Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = piezo-phototronic effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3229 KB  
Article
Pyro-Phototronic Effect Enhanced MXene/ZnO Heterojunction Nanogenerator for Light Energy Harvesting
by Mingyan Xue, Fangpei Li, Wenbo Peng, Quanzhe Zhu and Yongning He
Nanoenergy Adv. 2023, 3(4), 401-420; https://doi.org/10.3390/nanoenergyadv3040020 - 4 Dec 2023
Cited by 5 | Viewed by 2426
Abstract
The coupling of pyroelectricity, semiconductor, and optical excitation yields the pyro-phototronic effect, which has been extensively utilized in photodetectors. It can also enhance the performance of light energy harvesting nanogenerators. In this work, a pyro-phototronic effect-enhanced MXene/ZnO heterojunction nanogenerator has been successfully demonstrated, [...] Read more.
The coupling of pyroelectricity, semiconductor, and optical excitation yields the pyro-phototronic effect, which has been extensively utilized in photodetectors. It can also enhance the performance of light energy harvesting nanogenerators. In this work, a pyro-phototronic effect-enhanced MXene/ZnO heterojunction nanogenerator has been successfully demonstrated, which can harvest broadband light energy (from deep UV to near-infrared) and still operate at 200 °C. The morphology of the ZnO layer and the MXene layer’s thickness have been further optimized for better light energy harvesting performance. For the optimized heterojunction nanogenerator, the responsivity can be improved from ~0.2 mA/W to ~3.5 mA/W by pyro-phototronic effect, under 0.0974 mW/cm2 365 nm UV illumination. Moreover, the coupling of pyro-phototronic and piezo-phototronic effects in MXene/ZnO heterojunction nanogenerators has been investigated. The results indicate that only a small tensile strain could improve the nanogenerator’s performance. The working mechanisms have been carefully analyzed, and the modulation of piezoelectric charges on the Schottky barrier height is found to be the key factor. These results demonstrate the enormous potential of the pyro-phototronic effect in light energy harvesting nanogenerators and illustrate the coupling of pyro-phototronic and piezo-phototronic effects for further performance improvement. Full article
Show Figures

Figure 1

26 pages, 4599 KB  
Review
Recent Research on Indium-Gallium-Nitride-Based Light-Emitting Diodes: Growth Conditions and External Quantum Efficiency
by Naveed Jafar, Jianliang Jiang, Heng Lu, Muhammad Qasim and Hengli Zhang
Crystals 2023, 13(12), 1623; https://doi.org/10.3390/cryst13121623 - 23 Nov 2023
Cited by 16 | Viewed by 4860
Abstract
The optimization of the synthesis of III-V compounds is a crucial subject in enhancing the external quantum efficiency of blue LEDs, laser diodes, quantum-dot solar cells, and other devices. There are several challenges in growing high-quality InGaN materials, including the lattice mismatch between [...] Read more.
The optimization of the synthesis of III-V compounds is a crucial subject in enhancing the external quantum efficiency of blue LEDs, laser diodes, quantum-dot solar cells, and other devices. There are several challenges in growing high-quality InGaN materials, including the lattice mismatch between GaN and InGaN causing stress and piezoelectric polarization, the relatively high vapor pressure of InN compared to GaN, and the low level of incorporation of indium in InGaN materials. Furthermore, carrier delocalization, Shockley–Read–Hall recombination, auger recombination, and electron leakage in InGaN light-emitting diodes (LEDs) are the main contributors to efficiency droop. The synthesis of high-quality III-V compounds can be achieved by optimizing growth parameters such as temperature, V/III ratios, growth rate, and pressure. By reducing the ammonia flow from 200 sccm to 50 sccm, increasing the growth rate from 0.1 to 1 m/h, and lowering the growth pressure from 250 to 150 Torr, the external quantum efficiency of III-V compounds can be improved at growth temperatures ranging from 800 °C to 500 °C. It is crucial to optimize the growth conditions to achieve high-quality materials. In addition, novel approaches such as adopting a microrod crystal structure, utilizing the piezo-phototronic effect, and depositing AlN/Al2O3 on top of the P-GaN and the electron-blocking layer can also contribute to improving the external quantum efficiency. The deposition of a multifunctional ultrathin layers of AlN/Al2O3 on top of the P-GaN can enhance the peak external quantum efficiency of InGaN blue LEDs by 29%, while the piezo-phototronic effect induced by a tensile strain of 2.04% results in a 183% increase in the relative electroluminescence intensity of the LEDs. This paper also discusses conventional and inverted p-i-n junction structures of LEDs. Full article
(This article belongs to the Special Issue III-Nitride Materials: Properties, Growth, and Applications)
Show Figures

Figure 1

9 pages, 13222 KB  
Communication
Coupling of Pyro–Piezo-Phototronic Effects in a GaN Nanowire
by Guoshuai Qin, Zhenyu Wang, Lei Wang, Kun Yang, Minghao Zhao and Chunsheng Lu
Materials 2023, 16(18), 6247; https://doi.org/10.3390/ma16186247 - 17 Sep 2023
Cited by 3 | Viewed by 1924
Abstract
In this paper, we systematically investigate the synergistic regulation of ultraviolet and mechanical loading on the electromechanical behavior of a GaN nanowire. The distributions of polarization charge, potential, carriers, and electric field in the GaN nanowire are analytically represented by using a one-dimensional [...] Read more.
In this paper, we systematically investigate the synergistic regulation of ultraviolet and mechanical loading on the electromechanical behavior of a GaN nanowire. The distributions of polarization charge, potential, carriers, and electric field in the GaN nanowire are analytically represented by using a one-dimensional model that combines pyro-phototronic and piezo-phototronic properties, and then, the electrical transmission characteristics are analyzed. The results suggest that, due to the pyro-phototronic effect and ultraviolet photoexcited non-equilibrium carriers, the electrical behavior of a nano-Schottky junction can be modulate by ultraviolet light. This provides a new method for the function improvement and performance regulation of intelligent optoelectronic nano-Schottky devices. Full article
Show Figures

Figure 1

14 pages, 5466 KB  
Article
Piezotronic and Piezo-Phototronic Effects-Enhanced Core–Shell Structure-Based Nanowire Field-Effect Transistors
by Xiang Liu, Fangpei Li, Wenbo Peng, Quanzhe Zhu, Yangshan Li, Guodong Zheng, Hongyang Tian and Yongning He
Micromachines 2023, 14(7), 1335; https://doi.org/10.3390/mi14071335 - 29 Jun 2023
Cited by 3 | Viewed by 1799
Abstract
Piezotronic and piezo-phototronic effects have been extensively applied to modulate the performance of advanced electronics and optoelectronics. In this study, to systematically investigate the piezotronic and piezo-phototronic effects in field-effect transistors (FETs), a core–shell structure-based Si/ZnO nanowire heterojunction FET (HJFET) model was established [...] Read more.
Piezotronic and piezo-phototronic effects have been extensively applied to modulate the performance of advanced electronics and optoelectronics. In this study, to systematically investigate the piezotronic and piezo-phototronic effects in field-effect transistors (FETs), a core–shell structure-based Si/ZnO nanowire heterojunction FET (HJFET) model was established using the finite element method. We performed a sweep analysis of several parameters of the model. The results show that the channel current increases with the channel radial thickness and channel doping concentration, while it decreases with the channel length, gate doping concentration, and gate voltage. Under a tensile strain of 0.39‰, the saturation current change rate can reach 38%. Finally, another core–shell structure-based ZnO/Si nanowire HJFET model with the same parameters was established. The simulation results show that at a compressive strain of −0.39‰, the saturation current change rate is about 18%, which is smaller than that of the Si/ZnO case. Piezoelectric potential and photogenerated electromotive force jointly regulate the carrier distribution in the channel, change the width of the channel depletion layer and the channel conductivity, and thus regulate the channel current. The research results provide a certain degree of reference for the subsequent experimental design of Zn-based HJFETs and are applicable to other kinds of FETs. Full article
(This article belongs to the Special Issue Nanowires for Novel Technological Applications)
Show Figures

Figure 1

23 pages, 15312 KB  
Review
Vertically Aligned Nanowires and Quantum Dots: Promises and Results in Light Energy Harvesting
by Giuseppe Prestopino, Andrea Orsini, Daniele Barettin, Giuseppe Arrabito, Bruno Pignataro and Pier Gianni Medaglia
Materials 2023, 16(12), 4297; https://doi.org/10.3390/ma16124297 - 9 Jun 2023
Cited by 7 | Viewed by 3112
Abstract
The synthesis of crystals with a high surface-to-volume ratio is essential for innovative, high-performance electronic devices and sensors. The easiest way to achieve this in integrated devices with electronic circuits is through the synthesis of high-aspect-ratio nanowires aligned vertically to the substrate surface. [...] Read more.
The synthesis of crystals with a high surface-to-volume ratio is essential for innovative, high-performance electronic devices and sensors. The easiest way to achieve this in integrated devices with electronic circuits is through the synthesis of high-aspect-ratio nanowires aligned vertically to the substrate surface. Such surface structuring is widely employed for the fabrication of photoanodes for solar cells, either combined with semiconducting quantum dots or metal halide perovskites. In this review, we focus on wet chemistry recipes for the growth of vertically aligned nanowires and technologies for their surface functionalization with quantum dots, highlighting the procedures that yield the best results in photoconversion efficiencies on rigid and flexible substrates. We also discuss the effectiveness of their implementation. Among the three main materials used for the fabrication of nanowire-quantum dot solar cells, ZnO is the most promising, particularly due to its piezo-phototronic effects. Techniques for functionalizing the surfaces of nanowires with quantum dots still need to be refined to be effective in covering the surface and practical to implement. The best results have been obtained from slow multi-step local drop casting. It is promising that good efficiencies have been achieved with both environmentally toxic lead-containing quantum dots and environmentally friendly zinc selenide. Full article
Show Figures

Figure 1

35 pages, 14831 KB  
Review
Pyro-Phototronic Effect for Advanced Photodetectors and Novel Light Energy Harvesting
by Fangpei Li, Wenbo Peng, Yitong Wang, Mingyan Xue and Yongning He
Nanomaterials 2023, 13(8), 1336; https://doi.org/10.3390/nano13081336 - 11 Apr 2023
Cited by 13 | Viewed by 4077
Abstract
Pyroelectricity was discovered long ago and utilized to convert thermal energy that is tiny and usually wasted in daily life into useful electrical energy. The combination of pyroelectricity and optoelectronic yields a novel research field named as Pyro-Phototronic, where light-induced temperature variation [...] Read more.
Pyroelectricity was discovered long ago and utilized to convert thermal energy that is tiny and usually wasted in daily life into useful electrical energy. The combination of pyroelectricity and optoelectronic yields a novel research field named as Pyro-Phototronic, where light-induced temperature variation of the pyroelectric material produces pyroelectric polarization charges at the interfaces of semiconductor optoelectronic devices, capable of modulating the device performances. In recent years, the pyro-phototronic effect has been vastly adopted and presents huge potential applications in functional optoelectronic devices. Here, we first introduce the basic concept and working mechanism of the pyro-phototronic effect and next summarize the recent progress of the pyro-phototronic effect in advanced photodetectors and light energy harvesting based on diverse materials with different dimensions. The coupling between the pyro-phototronic effect and the piezo-phototronic effect has also been reviewed. This review provides a comprehensive and conceptual summary of the pyro-phototronic effect and perspectives for pyro-phototronic-effect-based potential applications. Full article
Show Figures

Figure 1

33 pages, 7187 KB  
Review
Fundamentals and Applications of ZnO-Nanowire-Based Piezotronics and Piezo-Phototronics
by Yitong Wang, Wanli Xie, Wenbo Peng, Fangpei Li and Yongning He
Micromachines 2023, 14(1), 47; https://doi.org/10.3390/mi14010047 - 25 Dec 2022
Cited by 15 | Viewed by 5184
Abstract
The piezotronic effect is a coupling effect of semiconductor and piezoelectric properties. The piezoelectric potential is used to adjust the p-n junction barrier width and Schottky barrier height to control carrier transportation. At present, it has been applied in the fields of sensors, [...] Read more.
The piezotronic effect is a coupling effect of semiconductor and piezoelectric properties. The piezoelectric potential is used to adjust the p-n junction barrier width and Schottky barrier height to control carrier transportation. At present, it has been applied in the fields of sensors, human–machine interaction, and active flexible electronic devices. The piezo-phototronic effect is a three-field coupling effect of semiconductor, photoexcitation, and piezoelectric properties. The piezoelectric potential generated by the applied strain in the piezoelectric semiconductor controls the generation, transport, separation, and recombination of carriers at the metal–semiconductor contact or p-n junction interface, thereby improving optoelectronic devices performance, such as photodetectors, solar cells, and light-emitting diodes (LED). Since then, the piezotronics and piezo-phototronic effects have attracted vast research interest due to their ability to remarkably enhance the performance of electronic and optoelectronic devices. Meanwhile, ZnO has become an ideal material for studying the piezotronic and piezo-phototronic effects due to its simple preparation process and better biocompatibility. In this review, first, the preparation methods and structural characteristics of ZnO nanowires (NWs) with different doping types were summarized. Then, the theoretical basis of the piezotronic effect and its application in the fields of sensors, biochemistry, energy harvesting, and logic operations (based on piezoelectric transistors) were reviewed. Next, the piezo-phototronic effect in the performance of photodetectors, solar cells, and LEDs was also summarized and analyzed. In addition, modulation of the piezotronic and piezo-phototronic effects was compared and summarized for different materials, structural designs, performance characteristics, and working mechanisms’ analysis. This comprehensive review provides fundamental theoretical and applied guidance for future research directions in piezotronics and piezo-phototronics for optoelectronic devices and energy harvesting. Full article
(This article belongs to the Special Issue Advanced Technologies in Piezo-Phototronics)
Show Figures

Figure 1

12 pages, 3914 KB  
Article
Influence of Wurtzite ZnO Morphology on Piezophototronic Effect in Photocatalysis
by Xiaowen Su, Xiaolei Zhao, Chao Cui, Ning Xi, Xiao Li Zhang, Hong Liu, Xiaowen Yu and Yuanhua Sang
Catalysts 2022, 12(9), 946; https://doi.org/10.3390/catal12090946 - 25 Aug 2022
Cited by 12 | Viewed by 2821
Abstract
A piezoelectric field promotes the photocatalytic activity of a photocatalyst by helping separating photo-generated charge carriers. Wurtzite phase ZnO is a typical photocatalyst with a piezoelectric property, thus self-assisted photocatalysis with ZnO based on the piezophototronic effect can be achieved. ZnO nanorods or [...] Read more.
A piezoelectric field promotes the photocatalytic activity of a photocatalyst by helping separating photo-generated charge carriers. Wurtzite phase ZnO is a typical photocatalyst with a piezoelectric property, thus self-assisted photocatalysis with ZnO based on the piezophototronic effect can be achieved. ZnO nanorods or nanowires with a clear c-axis have been well studied, while other morphologies have not been fully discussed. In this work, we prepared wurtzite phase ZnO with four different morphologies. By comparing their photocatalytic activity for degradation of Rhodamine B under the same mechanical energy source provided by ultrasound, the effect of morphology and exposed facets on photo-induced charge separation were highlighted. The ZnO nanowire photocatalyst delivered an impressive improvement in photocatalytic efficiency when ultrasound driven, suggesting that the morphology-related piezophototronic effect had a positive effect on separation of photo-generated charge carriers, and more exposed active facets benefitted the utilization of charge carriers. Full article
Show Figures

Figure 1

12 pages, 3657 KB  
Article
Enhanced Electrical Transport and Photoconductivity of ZnO/ZnS Core/Shell Nanowires Based on Piezotronic and Piezo-Phototronic Effects
by Sehee Jeong and Seong-Ju Park
Appl. Sci. 2022, 12(17), 8393; https://doi.org/10.3390/app12178393 - 23 Aug 2022
Cited by 3 | Viewed by 2131
Abstract
We report a significant enhancement in the electrical transport and photoconductivity of ZnO/ZnS core/shell nanowires (NWs) compared to those of ZnO NWs via the application of compressive strain. Under a compressive strain of −0.15%, the output current of the ZnO/ZnS core/shell NWs increases [...] Read more.
We report a significant enhancement in the electrical transport and photoconductivity of ZnO/ZnS core/shell nanowires (NWs) compared to those of ZnO NWs via the application of compressive strain. Under a compressive strain of −0.15%, the output current of the ZnO/ZnS core/shell NWs increases by 91.1% compared to that under the no-strain condition, whereas that of the ZnO NWs under the same condition is 42.7%. The significant increase in the output current of the ZnO/ZnS core/shell NWs is attributed to the type-II band alignment and strain-induced piezopotential changes at the junction interface, which induce a reduction in the barrier height to enable efficient charge carrier transport. Furthermore, under UV illumination and a compressive strain of −0.15%, although the photocurrent of the ZnO/ZnS core/shell NWs increases by 4.5 times compared to that of the ZnO NWs, the relative increase in the photocurrent of the ZnO/ZnS core/shell NWs is 11.7% compared to that under the no-strain condition, while the photocurrent of the ZnO NWs increases by 32.3% under the same condition. A decrease in the increase rate in the photocurrent of the ZnO/ZnS core/shell NWs with a change in strain under UV light compared to that under the dark condition can be explained by the piezoelectric screening effect induced by photogenerated carriers. By calculating the change in the Schottky barrier height (SBH), we demonstrate that the piezoelectric potential with a change in strain decreased the SBH, thus increasing the current level. Lastly, we propose a mechanism of the piezotronic and piezo-phototronic effects under applied strain and their effects on energy-band diagrams. Full article
(This article belongs to the Special Issue Applications of Nano-Electronic Devices)
Show Figures

Figure 1

24 pages, 3209 KB  
Review
Recent Development of Multifunctional Sensors Based on Low-Dimensional Materials
by Qian Xu, Yang Dai, Yiyao Peng, Li Hong, Ning Yang and Zhiqiang Wang
Sensors 2021, 21(22), 7727; https://doi.org/10.3390/s21227727 - 20 Nov 2021
Cited by 11 | Viewed by 3906
Abstract
With the demand for accurately recognizing human actions and environmental situations, multifunctional sensors are essential elements for smart applications in various emerging technologies, such as smart robots, human-machine interface, and wearable electronics. Low-dimensional materials provide fertile soil for multifunction-integrated devices. This review focuses [...] Read more.
With the demand for accurately recognizing human actions and environmental situations, multifunctional sensors are essential elements for smart applications in various emerging technologies, such as smart robots, human-machine interface, and wearable electronics. Low-dimensional materials provide fertile soil for multifunction-integrated devices. This review focuses on the multifunctional sensors for mechanical stimulus and environmental information, such as strain, pressure, light, temperature, and gas, which are fabricated from low-dimensional materials. The material characteristics, device architecture, transmission mechanisms, and sensing functions are comprehensively and systematically introduced. Besides multiple sensing functions, the integrated potential ability of supplying energy and expressing and storing information are also demonstrated. Some new process technologies and emerging research areas are highlighted. It is presented that optimization of device structures, appropriate material selection for synergy effect, and application of piezotronics and piezo-phototronics are effective approaches for constructing and improving the performance of multifunctional sensors. Finally, the current challenges and direction of future development are proposed. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

15 pages, 3224 KB  
Article
Low-Temperature Growth of ZnO Nanowires from Gravure-Printed ZnO Nanoparticle Seed Layers for Flexible Piezoelectric Devices
by Andrés Jenaro Lopez Garcia, Giuliano Sico, Maria Montanino, Viktor Defoor, Manojit Pusty, Xavier Mescot, Fausta Loffredo, Fulvia Villani, Giuseppe Nenna and Gustavo Ardila
Nanomaterials 2021, 11(6), 1430; https://doi.org/10.3390/nano11061430 - 28 May 2021
Cited by 26 | Viewed by 6148
Abstract
Zinc oxide (ZnO) nanowires (NWs) are excellent candidates for the fabrication of energy harvesters, mechanical sensors, and piezotronic and piezophototronic devices. In order to integrate ZnO NWs into flexible devices, low-temperature fabrication methods are required that do not damage the plastic substrate. To [...] Read more.
Zinc oxide (ZnO) nanowires (NWs) are excellent candidates for the fabrication of energy harvesters, mechanical sensors, and piezotronic and piezophototronic devices. In order to integrate ZnO NWs into flexible devices, low-temperature fabrication methods are required that do not damage the plastic substrate. To date, the deposition of patterned ceramic thin films on flexible substrates is a difficult task to perform under vacuum-free conditions. Printing methods to deposit functional thin films offer many advantages, such as a low cost, low temperature, high throughput, and patterning at the same stage of deposition. Among printing techniques, gravure-based techniques are among the most attractive due to their ability to produce high quality results at high speeds and perform deposition over a large area. In this paper, we explore gravure printing as a cost-effective high-quality method to deposit thin ZnO seed layers on flexible polymer substrates. For the first time, we show that by following a chemical bath deposition (CBD) process, ZnO nanowires may be grown over gravure-printed ZnO nanoparticle seed layers. Piezo-response force microscopy (PFM) reveals the presence of a homogeneous distribution of Zn-polar domains in the NWs, and, by use of the data, the piezoelectric coefficient is estimated to be close to 4 pm/V. The overall results demonstrate that gravure printing is an appropriate method to deposit seed layers at a low temperature and to undertake the direct fabrication of flexible piezoelectric transducers that are based on ZnO nanowires. This work opens the possibility of manufacturing completely vacuum-free solution-based flexible piezoelectric devices. Full article
(This article belongs to the Special Issue ZnO Nanowires: Growth, Properties, and Energy Applications)
Show Figures

Graphical abstract

24 pages, 5054 KB  
Review
Emerging Energy Harvesting Technology for Electro/Photo-Catalytic Water Splitting Application
by Jianfei Tang, Tianle Liu, Sijia Miao and Yuljae Cho
Catalysts 2021, 11(1), 142; https://doi.org/10.3390/catal11010142 - 19 Jan 2021
Cited by 49 | Viewed by 7961
Abstract
In recent years, we have experienced extreme climate changes due to the global warming, continuously impacting and changing our daily lives. To build a sustainable environment and society, various energy technologies have been developed and introduced. Among them, energy harvesting, converting ambient environmental [...] Read more.
In recent years, we have experienced extreme climate changes due to the global warming, continuously impacting and changing our daily lives. To build a sustainable environment and society, various energy technologies have been developed and introduced. Among them, energy harvesting, converting ambient environmental energy into electrical energy, has emerged as one of the promising technologies for a variety of energy applications. In particular, a photo (electro) catalytic water splitting system, coupled with emerging energy harvesting technology, has demonstrated high device performance, demonstrating its great social impact for the development of the new water splitting system. In this review article, we introduce and discuss in detail the emerging energy-harvesting technology for photo (electro) catalytic water splitting applications. The article includes fundamentals of photocatalytic and electrocatalytic water splitting and water splitting applications coupled with the emerging energy-harvesting technologies using piezoelectric, piezo-phototronic, pyroelectric, triboelectric, and photovoltaic effects. We comprehensively deal with different mechanisms in water splitting processes with respect to the energy harvesting processes and their effect on the water splitting systems. Lastly, new opportunities in energy harvesting-assisted water splitting are introduced together with future research directions that need to be investigated for further development of new types of water splitting systems. Full article
Show Figures

Figure 1

19 pages, 4723 KB  
Review
Review on Quasi One-Dimensional CdSe Nanomaterials: Synthesis and Application in Photodetectors
by Weifeng Jin and Luodan Hu
Nanomaterials 2019, 9(10), 1359; https://doi.org/10.3390/nano9101359 - 23 Sep 2019
Cited by 32 | Viewed by 4848
Abstract
During the past 15 years, quasi one-dimensional (1D) Cadmium Selenide (CdSe) nanomaterials have been widely investigated for high-performance electronic and optoelectronic devices, due to the unique geometrical and physical properties. In this review, recent advancements on diverse synthesis methods of 1D CdSe nanomaterials [...] Read more.
During the past 15 years, quasi one-dimensional (1D) Cadmium Selenide (CdSe) nanomaterials have been widely investigated for high-performance electronic and optoelectronic devices, due to the unique geometrical and physical properties. In this review, recent advancements on diverse synthesis methods of 1D CdSe nanomaterials and the application in photodetectors have been illustrated in detail. First, several bottom-up synthesis methods of 1D CdSe nanomaterials have been introduced, including the vapor-liquid-solid method, the solution-liquid-solid method, and electrochemical deposition, etc. Second, the discussion on photodetectors based on 1D CdSe nanomaterials has been divided into three parts, including photodiodes, photoconductors, and phototransistors. Besides, some new mechanisms (such as enhancement effect of localized surface plasmon, optical quenching effect of photoconductivity, and piezo-phototronic effect), which can be utilized to enhance the performance of photodetectors, have also been elaborated. Finally, some major challenges and opportunities towards the practical integration and application of 1D CdSe nanomaterials in photodetectors have been discussed, which need to be further investigated in the future. Full article
Show Figures

Figure 1

13 pages, 4480 KB  
Article
Arrayed CdTeMicrodots and Their Enhanced Photodetectivity via Piezo-Phototronic Effect
by Dong Jin Lee, G. Mohan Kumar, P. Ilanchezhiyan, Fu Xiao, Sh.U. Yuldashev, Yong Deuk Woo, Deuk Young Kim and Tae Won Kang
Nanomaterials 2019, 9(2), 178; https://doi.org/10.3390/nano9020178 - 1 Feb 2019
Cited by 8 | Viewed by 3411
Abstract
In this paper, a photodetector based on arrayed CdTe microdots was fabricated on Bi coated transparent conducting indium tin oxide (ITO)/glass substrates. Current-voltage characteristics of these photodetectors revealed an ultrahigh sensitivity under stress (in the form of force through press) while compared to [...] Read more.
In this paper, a photodetector based on arrayed CdTe microdots was fabricated on Bi coated transparent conducting indium tin oxide (ITO)/glass substrates. Current-voltage characteristics of these photodetectors revealed an ultrahigh sensitivity under stress (in the form of force through press) while compared to normal condition. The devices exhibited excellent photosensing properties with photoinduced current increasing from 20 to 76 μA cm−2 under stress. Furthermore, the photoresponsivity of the devices also increased under stress from 3.2 × 10−4 A/W to 5.5 × 10−3 A/W at a bias of 5 V. The observed characteristics are attributed to the piezopotential induced change in Schottky barrier height, which actually results from the piezo-phototronic effect. The obtained results also demonstrate the feasibility in realization of a facile and promising CdTe microdots-based photodetector via piezo-phototronic effect. Full article
(This article belongs to the Special Issue Optoelectronic Nanodevices)
Show Figures

Graphical abstract

29 pages, 88206 KB  
Review
One-Dimensional Zinc Oxide Nanomaterials for Application in High-Performance Advanced Optoelectronic Devices
by Meng Ding, Zhen Guo, Lianqun Zhou, Xuan Fang, Lili Zhang, Leyong Zeng, Lina Xie and Hongbin Zhao
Crystals 2018, 8(5), 223; https://doi.org/10.3390/cryst8050223 - 18 May 2018
Cited by 78 | Viewed by 13096
Abstract
Unlike conventional bulk or film materials, one-dimensional (1D) semiconducting zinc oxide (ZnO) nanostructures exhibit excellent photoelectric properties including ultrahigh intrinsic photoelectric gain, multiple light confinement, and subwavelength size effects. Compared with polycrystalline thin films, nanowires usually have high phase purity, no grain boundaries, [...] Read more.
Unlike conventional bulk or film materials, one-dimensional (1D) semiconducting zinc oxide (ZnO) nanostructures exhibit excellent photoelectric properties including ultrahigh intrinsic photoelectric gain, multiple light confinement, and subwavelength size effects. Compared with polycrystalline thin films, nanowires usually have high phase purity, no grain boundaries, and long-distance order, making them attractive for carrier transport in advanced optoelectronic devices. The properties of one-dimensional nanowires—such as strong optical absorption, light emission, and photoconductive gain—could improve the performance of light-emitting diodes (LEDs), photodetectors, solar cells, nanogenerators, field-effect transistors, and sensors. For example, ZnO nanowires behave as carrier transport channels in photoelectric devices, decreasing the loss of the light-generated carrier. The performance of LEDs and photoelectric detectors based on nanowires can be improved compared with that of devices based on polycrystalline thin films. This article reviews the fabrication methods of 1D ZnO nanostructures—including chemical vapor deposition, hydrothermal reaction, and electrochemical deposition—and the influence of the growth parameters on the growth rate and morphology. Important applications of 1D ZnO nanostructures in optoelectronic devices are described. Several approaches to improve the performance of 1D ZnO-based devices, including surface passivation, localized surface plasmons, and the piezo-phototronic effect, are summarized. Full article
(This article belongs to the Special Issue Functional Oxide Based Thin-Film Materials)
Show Figures

Figure 1

Back to TopTop