Processing math: 83%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = planar interconnects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7816 KiB  
Article
4D+ City Sidewalk: Integrating Pedestrian View into Sidewalk Spaces to Support User-Centric Urban Spatial Perception
by Jinjing Zhao, Yunfan Chen, Yancheng Li, Haotian Xu, Jingjing Xu, Xuliang Li, Hong Zhang, Lei Jin and Shengyong Xu
Sensors 2025, 25(5), 1375; https://doi.org/10.3390/s25051375 - 24 Feb 2025
Viewed by 329
Abstract
As urban environments become increasingly interconnected, the demand for precise and efficient pedestrian solutions in digitalized smart cities has grown significantly. This study introduces a scalable spatial visualization system designed to enhance interactions between individuals and the street in outdoor sidewalk environments. The [...] Read more.
As urban environments become increasingly interconnected, the demand for precise and efficient pedestrian solutions in digitalized smart cities has grown significantly. This study introduces a scalable spatial visualization system designed to enhance interactions between individuals and the street in outdoor sidewalk environments. The system operates in two main phases: the spatial prior phase and the target localization phase. In the spatial prior phase, the system captures the user’s perspective using first-person visual data and leverages landmark elements within the sidewalk environment to localize the user’s camera. In the target localization phase, the system detects surrounding objects, such as pedestrians or cyclists, using high-angle closed-circuit television (CCTV) cameras. The system was deployed in a real-world sidewalk environment at an intersection on a university campus. By combining user location data with CCTV observations, a 4D+ virtual monitoring system was developed to present a spatiotemporal visualization of the mobile participants within the user’s surrounding sidewalk space. Experimental results show that the landmark-based localization method achieves a planar positioning error of 0.468 m and a height error of 0.120 m on average. With the assistance of CCTV cameras, the localization of other targets maintains an overall error of 0.24 m. This system establishes the spatial relationship between pedestrians and the street by integrating detailed sidewalk views, with promising applications for pedestrian navigation and the potential to enhance pedestrian-friendly urban ecosystems. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

19 pages, 2276 KiB  
Article
A Broadband Mode Converter Antenna for Terahertz Communications
by Biswash Paudel, Xue Jun Li and Boon-Chong Seet
Electronics 2025, 14(3), 551; https://doi.org/10.3390/electronics14030551 - 29 Jan 2025
Viewed by 624
Abstract
The rise of artificial intelligence (AI) necessitates ultra-fast computing, with on-chip terahertz (THz) communication emerging as a key enabler. It offers high bandwidth, low power consumption, dense interconnects, support for multi-core architectures, and 3D circuit integration. However, transitioning between different waveguides remains a [...] Read more.
The rise of artificial intelligence (AI) necessitates ultra-fast computing, with on-chip terahertz (THz) communication emerging as a key enabler. It offers high bandwidth, low power consumption, dense interconnects, support for multi-core architectures, and 3D circuit integration. However, transitioning between different waveguides remains a major challenge in THz systems. In this paper, we propose a THz band mode converter that converts from a rectangular waveguide (RWG) (WR-0.43) in TE10 mode to a substrate-integrated waveguide (SIW) in TE20 mode. The converter comprises a tapered waveguide, a widened waveguide, a zigzag antenna, and an aperture coupling slot. The zigzag antenna effectively captures the electromagnetic (EM) energy from the RWG, which is then coupled to the aperture slot. This coupling generates a quasi-slotline mode for the electric field (E-field) along the longitudinal side of the aperture, exhibiting odd symmetry akin to the SIW’s TE20 mode. Consequently, the TE20 mode is excited in the symmetrical plane of the SIW and propagates transversely. Our work details the mode transition principle through simulations of the EM field distribution and model optimization. A back-to-back RWG TE10-to-TE10 mode converter is designed, demonstrating an insertion loss of approximately 5 dB over the wide frequency range band of 2.15–2.36 THz, showing a return loss of 10 dB. An on-chip antenna is proposed which is fed by a single higher-order mode of the SIW, achieving a maximum gain of 4.49 dB. Furthermore, a balun based on the proposed converter is designed, confirming the presence of the TE20 mode in the SIW. The proposed mode converter demonstrates its feasibility for integration into a THz-band high-speed circuit due to its efficient mode conversion and compact planar design. Full article
(This article belongs to the Special Issue Broadband Antennas and Antenna Arrays)
Show Figures

Figure 1

16 pages, 3424 KiB  
Article
Efficient Modeling Framework for FO-WLP Solder Interconnect Behavior During Thermal Cycling
by Ramiro Sebastian Vargas Cruz and Viktor Gonda
Metals 2025, 15(1), 17; https://doi.org/10.3390/met15010017 - 29 Dec 2024
Viewed by 502
Abstract
In advanced microelectronic packaging, high thermo-mechanical loads arise on the solder interconnects. Accurate and efficient modeling of the mechanical behavior is crucial in the design of the package, and the simulation results can provide a basis for estimations of the reliability of the [...] Read more.
In advanced microelectronic packaging, high thermo-mechanical loads arise on the solder interconnects. Accurate and efficient modeling of the mechanical behavior is crucial in the design of the package, and the simulation results can provide a basis for estimations of the reliability of the assembly. However, the accuracy of the simulation results depends on the accuracy of the modeled geometry and the modeling simplifications and assumptions employed to achieve computational cost-efficient calculations. In this work, finite element analysis (FEA) of a Fan Out—Wafer Level Packaging (FO-WLP) layout was carried out considering the following variations: modeling domain (2-D and pseudo-3-D) was defined for creating the efficient calculation framework, where soldering material (SAC 305 and SACQ), incorporation of intermetallic compound (IMC), bond pad edge geometry (sharp and blunt) were modeled for cycles of thermal load. Stress and strain analysis was carried out to evaluate the solder behavior for the parameter variations. Furthermore, fatigue indicators were evaluated. An efficient planar simulation framework with 2-D and pseudo-3-D meshed geometries provides a quick estimate for the lower and upper bound for the strain, stress and strain energy-related parameters, respectively. This calculation framework can be employed for extensive parameter studies solved rapidly at low computational costs. Full article
(This article belongs to the Special Issue Advanced Studies in Solder Joints)
Show Figures

Figure 1

13 pages, 2959 KiB  
Article
β-Yb2CdSb2—A Complex Non-Centrosymmetric Zintl Polymorph
by Spencer R. Watts, Larissa Najera, Michael O. Ogunbunmi, Svilen Bobev and Sviatoslav Baranets
Crystals 2024, 14(11), 920; https://doi.org/10.3390/cryst14110920 - 25 Oct 2024
Cited by 1 | Viewed by 1083
Abstract
The ternary Zintl phase, Yb2CdSb2, was discovered to exist in two different polymorphic forms. In addition to the orthorhombic α-Yb2CdSb2 (space group Cmc21) known for its excellent thermoelectric properties, we present the synthesis [...] Read more.
The ternary Zintl phase, Yb2CdSb2, was discovered to exist in two different polymorphic forms. In addition to the orthorhombic α-Yb2CdSb2 (space group Cmc21) known for its excellent thermoelectric properties, we present the synthesis and characterization of the crystal and electronic structure of its monoclinic variant, β-Yb2CdSb2. Structural characterization was performed with the single-crystal X-ray diffraction method. β-Yb2CdSb2 crystallizes in a monoclinic crystal system with the non-centrosymmetric space group Cm (Z = 33, a = 81.801(5) Å, b = 4.6186(3) Å, c = 12.6742(7) Å, β = 93.0610(10)°) and constitutes a new structure type. The complex crystal structure of β-Yb2CdSb2 contrasts with the previously studied β-Ca2CdPn2 (Pn = P, As, Sb) polymorphs, although it shares similar structural features. It consists of three different layers, made of corner-sharing [CdSb4] tetrahedra and stacked in the ABC sequence. The layers are interconnected via [CdSb3] trigonal planar units. Multiple Yb and Cd atomic sites exhibit partial occupancy, resulting in extensive structural disorder. Valence electron partitioning within the Zintl–Klemm formalism yields the formulation (Yb2+)1.98(Cd2+)1.01(Sb3−)2(h+)0.02, highlighting the nearly charge-balanced composition. Detailed electronic structure calculations reveal the closed band gap and presumably semimetallic nature of β-Yb2CdSb2 with the band structure features hinting at potential topological properties. Full article
(This article belongs to the Special Issue Crystalline Materials: Polymorphism)
Show Figures

Figure 1

26 pages, 9412 KiB  
Article
Mechanisms of Chemically Promoted Material Removal Examined for Molybdenum and Copper CMP in Weakly Alkaline Citrate-Based Slurries
by K. U. Gamagedara and D. Roy
Materials 2024, 17(19), 4905; https://doi.org/10.3390/ma17194905 - 7 Oct 2024
Cited by 2 | Viewed by 1934
Abstract
Chemical mechanical planarization (CMP) of metal components is an essential step in the fabrication of integrated circuits. Metal CMP is a complex process where strategically activated (electro)chemical reactions serve to structurally weaken the surface layers of the material being processed, and the resulting [...] Read more.
Chemical mechanical planarization (CMP) of metal components is an essential step in the fabrication of integrated circuits. Metal CMP is a complex process where strategically activated (electro)chemical reactions serve to structurally weaken the surface layers of the material being processed, and the resulting overburdens are removed under low-force abrasion. Understanding the tribo-electrochemical mechanisms of this process is crucial to successfully designing the consumable materials for advanced CMP slurries that are needed for the new technology nodes. Using a model CMP system involving copper (wiring material in interconnect structures) and molybdenum (a new diffusion barrier material for copper), the present work illustrates a tribo-electroanalytical scheme for studying various mechanistic details of metal CMP. Electroanalytical probes are employed both in the absence and in the presence of surface polishing to quantify the interplay between mechanical abrasion and chemical surface modification. Weakly alkaline slurry formulations are tested with variable concentrations of silica abrasives and a complexing agent, citric acid. The results serve to examine the link between material removal and tribo-corrosion and to identify the functions of the active slurry additives in governing the rates and selectivity of material removal for CMP. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

13 pages, 4580 KiB  
Article
Simulation-Guided Analysis towards Trench Depth Optimization for Enhanced Flexibility in Stretch-Free, Shape-Induced Interconnects for Flexible Electronics
by Daniel Joch, Thomas Lang, Shawn Sanctis and Michael P. M. Jank
Materials 2024, 17(15), 3849; https://doi.org/10.3390/ma17153849 - 3 Aug 2024
Viewed by 911
Abstract
In this paper, we present an optimization of the planar manufacturing scheme for stretch-free, shape-induced metal interconnects to simplify fabrication with the aim of maximizing the flexibility in a structure regarding stress and strain. The formation of trenches between silicon islands is actively [...] Read more.
In this paper, we present an optimization of the planar manufacturing scheme for stretch-free, shape-induced metal interconnects to simplify fabrication with the aim of maximizing the flexibility in a structure regarding stress and strain. The formation of trenches between silicon islands is actively used in the lithographic process to create arc shape structures by spin coating resists into the trenches. The resulting resist form is used as a template for the metal lines, which are structured on top. Because this arc shape is beneficial for the flexibility of these bridges. The trench depth as a key parameter for the stress distribution is investigated by applying numerical simulations. The simulated results show that the increase in penetration depth of the metal bridge into the trench increases the tensile load which is converted into a shear force Q(x), that usually leads to increased strains the structure can generate. For the fabrication, the filling of the trenches with resists is optimized by varying the spin speed. Compared to theoretical resistance, the current–voltage measurements of the metal bridges show a similar behavior and almost every structural variation is capable of functioning as a flexible electrical interconnect in a complete island-bridge array. Full article
Show Figures

Figure 1

14 pages, 9822 KiB  
Article
A High Copper Concentration Copper-Quadrol Complex Electroless Solution for Chip Bonding Applications
by Jeng-Hau Huang, Po-Shao Shih, Vengudusamy Renganathan, Simon Johannes Gräfner, Yu-Chun Lin, Chin-Li Kao, Yung-Sheng Lin, Yun-Ching Hung and Chengheng Robert Kao
Materials 2024, 17(7), 1638; https://doi.org/10.3390/ma17071638 - 3 Apr 2024
Viewed by 1295
Abstract
This article presents a novel bonding method for chip packaging applications in the semiconductor industry, with a focus on downsizing high-density and 3D-stacked interconnections to improve efficiency and performance. Microfluidic electroless interconnections have been identified as a potential solution for bonding pillar joints [...] Read more.
This article presents a novel bonding method for chip packaging applications in the semiconductor industry, with a focus on downsizing high-density and 3D-stacked interconnections to improve efficiency and performance. Microfluidic electroless interconnections have been identified as a potential solution for bonding pillar joints at low temperatures and pressures. However, the complex and time-consuming nature of their production process hinders their suitability for mass production. To overcome these challenges, we propose a tailored plating solution using an enhanced copper concentration and plating rate. By eliminating the need for fluid motion and reducing the process time, this method can be used for mass production. The Taguchi approach is first used to optimize the copper–quadrol complex solution with the plating rate and decomposition time. This solution exhibits a copper concentration that is over five times higher than that of conventional solutions, a plating rate of 22.2 μm/h, and a decomposition time of 8 min on a Cu layer substrate. This technique enables Cu pillars to be successfully bonded within 7 min at 35 °C. Planarizing the pillar surface yields a high bonding percentage of 99%. Mechanical shear testing shows a significant fracture strength of 76 MPa. Full article
Show Figures

Figure 1

3 pages, 385 KiB  
Abstract
Magnetic Field Sensors for Non-Invasive Current Monitoring in Wire-Bond-Less Power Modules
by Perla Malagò, Stefano Lumetti, Dominik Holzmann, Michael Ortner and Ali Roshanghias
Proceedings 2024, 97(1), 100; https://doi.org/10.3390/proceedings2024097100 - 27 Mar 2024
Cited by 1 | Viewed by 881
Abstract
A non-invasive implementation of a planar magnetoresistive sensor on top of copper interconnected power modules is proposed. This solution allows for the real-time monitoring of the electrical current flowing across the power modules. Anisotropic magnetoresistive (AMR) sensors made of Permalloy were designed through [...] Read more.
A non-invasive implementation of a planar magnetoresistive sensor on top of copper interconnected power modules is proposed. This solution allows for the real-time monitoring of the electrical current flowing across the power modules. Anisotropic magnetoresistive (AMR) sensors made of Permalloy were designed through finite-difference and finite-element simulations in the so-called barber-pole configuration and microfabricated via patterning by laser lithography and thin film deposition by electron-beam evaporation. Finally, the sensor performance was tested by measuring the magnetic field generated by the electrical current in a specific range of interest. Full article
(This article belongs to the Proceedings of XXXV EUROSENSORS Conference)
Show Figures

Figure 1

21 pages, 4510 KiB  
Article
Highly Porous Carbon Materials Derived from Silicon Oxycarbides and Effect of the Pyrolysis Temperature on Their Electrochemical Response
by Jose Merida, Maria T. Colomer, Fausto Rubio and M. Alejandra Mazo
Int. J. Mol. Sci. 2023, 24(18), 13868; https://doi.org/10.3390/ijms241813868 - 8 Sep 2023
Cited by 3 | Viewed by 1398
Abstract
The design of a material porous microstructure with interconnected micro-meso-macropores is a key issue for the successful development of carbon-derived materials for supercapacitor applications. Another important issue is the nature of these carbon materials. For those reasons, in this study, novel hierarchical micro-meso-macroporous [...] Read more.
The design of a material porous microstructure with interconnected micro-meso-macropores is a key issue for the successful development of carbon-derived materials for supercapacitor applications. Another important issue is the nature of these carbon materials. For those reasons, in this study, novel hierarchical micro-meso-macroporous silicon oxycarbide-derived carbon (SiOC-DC) was obtained via chlorine etching of carbon-enriched SiOC prepared via pyrolysis (1100–1400 °C) of sol-gel triethoxysilane/dimethyldiphenysiloxane hybrids. In addition, and for the first time, non-conventional Raman parameters combined with the analysis of their microstructural characteristics were considered to establish their relationships with their electrochemical response. The sample pyrolyzed at 1100 °C showed planar and less-defective carbon domains together with the largest specific surface area (SSA) and the highest volume of micro-meso-macropores, which upgraded their electrochemical response. This sample has the highest specific capacitance (Cs = 101 Fg−1 (0.2 Ag−1)), energy (Ed = 12–7 Wh−1 kg−1), and power densities (Pd = 0.32–35 kw kg−1), showing a good capacitance retention ratio up to 98% after 10,000 charge–discharge cycles at 0.5 Ag−1. At a pyrolysis temperature ≥ 1200 °C, the carbon domains were highly ordered and tortuous with a high degree of interconnection. However, SSA and pore volumes (micro-meso-macropores) were significantly reduced and downgraded the Cs, Ed, and Pd values. Full article
Show Figures

Figure 1

15 pages, 3465 KiB  
Article
PCL/PEO Polymer Membrane Prevents Biofouling in Wearable Detection Sensors
by Roberto Delgado-Rivera, William García-Rodríguez, Luis López, Lisandro Cunci, Pedro J. Resto and Maribella Domenech
Membranes 2023, 13(8), 728; https://doi.org/10.3390/membranes13080728 - 12 Aug 2023
Cited by 1 | Viewed by 2469
Abstract
Technological advances in biosensing offer extraordinary opportunities to transfer technologies from a laboratory setting to clinical point-of-care applications. Recent developments in the field have focused on electrochemical and optical biosensing platforms. Unfortunately, these platforms offer relatively poor sensitivity for most of the clinically [...] Read more.
Technological advances in biosensing offer extraordinary opportunities to transfer technologies from a laboratory setting to clinical point-of-care applications. Recent developments in the field have focused on electrochemical and optical biosensing platforms. Unfortunately, these platforms offer relatively poor sensitivity for most of the clinically relevant targets that can be measured on the skin. In addition, the non-specific adsorption of biomolecules (biofouling) has proven to be a limiting factor compromising the longevity and performance of these detection systems. Research from our laboratory seeks to capitalize on analyte selective properties of biomaterials to achieve enhanced analyte adsorption, enrichment, and detection. Our goal is to develop a functional membrane integrated into a microfluidic sampling interface and an electrochemical sensing unit. The membrane was manufactured from a blend of Polycaprolactone (PCL) and Polyethylene oxide (PEO) through a solvent casting evaporation method. A microfluidic flow cell was developed with a micropore array that allows liquid to exit from all pores simultaneously, thereby imitating human perspiration. The electrochemical sensing unit consisted of planar gold electrodes for the monitoring of nonspecific adsorption of proteins utilizing Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). The solvent casting evaporation technique proved to be an effective method to produce membranes with the desired physical properties (surface properties and wettability profile) and a highly porous and interconnected structure. Permeability data from the membrane sandwiched in the flow cell showed excellent permeation and media transfer efficiency with uniform pore activation for both active and passive sweat rates. Biofouling experiments exhibited a decrease in the extent of biofouling of electrodes protected with the PCL/PEO membrane, corroborating the capacity of our material to mitigate the effects of biofouling. Full article
(This article belongs to the Special Issue Polymer Membranes: From Synthesis to Applications (2nd Edition))
Show Figures

Graphical abstract

34 pages, 12463 KiB  
Review
Research of Vertical via Based on Silicon, Ceramic and Glass
by Wenchao Tian, Sixian Wu and Wenhua Li
Micromachines 2023, 14(7), 1391; https://doi.org/10.3390/mi14071391 - 8 Jul 2023
Cited by 12 | Viewed by 5328
Abstract
With the increasing demand for high-density integration, low power consumption and high bandwidth, creating more sophisticated interconnection technologies is becoming increasingly crucial. Three-dimensional (3D) integration technology is known as the fourth-generation packaging technology beyond Moore’s Law because of its advantages of low energy [...] Read more.
With the increasing demand for high-density integration, low power consumption and high bandwidth, creating more sophisticated interconnection technologies is becoming increasingly crucial. Three-dimensional (3D) integration technology is known as the fourth-generation packaging technology beyond Moore’s Law because of its advantages of low energy consumption, lightweight and high performance. Through-silicon via (TSV) is considered to be at the core of 3D integration because of its excellent electrical performance, lower power consumption, wider bandwidth, higher density, smaller overall size and lighter weight. Therefore, the particular emphasis of this review is the process flow of TSV technology. Among them, the research status of TSV hole etching, deep hole electroplating filling and chemical mechanical planarization (CMP) in TSV preparation process are introduced in detail. There are a multitude of inevitable defects in the process of TSV processing; thus, the stress problems and electrical characteristics that affect the reliability of TSV are summarized in this review. In addition, the process flow and process optimization status of through ceramic via (TCV) and through glass via (TGV) are discussed. Full article
(This article belongs to the Special Issue Advanced Packaging for Microsystem Applications, 2nd Edition)
Show Figures

Figure 1

15 pages, 11311 KiB  
Article
Infiltration of CsPbI3:EuI2 Perovskites into TiO2 Spongy Layers Deposited by gig-lox Sputtering Processes
by Carlo Spampinato, Paola La Magna, Salvatore Valastro, Emanuele Smecca, Valentina Arena, Corrado Bongiorno, Giovanni Mannino, Enza Fazio, Carmelo Corsaro, Fortunato Neri and Alessandra Alberti
Solar 2023, 3(3), 347-361; https://doi.org/10.3390/solar3030020 - 27 Jun 2023
Cited by 2 | Viewed by 2173
Abstract
Perovskite solar cells have become a popular alternative to traditional silicon solar cells due to their potential to provide high-efficiency, low-cost, and lightweight solar energy harvesting solutions. However, the multilayer architecture of perovskite solar cells demands careful investigation of the interaction and interfacing [...] Read more.
Perovskite solar cells have become a popular alternative to traditional silicon solar cells due to their potential to provide high-efficiency, low-cost, and lightweight solar energy harvesting solutions. However, the multilayer architecture of perovskite solar cells demands careful investigation of the interaction and interfacing between the various layers, as they play a crucial role in determining the overall performance of the cell. In this context, the present work aims at analyzing the coupling between a spongy transparent electron-transporting layer (ETL) and perovskite in a formulation CsPbI3:EuI2. The ETL used in this work is a transparent mesoporous TiO2 layer called “gig-lox” (grazing incidence angle geometry–local oxidation), which has been optimized to boost the interfacing with the perovskite for achieving a highly interconnected blend of materials. The gig-lox TiO2 ETL shows a high surface wettability with respect to the perovskite solution, especially after pre-annealing at 500 °C, and this enables the perovskite material to deeply infiltrate throughout it. The surface wettability of the gig-lox TiO2 has been estimated by contact angle measurements, while the deep infiltration of the perovskite material has been demonstrated through X-ray diffraction and transmission electron microscopy analyses. Thanks to the achieved deep infiltration, the photo-generated charge injection from the perovskite into the mesoporous oxide is enhanced with respect to the use of a planar compact oxide, as shown by the photoluminescence measurements. The mainstay of the approach resides in the ETL that is deposited by a solvent-free sputtering method and is up-scalable for high industrial throughput. Full article
Show Figures

Figure 1

19 pages, 4028 KiB  
Article
Grasp Analysis for the Robot-Based Manipulation of Pre-Assembled Cables with Electrical Connectors
by Daniel Gebauer, Jonas Dirr, Luca Martin and Rüdiger Daub
Appl. Sci. 2023, 13(11), 6462; https://doi.org/10.3390/app13116462 - 25 May 2023
Cited by 1 | Viewed by 1562
Abstract
The mounting of pre-assembled cables with electrical connectors is mainly carried out manually in industry today. An exemplary application is the interconnection of battery modules. Automation of such assembly tasks offers the potential for increasing efficiency but requires the design of suitable gripper [...] Read more.
The mounting of pre-assembled cables with electrical connectors is mainly carried out manually in industry today. An exemplary application is the interconnection of battery modules. Automation of such assembly tasks offers the potential for increasing efficiency but requires the design of suitable gripper systems. This is challenging as the cable induces state-dependent forces and torques on the gripper system, which must be transmitted via the complex surface geometries of the plugs. Currently, the required grasp force cannot be determined in advance but only after prototypes have been manufactured and with elaborate physical experiments. To overcome these drawbacks, we present a methodology for the grasp analysis of pre-assembled cables with electrical connectors. The novelty of this approach is to combine a physics simulation for deformable linear objects with a contact model for non-planar grasping surfaces. The results indicate that the cable deformation significantly affects the required grasp force. In addition, each combination of contact surface and dynamic cable deformation results in an individual grasp force course. The methodology enables comparison of different electrical connectors and their grasping surfaces, as well as cables and their manipulation paths, efficiently and with little expert knowledge. Full article
Show Figures

Figure 1

15 pages, 4835 KiB  
Article
Structure Performance Correlation of N-Heterocyclic Oligomer Leveler for Acid Copper Plating of Advanced Interconnects
by Chuan Peng, Yuehui Zhai, Xianming Chen, Chong Wang, Yan Hong, Yuanming Chen, Wei He, Guoyun Zhou and Binyun Liu
Molecules 2023, 28(6), 2783; https://doi.org/10.3390/molecules28062783 - 20 Mar 2023
Cited by 9 | Viewed by 2748
Abstract
Levelers, as an essential part of organic additives in copper electroplating, play a crucial role in the fabrication of sophisticated interconnects in integrated circuits, packaging substrates, and printed circuit boards. In this work, four N-heterocyclic oligomers were synthesized and characterized, along with investigations [...] Read more.
Levelers, as an essential part of organic additives in copper electroplating, play a crucial role in the fabrication of sophisticated interconnects in integrated circuits, packaging substrates, and printed circuit boards. In this work, four N-heterocyclic oligomers were synthesized and characterized, along with investigations of their electrochemical behaviors and their synergism with other bath components. The corresponding effects of the oligomers on the deposited copper films were analyzed by morphological and compositional characterizations. The leveling mechanism of the oligomers was further discussed with the aid of quantum chemical calculations. The results exhibit that each of these N-heterocyclic oligomers holds a particular degree of leveling ability. The oligomer of 1,3-bis(1-imidazolyl)propane and 1,3-dichloro-2-propanol (IPIEP) is the best leveler for THs plating compared with the other three oligomers. It was found that the hydroxyl group in IPIEP enhances the hydrophilicity of the modified molecule and triggers a more stable complexation between IPIEP and H2O−Cu(I)−MPS. Moreover, imidazole demonstrates a better practicality than piperazine. This work recommends the combination of N-heterocycles in planar conformation with modification by the hydroxyl group to synthesize high-performance straight-chain levelers. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

10 pages, 3837 KiB  
Article
Three-Dimensional Polymer Variable Optical Attenuator Based on Vertical Multimode Interference with Graphene Heater
by Xinru Xu, Yuexin Yin, Mengke Yao, Xiaojie Yin, Feifei Gao, Yuanda Wu, Changming Chen, Fei Wang and Daming Zhang
Micromachines 2022, 13(12), 2116; https://doi.org/10.3390/mi13122116 - 30 Nov 2022
Cited by 3 | Viewed by 1723
Abstract
Low-power-consumption optical devices are crucial for large-scale photonic integrated circuits (PICs). In this paper, a three-dimensional (3D) polymer variable optical attenuator (VOA) is proposed. For monolithic integration of silica and polymer-based planar lightwave circuits (PLCs), the vertical VOA is inserted between silica-based waveguides. [...] Read more.
Low-power-consumption optical devices are crucial for large-scale photonic integrated circuits (PICs). In this paper, a three-dimensional (3D) polymer variable optical attenuator (VOA) is proposed. For monolithic integration of silica and polymer-based planar lightwave circuits (PLCs), the vertical VOA is inserted between silica-based waveguides. Optical and thermal analyses are performed through the beam propagation method (BPM) and finite-element method (FEM), respectively. A compact size of 3092 μm × 4 μm × 7 μm is achieved with a vertical multimode interference (MMI) structure. The proposed VOA shows an insertion loss (IL) of 0.58 dB and an extinction ratio (ER) of 21.18 dB. Replacing the graphene heater with an aluminum (Al) electrode, the power consumption is decreased from 29.90 mW to 21.25 mW. The rise and fall time are improved to 353.85 μs and 192.87 μs, respectively. The compact and high-performance VOA shows great potential for a variety of applications, including optical communications, integrated optics, and optical interconnections. Full article
(This article belongs to the Special Issue Silicon Photonic Devices and Integration)
Show Figures

Figure 1

Back to TopTop