 1298
Abstract
We investigate the thermal conductivity of graphene Moiré superlattices formed by twisting bilayer graphene (TBG) at small angles, employing approach-to-equilibrium molecular dynamics and lattice dynamics calculations based on the Boltzmann Transport Equation. Our simulations reveal a non-monotonic dependence of the thermal conductivity on [...] Read more.
We investigate the thermal conductivity of graphene Moiré superlattices formed by twisting bilayer graphene (TBG) at small angles, employing approach-to-equilibrium molecular dynamics and lattice dynamics calculations based on the Boltzmann Transport Equation. Our simulations reveal a non-monotonic dependence of the thermal conductivity on the twisting angle, with a local minimum near the first magic angle (θ1.1°). This behavior is attributed to the evolution of local stacking configurations—AA, AB, and saddle-point (SP)—across the Moiré superlattice, which strongly affect phonon transport. A detailed analysis of phonon mean free paths (MFP) and mode-resolved thermal conductivity shows that AA stacking suppresses thermal transport, while AB and SP stackings exhibit enhanced conductivity owing to more efficient low-frequency phonon transport. Furthermore, we establish a direct correlation between the thermal conductivity of twisted structures and the relative abundance of stacking domains within the Moiré supercell. Our results demonstrate that even very small changes in twisting angle (<2°) can lead to thermal conductivity variations of over 30%, emphasizing the high tunability of thermal transport in TBG. Full article
(This article belongs to the Special Issue 10th Anniversary of C — Journal of Carbon Research)
Show Figures

Figure 1

23 pages, 888 KB  
Article
Active Feedback-Driven Defect-Band Steering in Phononic Crystals with Piezoelectric Defects: A Mathematical Approach
by Soo-Ho Jo
Mathematics 2025, 13(13), 2126; https://doi.org/10.3390/math13132126 - 29 Jun 2025
Viewed by 404
Abstract
Defective phononic crystals (PnCs) have garnered significant attention for their ability to localize and amplify elastic wave energy within defect sites or to perform narrowband filtering at defect-band frequencies. The necessity for continuously tunable defect characteristics is driven by the variable excitation frequencies [...] Read more.
Defective phononic crystals (PnCs) have garnered significant attention for their ability to localize and amplify elastic wave energy within defect sites or to perform narrowband filtering at defect-band frequencies. The necessity for continuously tunable defect characteristics is driven by the variable excitation frequencies encountered in rotating machinery. Conventional tuning methodologies, including synthetic negative capacitors or inductors integrated with piezoelectric defects, are constrained to fixed, offline, and incremental adjustments. To address these limitations, the present study proposes an active feedback approach that facilitates online, wide-range steering of defect bands in a one-dimensional PnC. Each defect is equipped with a pair of piezoelectric sensors and actuators, governed by three independently tunable feedback gains: displacement, velocity, and acceleration. Real-time sensor signals are transmitted to a multivariable proportional controller, which dynamically modulates local electroelastic stiffness via the actuators. This results in continuous defect-band frequency shifts across the entire band gap, along with on-demand sensitivity modulation. The analytical model that incorporates these feedback gains has been demonstrated to achieve a level of agreement with COMSOL benchmarks that exceeds 99%, while concurrently reducing computation time from hours to seconds. Displacement- and acceleration-controlled gains yield predictable, monotonic up- or down-shifts in defect-band frequency, whereas the velocity-controlled gain permits sensitivity adjustment without frequency drifts. Furthermore, the combined-gain operation enables the concurrent tuning of both the center frequency and the filtering sensitivity, thereby facilitating an instantaneous remote reconfiguration of bandpass filters. This framework establishes a new class of agile, adaptive ultrasonic devices with applications in ultrasonic imaging, structural health monitoring, and prognostics and health management. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

11 pages, 1497 KB  
Article
Experimental Investigation of Bulk Elastic Wave Propagation in the Volume of Metamaterials
by Aleksandr Korobov, Natalia Shirgina, Aleksey Kokshaiskii, Natalia Odina and Aleksandr Volodarskii
Acoustics 2025, 7(3), 40; https://doi.org/10.3390/acoustics7030040 - 26 Jun 2025
Viewed by 463
Abstract
This paper presents the results of experimental studies on the propagation of longitudinal and transverse ultrasonic waves through a metamaterial—a composite material based on polymer matrix with periodically arranged cylindrical elements. Such structures are known as phononic crystals. Amplitude–frequency characteristics were measured for [...] Read more.
This paper presents the results of experimental studies on the propagation of longitudinal and transverse ultrasonic waves through a metamaterial—a composite material based on polymer matrix with periodically arranged cylindrical elements. Such structures are known as phononic crystals. Amplitude–frequency characteristics were measured for phononic crystals with air and metal cylindrical elements, for both longitudinal waves (in the frequency range from 1.5 to 3 MHz) and transverse waves (in the range from 0.2 to 1.2 MHz). A twofold decrease in the amplitude of the transmitted longitudinal ultrasonic wave was experimentally demonstrated in the passband centered at 1.87 MHz during rotation of the phononic crystal. It was also found that the polarization angle of the transverse ultrasonic wave influences the localization of band gaps and passbands. Band gaps, characterized by amplitude minima near 240 kHz, 290 kHz, and 830 kHz and observed for waves polarized parallel to the crystal axis, are replaced by passbands when the wave is polarized perpendicularly. These results suggest the potential for developing analog ultrasonic frequency filters tunable by the angle of rotation. Full article
Show Figures

Figure 1

10 pages, 977 KB  
Communication
Tailorable Brillouin Light Scattering in Air-Slit Suspended Waveguide
by Yanzhao Wang, Hongrun Ren and Yunjie Teng
Photonics 2025, 12(6), 586; https://doi.org/10.3390/photonics12060586 - 9 Jun 2025
Viewed by 408
Abstract
Silicon-based optical waveguides exhibit high Brillouin gain, enabling the realization of Brillouin lasers directly on silicon substrates. These lasers hold significant promise for applications such as tunable-frequency laser emission, ultrafast pulse generation via mode-locking techniques, and other advanced photonic functionalities. However, a key [...] Read more.
Silicon-based optical waveguides exhibit high Brillouin gain, enabling the realization of Brillouin lasers directly on silicon substrates. These lasers hold significant promise for applications such as tunable-frequency laser emission, ultrafast pulse generation via mode-locking techniques, and other advanced photonic functionalities. However, a key challenge in silicon-based Brillouin lasers is the requirement for long waveguide lengths to achieve sufficient optical feedback and reach the lasing threshold. This study proposes a novel floating waveguide architecture designed to significantly enhance the Brillouin gain in silicon-based systems. Furthermore, we introduce a breakthrough method for achieving wide-range phonon frequency tunability, enabling precise control over stimulated Brillouin scattering (SBS) dynamics. By strategically engineering the waveguide geometry (shape and dimensions), we demonstrate a tunable SBS phonon laser, offering a versatile platform for on-chip applications. Additionally, the proposed waveguide system features adjustable operating frequencies, unlocking new opportunities for compact Brillouin devices and integrated microwave photonic signal sources. Full article
Show Figures

Figure 1

20 pages, 2259 KB  
Article
Temperature-Controlled Defective Phononic Crystals with Shape Memory Alloys for Tunable Ultrasonic Sensors
by Soo-Ho Jo
Crystals 2025, 15(5), 412; https://doi.org/10.3390/cryst15050412 - 28 Apr 2025
Cited by 2 | Viewed by 595
Abstract
Phononic crystals (PnCs) have garnered significant interest owing to their ability to manipulate wave propagation, particularly through phononic band gaps and defect modes. However, conventional defective PnCs are limited by their fixed defect-band frequencies, which restricts their adaptability to dynamic environments. This study [...] Read more.
Phononic crystals (PnCs) have garnered significant interest owing to their ability to manipulate wave propagation, particularly through phononic band gaps and defect modes. However, conventional defective PnCs are limited by their fixed defect-band frequencies, which restricts their adaptability to dynamic environments. This study introduces a novel approach for temperature-controlled tunability of defective PnCs by integrating shape memory alloys (SMAs) into defect regions. The reversible phase transformations of SMAs, driven by temperature variations, induce significant changes in their mechanical properties, enabling real-time adjustment of defect-band frequencies. An analytical model is developed to predict the relationship between the temperature-modulated material properties and defect-band shifts, which is validated through numerical simulations. The results demonstrate that defect-band frequencies can be dynamically controlled within a specified range, thereby enhancing the operational bandwidth of the ultrasonic sensors. Additionally, sensing-performance analysis confirms that while defect-band frequencies shift with temperature, the output voltage of the sensors remains stable, ensuring reliable sensitivity across varying conditions. This study represents a significant advancement in tunable PnC technology, paving the way for next-generation ultrasonic sensors with enhanced adaptability and reliability in complex environments. Full article
(This article belongs to the Special Issue Research and Applications of Acoustic Metamaterials)
Show Figures

Figure 1

12 pages, 9674 KB  
Article
The Thermal Modulation of the Bending Wave Bandgap and Waveguide of Phononic Crystal Plates
by Zhiqiao Wang, Xiaoyang Zhang and Guohao Chen
Crystals 2025, 15(4), 356; https://doi.org/10.3390/cryst15040356 - 12 Apr 2025
Viewed by 490
Abstract
Based on the finite element method, the modulation of the bending wave bandgap and bending waveguide of locally resonant phononic crystal (PnC) plates via a thermal environment is investigated. First, the finite element model of the PnC subjected to a thermal field is [...] Read more.
Based on the finite element method, the modulation of the bending wave bandgap and bending waveguide of locally resonant phononic crystal (PnC) plates via a thermal environment is investigated. First, the finite element model of the PnC subjected to a thermal field is introduced; then, the modulation behavior of the bending wave bandgap of the PnC under thermal flux is illustrated; finally, the tunable waveguide of the bending waveguide of the PnC supercell is proposed to be realized by setting up a local heat source. The results show that the injected heat flux causes the PnC unit cell band structure to move toward the low-frequency region while the relative bandgap width increases. The linear defect state of the PnC supercell structure is realized by introducing a local heat source, and a new band is added to the bending wave bandgap of the original supercell. The transmission loss of the bending wave is significantly higher than that of the bending wave bandgap of the supercell in the frequency interval of the linear defect of the supercell, and the frequency response vibrational modes of the supercell structure validate the feasibility of the thermally controlled bending waveguide. This method provides a flexible and efficient control strategy for the frequency tuning of the bending wave bandgap and waveguide. Full article
Show Figures

Figure 1

9 pages, 6153 KB  
Article
Thermal Regulation of the Acoustic Bandgap in Pentamode Metamaterials
by Jing Cheng, Shujun Liang and Yangyang Chu
Crystals 2024, 14(11), 992; https://doi.org/10.3390/cryst14110992 - 17 Nov 2024
Cited by 2 | Viewed by 825
Abstract
This study used the finite element method to investigate the acoustic bandgap (ABG) characteristics of three-dimensional pentamode metamaterial (PM) structures under the thermal environment, and a method for controlling the PM ABG based on external temperature variation is also proposed. The results indicate [...] Read more.
This study used the finite element method to investigate the acoustic bandgap (ABG) characteristics of three-dimensional pentamode metamaterial (PM) structures under the thermal environment, and a method for controlling the PM ABG based on external temperature variation is also proposed. The results indicate that the complete acoustic bandgap can be obtained for a PM in the thermal environment, which makes the PM combine the bandgap characteristics of phononic crystals. More than that, the bandwidth and locations of ABGs can be effectively manipulated by controlling the temperature. Considering the softening effect of thermal stresses, the ABG gradually moves to lower frequencies as the temperature increases. Based on this, different degrees of ABG tunability can be achieved by changing the thermal environment to propagate or suppress acoustic waves of different frequencies. This work provides the possibility for PMs to realize intelligent regulation of the bandgap. Full article
(This article belongs to the Special Issue Research and Applications of Acoustic Metamaterials)
Show Figures

Figure 1

17 pages, 5118 KB  
Article
Measurement of Optical Properties of CH3NH3PbX3 (X = Br, I) Single Crystals Using Terahertz Time-Domain Spectroscopy
by Srinivasa Rao Konda, Yucai Lin, Rahul A. Rajan, Weili Yu and Wei Li
Materials 2023, 16(2), 610; https://doi.org/10.3390/ma16020610 - 8 Jan 2023
Cited by 9 | Viewed by 3347
Abstract
Organometallic lead bromide and iodide perovskite single crystals (PSCs) are potential candidates for terahertz applications. Herein, we performed terahertz time-domain spectroscopy (THz-TDS) in the frequency range of 0.1–3.0 THz on different thicknesses of MAPbBr3 (0.3, 0.6, and 0.8 mm) and MAPbI3 [...] Read more.
Organometallic lead bromide and iodide perovskite single crystals (PSCs) are potential candidates for terahertz applications. Herein, we performed terahertz time-domain spectroscopy (THz-TDS) in the frequency range of 0.1–3.0 THz on different thicknesses of MAPbBr3 (0.3, 0.6, and 0.8 mm) and MAPbI3 (0.6, 0.8, 0.9, 1.3, and 2.3 mm). The measurements were carried out with respect to the position (along the focal area), azimuthal rotation of the PSCs, and incidence angles of the reference THz pulse on the PSCs’ surface. Based on the transmitted THz pulses from PSCs from the above measurements, we calculated the real and imaginary parts of the refractive index, dielectric constants, absorption coefficients, and dark conductivity. These optical parameters tend to increase with decreases in the PSCs’ thicknesses. The transmission spectra of the terahertz electric field indicate that the measured optical properties do not vary significantly with the position and orientation of PSCs. The real parts of the refractive index and dielectric constants are higher than the imaginary values for both PSCs. On the other hand, a slight blueshift in the optical phonon vibrations corresponding to Pb-Br/I-Pb and Pb-Br/I bonds is observed with an increase in thickness. Interestingly, the phonon vibrations do not vary with the incidence angle of the THz pulses on the same crystal’s surface. The optical parameters based on THz-TDS reveal that the PSCs satisfy the requirement for tunable THz devices which need suitable, sensitive, and stable absorption properties between 0.1 and 3 THz. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

9 pages, 3012 KB  
Article
Active Tuning and Anisotropic Strong Coupling of Terahertz Polaritons in Van der Waals Heterostructures
by Shaopeng Li, Junhao Xu and Yajie Xie
Micromachines 2022, 13(11), 1955; https://doi.org/10.3390/mi13111955 - 11 Nov 2022
Cited by 1 | Viewed by 2084
Abstract
Electromagnetic field confinement is significant in enhancing light-matter interactions as well as in reducing footprints of photonic devices especially in Terahertz (THz). Polaritons offer a promising platform for the manipulation of light at the deep sub-wavelength scale. However, traditional THz polariton materials lack [...] Read more.
Electromagnetic field confinement is significant in enhancing light-matter interactions as well as in reducing footprints of photonic devices especially in Terahertz (THz). Polaritons offer a promising platform for the manipulation of light at the deep sub-wavelength scale. However, traditional THz polariton materials lack active tuning and anisotropic propagation simultaneously. In this paper, we design a graphene/α-MoO3 heterostructure and simulate polariton hybridization between isotropic graphene plasmon polaritons and anisotropic α-MoO3 phonon polaritons. The physical fundamentals for polariton hybridizations depend on the evanescent fields coupling originating from the constituent materials as well as the phase match condition, which can be severely affected by the α-MoO3 thickness and actively tuned by the gate voltages. Hybrid polaritons propagate with in-plane anisotropy that exhibit momentum dispersion characterized by elliptical, hyperboloidal and even flattened iso-frequency contours (IFCs) in the THz range. Our results provide a tunable and flexible anisotropic polariton platform for THz sensing, imaging, and modulation. Full article
(This article belongs to the Special Issue Processing and Applications of Novel Optical Metamaterials)
Show Figures

Figure 1

15 pages, 5526 KB  
Article
Simultaneous Dirac-like Cones at Two Energy States in Tunable Phononic Crystals: An Analytical and Numerical Study
by Mustahseen M. Indaleeb and Sourav Banerjee
Crystals 2021, 11(12), 1528; https://doi.org/10.3390/cryst11121528 - 7 Dec 2021
Cited by 4 | Viewed by 3550
Abstract
Simultaneous occurrence of Dirac-like cones at the center of the Brillouin zone (Γ) at two different energy states is termed Dual-Dirac-like cones (DDC) in this article. The occurrence of DDC is a rare phenomenon. Thus, the generation of multiple Dirac-like cones at the [...] Read more.
Simultaneous occurrence of Dirac-like cones at the center of the Brillouin zone (Γ) at two different energy states is termed Dual-Dirac-like cones (DDC) in this article. The occurrence of DDC is a rare phenomenon. Thus, the generation of multiple Dirac-like cones at the center of the Brillouin zone is usually non-manipulative and poses a challenge to achieve through traditional accidental degeneracy. However, if predictively created, DDC will have multiple engineering applications with acoustics and vibration. Thus, the possibilities of creating DDC have been identified herein using a simple square periodic array of tunable square phononic crystals (PnCs) in air media. It was found that antisymmetric deaf bands may play critical roles in tracking the DDC. Hence, pivoting on the deaf bands at two different energy states, an optimized tuning parameter was found to achieve Dirac-like cones at two distinct frequency states, simultaneously. Orthogonal wave transport identified as key Dirac phenomena was achieved at two frequencies, herein. It was identified that beyond the Dirac-like cone, the Dirac phenomena remain dominant when a doubly degenerated state created by a top band with positive curvature and a near-flat deaf band are lifted from a bottom band with negative curvature. Utilizing a mechanism of rotating the PnCs near a fixed deaf band, frequencies are tracked to form the DDC, and orthogonal wave transport is demonstrated. Exploiting the dispersion behavior, unique acoustic phenomena, such as ballistic wave transmission, pseudo diffusion and acoustic cloaking are also demonstrated at the Dirac frequencies using numerical simulation. The proposed tunable acoustic PnCs will have important applications in acoustic and ultrasonic imaging, waveguiding and even acoustic computing. Full article
(This article belongs to the Special Issue Recent Advances in Phononic Crystals and Acoustic Metamaterials)
Show Figures

Figure 1

10 pages, 1994 KB  
Article
Tailorable Brillouin Light Scattering in a Lithium Niobate Waveguide
by Wuyue Wang, Yu Yu, Yunfei Li, Zhenxu Bai, Gong Wang, Kai Li, Changyu Song, Zhiyong Wang, Sensen Li, Yulei Wang, Zhiwei Lu, Yuhai Li, Tongyu Liu and Xiusheng Yan
Appl. Sci. 2021, 11(18), 8390; https://doi.org/10.3390/app11188390 - 10 Sep 2021
Cited by 8 | Viewed by 3530
Abstract
Stimulated Brillouin scattering (SBS) lasers based on silicon waveguides with large SBS gain have been widely used in frequency tunable laser emissions, mode-locked pulse lasers, low-noise oscillators, optical gyroscopes and other fields. However, among SBS lasers, the realization of Brillouin laser output often [...] Read more.
Stimulated Brillouin scattering (SBS) lasers based on silicon waveguides with large SBS gain have been widely used in frequency tunable laser emissions, mode-locked pulse lasers, low-noise oscillators, optical gyroscopes and other fields. However, among SBS lasers, the realization of Brillouin laser output often requires a longer waveguide length, which not only increases waveguide loss but also increase the size of the device. As a new medium, lithium niobate has been fabricated into a new type of hybrid structure. Meanwhile, the width of a suspended waveguide is adjusted to tune the phonon frequency of an SBS laser based on lithium niobate substrate. Simulation results show that the tunable forward SBS effect is realized in a lithium niobate-suspended optical waveguide, showing a larger forward stimulated Brillouin scattering gain of 0.31 W−1m−1. The tunable phonon frequency ranges from 1 to 15 GHz. Therefore, utilizing the photon–phonon conversion effect, the waveguide system with LiNbO3 will pave a new way forward with better integration. Full article
(This article belongs to the Special Issue Laser Technologies and Nonlinear Optics in Surface Sciences)
Show Figures

Figure 1

12 pages, 967 KB  
Article
Controllable Fast and Slow Light in Photonic-Molecule Optomechanics with Phonon Pump
by Huajun Chen
Micromachines 2021, 12(9), 1074; https://doi.org/10.3390/mi12091074 - 4 Sep 2021
Cited by 1 | Viewed by 2132
Abstract
We theoretically investigate the optical output fields of a photonic-molecule optomechanical system in an optomechanically induced transparency (OMIT) regime, in which the optomechanical cavity is optically driven by a strong pump laser field and a weak probe laser field and the mechanical mode [...] Read more.
We theoretically investigate the optical output fields of a photonic-molecule optomechanical system in an optomechanically induced transparency (OMIT) regime, in which the optomechanical cavity is optically driven by a strong pump laser field and a weak probe laser field and the mechanical mode is driven by weak coherent phonon driving. The numerical simulations indicate that when the driven frequency of the phonon pump equals the frequency difference of the two laser fields, we show an enhancement OMIT where the probe transmission can exceed unity via controlling the driving amplitude and pump phase of the phonon driving. In addition, the phase dispersion of the transmitted probe field can be modified for different parametric regimes, which leads to a tunable delayed probe light transmission. We further study the group delay of the output probe field with numerical simulations, which can reach a tunable conversion from slow to fast light with the manipulation of the pump laser power, the ratio parameter of the two cavities, and the driving amplitude and phase of the weak phonon pump. Full article
(This article belongs to the Special Issue Micro/Nano-resonators for Sensing)
Show Figures

Figure 1

12 pages, 4680 KB  
Article
Ultrasound Imaging by Thermally Tunable Phononic Crystal Lens
by Yuqi Jin and Arup Neogi
Int. J. Mol. Sci. 2021, 22(15), 7966; https://doi.org/10.3390/ijms22157966 - 26 Jul 2021
Cited by 9 | Viewed by 2847
Abstract
This work demonstrates the detections and mappings of a solid object using a thermally tunable solid-state phononic crystal lens at low frequency for potential use in future long-distance detection. The phononic crystal lens is infiltrated with a polyvinyl alcohol-based poly n-isopropyl acrylamide (PVA-PNIPAm) [...] Read more.
This work demonstrates the detections and mappings of a solid object using a thermally tunable solid-state phononic crystal lens at low frequency for potential use in future long-distance detection. The phononic crystal lens is infiltrated with a polyvinyl alcohol-based poly n-isopropyl acrylamide (PVA-PNIPAm) bulk hydrogel polymer. The hydrogel undergoes a volumetric phase transition due to a temperature change leading to a temperature-dependent sound velocity and density. The temperature variation from 20 °C to 39 °C changes the focal length of the tunable solid-state lens by 1 cm in the axial direction. This thermo-reversible tunable focal length lens was used in a monostatic setup for one- and two-dimensional mapping scans in both frequency domain echo-intensity and temporal domain time-of-flight modes. The experimental results illustrated 1.03 ± 0.15λ and 2.35 ± 0.28λ on the lateral and axial minimum detectable object size. The experiments using the tunable lens demonstrate the capability to detect objects by changing the temperature in water without translating an object, source, or detector. The time-of-flight mode modality using the tunable solid-state phononic lens increases the signal-to-noise ratio compared to a conventional phononic crystal lens. Full article
(This article belongs to the Special Issue Hydrogels in Regenerative Medicine and Other Biomedical Applications)
Show Figures

Figure 1

13 pages, 5155 KB  
Article
Tunable Low Frequency Band Gap and Waveguide of Phononic Crystal Plates with Different Filling Ratio
by Shaobo Zhang, Jiang Liu, Hongbo Zhang and Shuliang Wang
Crystals 2021, 11(7), 828; https://doi.org/10.3390/cryst11070828 - 16 Jul 2021
Cited by 5 | Viewed by 2967
Abstract
Aiming at solving the NVH problem in vehicles, a novel composite structure is proposed. The new structure uses a hollow-stub phononic-crystal with filled cylinders (HPFC) plate. Any unit in the plate consists of a lead head, a silicon rubber body, an aluminum base [...] Read more.
Aiming at solving the NVH problem in vehicles, a novel composite structure is proposed. The new structure uses a hollow-stub phononic-crystal with filled cylinders (HPFC) plate. Any unit in the plate consists of a lead head, a silicon rubber body, an aluminum base as outer column and an opposite arranged inner pole. The dispersion curves are investigated by numerical simulations and the influences of structural parameters are discussed, including traditional hollow radius, thickness, height ratio, and the new proposed filling ratio. Three new arrays are created and their spectrum maps are calculated. In the dispersion simulation results, new branches are observed. The new branches would move towards lower frequency zone and the band gap width enlarges as the filling ratio decreases. The transmission spectrum results show that the new design can realize three different multiplexing arrays for waveguides and also extend the locally resonant sonic band gap. In summary, the proposed HPFC structure could meet the requirement for noise guiding and filtering. Compared to a traditional phononic crystal plate, this new composite structure may be more suitable for noise reduction in rail or road vehicles. Full article
(This article belongs to the Special Issue Applications of Phononic Crystals & Acoustic Metamaterials)
Show Figures

Figure 1

12 pages, 2951 KB  
Article
Design of Graphene Phononic Crystals for Heat Phonon Engineering
by Haque Mayeesha Masrura, Afsal Kareekunnan, Fayong Liu, Sankar Ganesh Ramaraj, Günter Ellrott, Ahmmed M. M. Hammam, Manoharan Muruganathan and Hiroshi Mizuta
Micromachines 2020, 11(7), 655; https://doi.org/10.3390/mi11070655 - 30 Jun 2020
Cited by 14 | Viewed by 4727
Abstract
Controlling the heat transport and thermal conductivity through a material is of prime importance for thermoelectric applications. Phononic crystals, which are a nanostructured array of specially designed pores, can suppress heat transportation owing to the phonon wave interference, resulting in bandgap formation in [...] Read more.
Controlling the heat transport and thermal conductivity through a material is of prime importance for thermoelectric applications. Phononic crystals, which are a nanostructured array of specially designed pores, can suppress heat transportation owing to the phonon wave interference, resulting in bandgap formation in their band structure. To control heat phonon propagation in thermoelectric devices, phononic crystals with a bandgap in the THz regime are desirable. In this study, we carried out simulation on snowflake shaped phononic crystal and obtained several phononic bandgaps in the THz regime, with the highest being at ≈2 THz. The phononic bandgap position and the width of the bandgap were found to be tunable by varying the neck-length of the snowflake structure. A unique bandgap map computed by varying the neck-length continuously provides enormous amounts of information as to the size and position of the phononic bandgap for various pore dimensions. We have also carried out transmission spectrum analysis and found good agreement with the band structure calculations. The pressure map visualized at various frequencies validates the effectiveness of snowflake shaped nano-pores in suppressing the phonons partially or completely, depending on the transmission probabilities. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

Back to TopTop