Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,998)

Search Parameters:
Keywords = physical environmental conditions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 619 KB  
Article
Well-Being in Family Caregivers of Dementia Patients in Romania
by Liviu Florian Tatomirescu, Cristiana Susana Glavce, Gabriel-Ioan Prada, Suzana Turcu and Adriana Borosanu
Disabilities 2025, 5(4), 90; https://doi.org/10.3390/disabilities5040090 (registering DOI) - 11 Oct 2025
Abstract
Background: The rising prevalence of neurodegenerative conditions such as dementia underscores the impact of population aging. Consequently, long-term care needs have increased and are often met by family members through informal caregiving, thereby supporting formal care systems by reducing associated costs. These [...] Read more.
Background: The rising prevalence of neurodegenerative conditions such as dementia underscores the impact of population aging. Consequently, long-term care needs have increased and are often met by family members through informal caregiving, thereby supporting formal care systems by reducing associated costs. These caregivers face physical and mental health challenges, raising concerns about their psychological well-being and prompting interest in both clinical and psychosocial research. Ryff’s eudaimonic model offers a robust framework for the assessment of psychological well-being; yet, in Romania, data on this population segment remain limited. Objective: This study aimed to compare the psychological well-being of Romanian dementia family caregivers with a reference population from the Romanian adaptation of the 54-item Ryff Psychological Well-Being Scale, and to explore how sociodemographic characteristics relate to relevant differences across well-being dimensions. Methods: A cross-sectional study was conducted among 70 Romanian family caregivers recruited from a single clinical hospital in Bucharest, Romania. Caregivers completed the 54-item Ryff Scale (Romanian adaptation), and scores were compared to reference values using one-sample t-tests with bootstrap confidence intervals. The most relevant dimension (purpose in life) was dichotomized and further examined in relation to sociodemographic and caregiving variables using Chi-squared and Fisher’s exact tests. Results: Caregivers reported significantly lower scores compared to the reference population in purpose in life (p < 0.001, d = −1.01), personal growth (p < 0.001, d = −0.91), and positive relations (p = 0.01, d = −0.30). The most pronounced deficit was observed in purpose in life, with 85.7% of caregivers scoring below the reference mean. This dimension was further examined in relation to caregiver characteristics. Retirement status showed a statistically significant association with Purpose in Life, with retired caregivers more likely to report lower scores (χ2 (1) = 4.04, p = 0.04), supported by the likelihood ratio test (p = 0.01) and a linear trend (p = 0.05). Additional marginal associations were found for household income (p = 0.14) and whether the patient slept in a separate room (p = 0.15), suggesting possible links between caregiver well-being and economic or environmental conditions. Conclusions: The study findings highlight notable psychological vulnerabilities among Romanian dementia caregivers, particularly in purpose in life and personal growth. Associations with structural and contextual factors such as retirement status, income, and caregiving environment suggest that caregiver well-being is shaped by broader socioeconomic conditions. While the magnitude of these deficits may be underestimated due to elevated stress levels in the reference group, the findings underscore the need for targeted clinical, social, and policy-level interventions aimed at strengthening existential meaning and personal development in culturally specific settings. Full article
Show Figures

Figure 1

14 pages, 3003 KB  
Article
Eco-Friendly Biopolymer Composite Sheet Derived from Water Hyacinth Reinforced with Cassava Chip: Optimal Conditions for Mixing, Blending, and Forming
by Praepilas Dujjanutat, Woravut Suwanrueng and Pakawadee Kaewkannetra
Polymers 2025, 17(19), 2709; https://doi.org/10.3390/polym17192709 - 9 Oct 2025
Viewed by 153
Abstract
The persistence of the synthetic plastic waste problem makes it one of the most pressing environmental challenges. Sustainable material is an alternative approach to reduce petroleum plastics. In this research, our work aims to convert two biomaterials, water hyacinth (WH) and cassava chip [...] Read more.
The persistence of the synthetic plastic waste problem makes it one of the most pressing environmental challenges. Sustainable material is an alternative approach to reduce petroleum plastics. In this research, our work aims to convert two biomaterials, water hyacinth (WH) and cassava chip (CC), into value-added biopolymer composite sheets (BCS). The raw materials of both WH and CC were prepared and characterized using physical and chemical treatments. Alkali treatments and chemical modifications were applied to remove lignin, protein, lipid, and other inhibiting components. After that, the two main raw materials of the WH and CC components were varied (100:0, 90:10, 80:20, 70:30, and 60:40, respectively) to investigate the optimal conditions for mixing, blending, and forming processes. Finally, mechanical properties (tensile strength), physical properties (surface morphology using a scanning electron microscope (SEM), crystalline structure by X-ray diffraction (XRD), and water solubility were also evaluated. The results obtained obviously revealed that the BCS reached an optimal ratio of 80:20 and exhibited outstanding properties. We were successful in exploring the potential use of a combination of two kinds of biopolymers under optimal conditions to produce an effective and environmentally friendly BCS in a manner that promotes a sustainable bio-circular economy and zero-waste concepts. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Graphical abstract

17 pages, 1344 KB  
Article
SolarFaultAttentionNet: Dual-Attention Framework for Enhanced Photovoltaic Fault Classification
by Mubarak Alanazi and Yassir A. Alamri
Inventions 2025, 10(5), 91; https://doi.org/10.3390/inventions10050091 - 9 Oct 2025
Viewed by 146
Abstract
Photovoltaic (PV) fault detection faces significant challenges in distinguishing subtle defects from complex backgrounds while maintaining reliability across diverse environmental conditions. Traditional approaches struggle with scalability and accuracy limitations, particularly when detecting electrical damage, physical defects, and environmental soiling in thermal imagery. This [...] Read more.
Photovoltaic (PV) fault detection faces significant challenges in distinguishing subtle defects from complex backgrounds while maintaining reliability across diverse environmental conditions. Traditional approaches struggle with scalability and accuracy limitations, particularly when detecting electrical damage, physical defects, and environmental soiling in thermal imagery. This paper presents SolarFaultAttentionNet, a novel dual-attention deep learning framework that integrates channel-wise and spatial attention mechanisms within a multi-path CNN architecture for enhanced PV fault classification. The approach combines comprehensive data augmentation strategies with targeted attention modules to improve feature discrimination across six fault categories: Electrical-Damage, Physical-Damage, Snow-Covered, Dusty, Bird-Drop, and Clean. Experimental validation on a dataset of 885 images demonstrates that SolarFaultAttentionNet achieves 99.14% classification accuracy, outperforming state-of-the-art models by 5.14%. The framework exhibits perfect detection for dust accumulation (100% across all metrics) and robust electrical damage detection (99.12% F1 score) while maintaining an optimal sensitivity (98.24%) and specificity (99.91%) balance. The computational efficiency (0.0160 s inference time) and systematic performance improvements establish SolarFaultAttentionNet as a practical solution for automated PV monitoring systems, enabling reliable fault detection critical for maximizing energy production and minimizing maintenance costs in large-scale solar installations. Full article
Show Figures

Figure 1

38 pages, 10466 KB  
Review
Corrosion Resistance and Plasma Surface Treatment on Titanium and Titanium Alloys: A Review
by Mingquan Jiang, Yang Li and Hongyang Zhang
Coatings 2025, 15(10), 1180; https://doi.org/10.3390/coatings15101180 - 9 Oct 2025
Viewed by 343
Abstract
Due to their low elasticity modulus, significant fatigue strength, and good formability, titanium and titanium alloys have shown a continuous growth trend in various fields of application. However, the passivation film on the surface of titanium and titanium alloys may dissolve, leading to [...] Read more.
Due to their low elasticity modulus, significant fatigue strength, and good formability, titanium and titanium alloys have shown a continuous growth trend in various fields of application. However, the passivation film on the surface of titanium and titanium alloys may dissolve, leading to corrosion under certain environmental conditions. Surface modification of these materials has become an indispensable and critical step in meeting the requirements of various operating conditions of material performance. Compared to other surface treatment techniques, plasma surface treatment has advantages such as high efficiency, wide applicability, environmental friendliness, flexibility and controllability, and low-temperature treatment. This article focuses on the topic of plasma surface modification technology for titanium and titanium alloys and highlights the key limitations of Plasma chemical heat treatment, Physical Vapor Deposition (PVD), plasma-enhanced chemical vapor deposition (PECVD), Plasma immersion ion implantation (PIII), and plasma spraying (PS). The current research status of surface modification methods in improving the surface properties of titanium and titanium alloys and the prospects of surface modification technology for titanium alloys are also discussed. Full article
(This article belongs to the Section Plasma Coatings, Surfaces & Interfaces)
Show Figures

Graphical abstract

18 pages, 2078 KB  
Review
The Role of Tribocatalysis in Friction and Wear: A Review
by Diana Berman and Ali Erdemir
Lubricants 2025, 13(10), 442; https://doi.org/10.3390/lubricants13100442 - 8 Oct 2025
Viewed by 327
Abstract
When exposed to high contact pressure and shear conditions, the sliding and/or rolling contact interfaces of moving mechanical systems can experience significant friction and wear losses, thereby impairing their efficiency, reliability, and environmental sustainability. Traditionally, these losses have been minimized using high-performance solid [...] Read more.
When exposed to high contact pressure and shear conditions, the sliding and/or rolling contact interfaces of moving mechanical systems can experience significant friction and wear losses, thereby impairing their efficiency, reliability, and environmental sustainability. Traditionally, these losses have been minimized using high-performance solid and liquid lubricants or surface engineering techniques like physical and chemical vapor deposition. However, increasingly harsh operating conditions of more advanced mechanical systems (including wind turbines, space mechanisms, electric vehicle drivetrains, etc.) render such traditional methods less effective or impractical over the long term. Looking ahead, an emerging and complementary solution could be tribocatalysis, a process that spontaneously triggers the formation of nanocarbon-based tribofilms in situ and on demand at lubricated interfaces, significantly reducing friction and wear even without the use of high-performance additives. These films often comprise a wide range of amorphous or disordered carbons, crystalline graphite, graphene, nano-onions, nanotubes, and other carbon nanostructures known for their outstanding friction and wear properties under the most demanding tribological conditions. This review highlights recent advances in understanding the underlying mechanisms involved in forming these carbon-based tribofilms, along with their potential applications in real-world mechanical systems. These examples underscore the scientific significance and industrial potential of tribocatalysis in further enhancing the efficiency, reliability, and environmental sustainability of future mechanical systems. Full article
(This article belongs to the Special Issue Tribo-Catalysis)
Show Figures

Graphical abstract

21 pages, 1409 KB  
Article
Effects of Biochar Combined with Nitrogen Fertilizer Application on Pepper Yield, Quality and Rhizosphere Soil Microbial Community Diversity
by Chunyan Wu, Qiyuan Sun and Wei Wang
Plants 2025, 14(19), 3082; https://doi.org/10.3390/plants14193082 - 6 Oct 2025
Viewed by 365
Abstract
In agricultural systems, excessive application of nitrogen fertilizer often leads to low nitrogen use efficiency and environmental pollution. In order to solve this problem, we studied the synergistic effect of biochar and nitrogen fertilizer on pepper yield, quality and rhizosphere soil health. This [...] Read more.
In agricultural systems, excessive application of nitrogen fertilizer often leads to low nitrogen use efficiency and environmental pollution. In order to solve this problem, we studied the synergistic effect of biochar and nitrogen fertilizer on pepper yield, quality and rhizosphere soil health. This study was conducted under a temperate continental monsoon climate in Changchun, China. Using ‘Jinfu 803’ pepper (Capsicum annuum L.) as the test material, biochar was prepared from corn straw under oxygen-limited conditions at 500 °C. the comprehensive effects of the combined application of biochar (0, 0.7% soil mass ratio) and nitrogen fertilizer (0, 75, 375, 675 kg/hm2 pure nitrogen) on pepper yield, fruit quality, rhizosphere soil physicochemical properties, and microbial community structure were studied. Redundancy analysis (RDA), high-throughput sequencing, and multivariate statistical methods were used to analyze the association patterns between soil environmental factors and microbial functional groups. The results showed that the combined application of biochar and nitrogen fertilizer significantly improved soil porosity (increased by 12.3–28.6%) and nutrient content, increased yield, and improved quality, among which the treatment of 0.7% biochar combined with 375 kg/hm2 nitrogen fertilizer (B1N2) had the best effect. Under this treatment, the pepper yield reached 24,854.1 kg/hm2, which was 42.35% higher than that of the control (B0N0). Notably, the nitrogen partial factor productivity (PFPN) of the B1N2 treatment (66.3 kg/kg) was significantly higher than that of the corresponding treatment without biochar and was not significantly lower than that of the high-nitrogen B1N3 treatment. The contents of soluble sugar and vitamin C in fruits increased by 51.18% and 39.16%, respectively. Redundancy analysis (RDA) revealed that the bacterial community structure was primarily shaped by soil pH, organic matter, and porosity, while the fungal community was predominantly influenced by alkaline hydrolyzable nitrogen and total nitrogen. Furthermore, the B1N2 treatment specifically enriched key functional microbial taxa, such as Chloroflexi (involved in carbon cycling) and Mortierellomycota (phosphate-solubilizing), which showed significant positive correlations with improved soil properties. In conclusion, B1N2 is the optimal treatment combination as it improves soil physical conditions, increases nutrient content, optimizes microbial community structure, and enhances pepper yield and quality. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

22 pages, 3926 KB  
Review
Targeting Modifiable Risks: Molecular Mechanisms and Population Burden of Lifestyle Factors on Male Genitourinary Health
by Xingcheng Yang, Meiping Lan, Jiawen Yang, Yuyi Xia, Linxiang Han, Ling Zhang and Yu Fang
Int. J. Mol. Sci. 2025, 26(19), 9698; https://doi.org/10.3390/ijms26199698 - 5 Oct 2025
Viewed by 404
Abstract
Health represents a state of complete physical, mental, and social well-being, with lifestyle factors accounting for approximately 60% of health determinants. Suboptimal health describes an intermediate condition between wellness and disease. According to 2023 WHO data, infertility affects approximately 17.5% of global adults, [...] Read more.
Health represents a state of complete physical, mental, and social well-being, with lifestyle factors accounting for approximately 60% of health determinants. Suboptimal health describes an intermediate condition between wellness and disease. According to 2023 WHO data, infertility affects approximately 17.5% of global adults, with male factors implicated in 30–50% of cases, establishing infertility as a critical public health challenge. Substantial preclinical and clinical evidence links suboptimal lifestyles to male reproductive dysfunction, positioning these behaviors as modifiable infertility risk factors encompassing environmental contaminants and lifestyle patterns. This systematic review synthesizes evidence on five key lifestyle determinants—tobacco, alcohol, microplastics, sedentariness, and sleep disruption—affecting male genitourinary health. Adopting an evidence-based medicine framework, we integrate epidemiological and experimental research to establish foundational knowledge for developing novel preventive strategies targeting male suboptimal health. Full article
(This article belongs to the Special Issue Molecular Research on Reproductive Physiology and Endocrinology)
Show Figures

Figure 1

20 pages, 7349 KB  
Article
Electrostatic Interactions Override Surface Area Effects in Size-Dependent Adsorptive Removal of Microplastics by Fe3O4 Nanoparticles
by Lei Hu, Jinxin Zhou and Daisuke Kitazawa
Sustainability 2025, 17(19), 8878; https://doi.org/10.3390/su17198878 - 5 Oct 2025
Viewed by 423
Abstract
Microplastics (MPs), as an emerging persistent contaminant, pose a potential threat to ecosystems and human health. The adsorptive removal of MPs from aqueous environments using magnetic nanoparticles has become a particularly promising remediation technology. Nevertheless, there remain significant knowledge gaps regarding its adsorption [...] Read more.
Microplastics (MPs), as an emerging persistent contaminant, pose a potential threat to ecosystems and human health. The adsorptive removal of MPs from aqueous environments using magnetic nanoparticles has become a particularly promising remediation technology. Nevertheless, there remain significant knowledge gaps regarding its adsorption mechanism, especially how the key physical properties of magnetic nanoparticles regulate their adsorption behavior towards MPs. This study first investigated the relationship between the particle size of Fe3O4 nanoparticles and their adsorption efficacy for MPs. The results demonstrated a non-monotonic, size-dependent adsorption of MPs by Fe3O4 nanoparticles, with the adsorption efficiency and capacity following the order: 300 nm > 15 nm > 100 nm. This non-linear relationship suggested that factors other than specific surface area (which would favor smaller particles) are significantly influencing the adsorption process. Isotherm analysis indicated that the adsorption is not an ideal monolayer coverage process. Kinetic studies showed that the adsorption process could be better described by the pseudo-second-order model, while intra-particle diffusion played a critical role throughout the adsorption process. Furthermore, the effect of pH on adsorption efficiency was examined, revealing that the optimal performance occurs under neutral to weak acidic conditions, which is consistent with measurements of surface charges of nanoparticles. These findings suggest that the adsorption is not determined by specific surface area but is dominated by electrostatic interactions. The size-dependent adsorption of MPs by Fe3O4 nanoparticles provides new insights for the modification of magnetic adsorbents and offers a novel perspective for the sustainable and efficient remediation of environmental MPs pollution. Full article
(This article belongs to the Special Issue Advances in Adsorption for the Removal of Emerging Contaminants)
Show Figures

Figure 1

22 pages, 6212 KB  
Article
VLA-MP: A Vision-Language-Action Framework for Multimodal Perception and Physics-Constrained Action Generation in Autonomous Driving
by Maoning Ge, Kento Ohtani, Yingjie Niu, Yuxiao Zhang and Kazuya Takeda
Sensors 2025, 25(19), 6163; https://doi.org/10.3390/s25196163 - 5 Oct 2025
Viewed by 742
Abstract
Autonomous driving in complex real-world environments requires robust perception, reasoning, and physically feasible planning, which remain challenging for current end-to-end approaches. This paper introduces VLA-MP, a unified vision-language-action framework that integrates multimodal Bird’s-Eye View (BEV) perception, vision-language alignment, and a GRU-bicycle dynamics cascade [...] Read more.
Autonomous driving in complex real-world environments requires robust perception, reasoning, and physically feasible planning, which remain challenging for current end-to-end approaches. This paper introduces VLA-MP, a unified vision-language-action framework that integrates multimodal Bird’s-Eye View (BEV) perception, vision-language alignment, and a GRU-bicycle dynamics cascade adapter for physics-informed action generation. The system constructs structured environmental representations from RGB images and LiDAR, aligns scene features with natural language instructions through a cross-modal projector and large language model, and converts high-level semantic hidden states outputs into executable and physically consistent trajectories. Experiments on the LMDrive dataset and CARLA simulator demonstrate that VLA-MP achieves high performance across the LangAuto benchmark series, with best driving scores of 44.3, 63.5, and 78.4 on LangAuto, LangAuto-Short, and LangAuto-Tiny, respectively, while maintaining high infraction scores of 0.89–0.95, outperforming recent VLA methods such as LMDrive and AD-H. Visualization and video results further validate the framework’s ability to follow complex language-conditioned instructions, adapt to dynamic environments, and prioritize safety. These findings highlight the potential of combining multimodal perception, language reasoning, and physics-aware adapters for robust and interpretable autonomous driving. Full article
(This article belongs to the Special Issue Large AI Models for Positioning and Perception in Autonomous Driving)
Show Figures

Figure 1

27 pages, 1664 KB  
Review
Actomyosin-Based Nanodevices for Sensing and Actuation: Bridging Biology and Bioengineering
by Nicolas M. Brunet, Peng Xiong and Prescott Bryant Chase
Biosensors 2025, 15(10), 672; https://doi.org/10.3390/bios15100672 - 4 Oct 2025
Viewed by 549
Abstract
The actomyosin complex—nature’s dynamic engine composed of actin filaments and myosin motors—is emerging as a versatile tool for bio-integrated nanotechnology. This review explores the growing potential of actomyosin-powered systems in biosensing and actuation applications, highlighting their compatibility with physiological conditions, responsiveness to biochemical [...] Read more.
The actomyosin complex—nature’s dynamic engine composed of actin filaments and myosin motors—is emerging as a versatile tool for bio-integrated nanotechnology. This review explores the growing potential of actomyosin-powered systems in biosensing and actuation applications, highlighting their compatibility with physiological conditions, responsiveness to biochemical and physical cues and modular adaptability. We begin with a comparative overview of natural and synthetic nanomachines, positioning actomyosin as a uniquely scalable and biocompatible platform. We then discuss experimental advances in controlling actomyosin activity through ATP, calcium, heat, light and electric fields, as well as their integration into in vitro motility assays, soft robotics and neural interface systems. Emphasis is placed on longstanding efforts to harness actomyosin as a biosensing element—capable of converting chemical or environmental signals into measurable mechanical or electrical outputs that can be used to provide valuable clinical and basic science information such as functional consequences of disease-associated genetic variants in cardiovascular genes. We also highlight engineering challenges such as stability, spatial control and upscaling, and examine speculative future directions, including emotion-responsive nanodevices. By bridging cell biology and bioengineering, actomyosin-based systems offer promising avenues for real-time sensing, diagnostics and therapeutic feedback in next-generation biosensors. Full article
(This article belongs to the Special Issue Biosensors for Personalized Treatment)
Show Figures

Figure 1

27 pages, 8850 KB  
Article
Dual-Path Framework Analysis of Crack Detection Algorithm and Scenario Simulation on Fujian Tulou Surface
by Yanfeng Hu, Shaokang Chen, Zhuang Zhao and Si Cheng
Coatings 2025, 15(10), 1156; https://doi.org/10.3390/coatings15101156 - 3 Oct 2025
Viewed by 339
Abstract
Fujian Tulou, a UNESCO World Heritage Site, is highly vulnerable to environmental and anthropogenic stresses, with its earthen walls prone to surface cracking that threatens both structural stability and cultural value. Traditional manual inspection is inefficient, subjective, and may disturb fragile surfaces, highlighting [...] Read more.
Fujian Tulou, a UNESCO World Heritage Site, is highly vulnerable to environmental and anthropogenic stresses, with its earthen walls prone to surface cracking that threatens both structural stability and cultural value. Traditional manual inspection is inefficient, subjective, and may disturb fragile surfaces, highlighting the need for non-destructive and automated solutions. This study proposes a dual-path framework that integrates lightweight crack detection with independent physical simulation. On the detection side, an improved YOLOv12 model is developed to achieve lightweight and accurate recognition of multiple crack types under complex wall textures. On the simulation side, a two-layer RFPA3D model was employed to parameterize loading conditions and material thickness, reproducing the four-stage crack evolution process, and aligning well with field observations. Quantitative validation across paired samples demonstrates improved consistency in morphology, geometry, and topology compared with baseline models. Overall, the framework offers an effective and interpretable solution for standardized crack documentation and mechanistic interpretation, providing practical benefits for the preventive conservation and sustainable management of Fujian Tulou. Full article
Show Figures

Graphical abstract

11 pages, 688 KB  
Article
Lethal Heat Exchange—Short-Term Thermoregulation in Two Triturus Species During Abrupt Changes in Living Media (Water vs. Air)
by Daniela Mihova, Sebastian Topliceanu, Valeriya Velkova and Nikolay Natchev
Diversity 2025, 17(10), 691; https://doi.org/10.3390/d17100691 - 3 Oct 2025
Viewed by 218
Abstract
As adults, some newts exhibit a multiphasic lifestyle, switching between aquatic and terrestrial habitats. Under laboratory conditions, we provided an experiment to expose newts, which were in their aquatic phase, to air as a surrounding medium. We studied how the body temperature changed [...] Read more.
As adults, some newts exhibit a multiphasic lifestyle, switching between aquatic and terrestrial habitats. Under laboratory conditions, we provided an experiment to expose newts, which were in their aquatic phase, to air as a surrounding medium. We studied how the body temperature changed when the ambient temperature increased. The thirteen specimens used in the study belonged to two species from the genus Triturus sp.—T. ivanbureschi and T. dobrogicus. For temperature measurements, we used a precise thermometer with a beaded thermocouple and an IR thermal camera. We started the experiment at 17 °C and increased the air temperature by approximately 1 °C every 10 min. The newts were exposed to the air until the first signs of physical exhaustion appeared. An increase of 1 °C in ambient temperature led to an average increase of 0.87 °C in the body temperature of the newts across the four experimental days. The measured body temperature showed a consistent increase during all experimental sessions, but it did not equalize with the environmental temperature. The body temperature in all specimens remained lower by an average of 2.24 (±0.02) °C. Full article
(This article belongs to the Special Issue Amphibian and Reptile Adaptation: Biodiversity and Monitoring)
Show Figures

Figure 1

16 pages, 2994 KB  
Article
Stiffness Degradation of Expansive Soil Stabilized with Construction and Demolition Waste Under Wetting–Drying Cycles
by Haodong Xu and Chao Huang
Coatings 2025, 15(10), 1154; https://doi.org/10.3390/coatings15101154 - 3 Oct 2025
Viewed by 312
Abstract
To address the challenge of long-term stiffness retention of subgrades in humid–hot climates, this study evaluates expansive soil stabilized with construction and demolition waste (CDW), focusing on the resilient modulus (Mr) under coupled stress states and wetting–drying histories. Basic physical [...] Read more.
To address the challenge of long-term stiffness retention of subgrades in humid–hot climates, this study evaluates expansive soil stabilized with construction and demolition waste (CDW), focusing on the resilient modulus (Mr) under coupled stress states and wetting–drying histories. Basic physical and swelling tests identified an optimal CDW incorporation of about 40%, which was then used to prepare specimens subjected to controlled. Wetting–drying cycles (0, 1, 3, 6, 10) and multistage cyclic triaxial loading across confining and deviatoric stress combinations. Mr increased monotonically with both stresses, with stronger confinement hardening at higher deviatoric levels; with cycling, Mr exhibited a rapid then gradual degradation, and for most stress combinations, the ten-cycle loss was 20%–30%, slightly mitigated by higher confinement. Grey relational analysis ranked influence as follows: the number of wetting–drying cycles > deviatoric stress > confining pressure. A Lytton model, based on a modified prediction method, accurately predicted Mr across conditions (R2 ≈ 0.95–0.98). These results integrate stress dependence with environmental degradation, offering guidance on material selection (approximately 40% incorporation), construction (adequate compaction), and maintenance (priority control of early moisture fluctuations), and provide theoretical support for durable expansive soil subgrades in humid–hot regions. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Graphical abstract

21 pages, 3880 KB  
Article
Utilizing Recycled PET and Mining Waste to Produce Non-Traditional Bricks for Sustainable Construction
by Gonzalo Díaz-García, Piero Diaz-Miranda and Christian Tineo-Villón
Sustainability 2025, 17(19), 8841; https://doi.org/10.3390/su17198841 - 2 Oct 2025
Viewed by 469
Abstract
Plastic waste, particularly polyethylene terephthalate (PET), poses a growing environmental challenge. This study investigates the feasibility of incorporating recycled PET into clay bricks as a sustainable alternative in construction. Bricks were fabricated with 0%, 5%, 10%, and 15% PET content. Clay characterization included [...] Read more.
Plastic waste, particularly polyethylene terephthalate (PET), poses a growing environmental challenge. This study investigates the feasibility of incorporating recycled PET into clay bricks as a sustainable alternative in construction. Bricks were fabricated with 0%, 5%, 10%, and 15% PET content. Clay characterization included particle size distribution, Atterberg limits, and moisture content. Physical and mechanical tests evaluated dimensional variability, void percentage, warping, water absorption, suction, unit compressive strength (fb), and prism compressive strength (fm). Statistical analysis (Shapiro–Wilk, p < 0.05) validated the results. PET addition improved physical properties—reducing water absorption, suction, and voids—while slightly compromising mechanical strength. The 15% PET mix showed the best overall performance (fb = 24.00 kg/cm2; fm = 20.40 kg/cm2), with uniform deformation and lower absorption (18.7%). Recycled PET enhances key physical attributes of clay bricks, supporting its use in eco-friendly construction. However, reduced compressive strength limits its structural applications. Optimizing PET particle size, clay type, and firing conditions is essential to improve load-bearing capacity. Current formulations are promising for non-structural uses, contributing to circular material strategies. Full article
(This article belongs to the Topic Sustainable Building Materials)
Show Figures

Figure 1

13 pages, 1846 KB  
Article
Toward Circular Carbon: Upcycling Coke Oven Waste into Graphite Anodes for Lithium-Ion Batteries
by Seonhui Choi, Inchan Yang, Byeongheon Lee, Tae Hun Kim, Sei-Min Park and Jung-Chul An
Batteries 2025, 11(10), 365; https://doi.org/10.3390/batteries11100365 - 2 Oct 2025
Viewed by 288
Abstract
This study presents a sustainable upcycling strategy to convert “Pit,” a carbon-rich coke oven by-product from steel manufacturing, into high-purity graphite for use as an anode material in lithium-ion batteries. Despite its high carbon content, raw Pit contains significant impurities and has irregular [...] Read more.
This study presents a sustainable upcycling strategy to convert “Pit,” a carbon-rich coke oven by-product from steel manufacturing, into high-purity graphite for use as an anode material in lithium-ion batteries. Despite its high carbon content, raw Pit contains significant impurities and has irregular particle morphology, which limits its direct application in batteries. We employed a multi-step, additive-free refinement process—including jet milling, spheroidization, and high-temperature graphitization—to enhance carbon purity and structural properties. The processed Pit-derived graphite showed a much-improved particle size distribution (D50 reduced from 25.3 μm to 14.8 μm & Span reduced from 1.72 to 1.23), increased tap density (from 0.54 to 0.80 g/cm3), and reduced BET surface area, making it suitable for high-performance lithium-ion batteries anodes. Structural characterization by XRD and TEM confirmed dramatically enhanced crystallinity after graphitization (graphitization degree increasing from ~13 for raw Pit to 95.7% for graphitized Pit at 3000 °C). The fully processed graphite (denoted S_Pit3000) delivered a reversible discharge capacity of 346.7 mAh/g with an initial Coulombic efficiency of 93.5% in half-cell tests—comparable to commercial artificial graphite. Furthermore, when composited with silicon oxide to form a hybrid anode, the material achieved an even higher capacity of 418.0 mAh/g under high mass loading conditions. These results highlight the feasibility of transforming industrial coke waste into value-added electrode materials through environmentally friendly physical processes. The upcycled graphite anode meets industrial performance standards, demonstrating a promising route toward circular economy solutions in both the steel and battery industries. Full article
Show Figures

Figure 1

Back to TopTop