Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (160)

Search Parameters:
Keywords = planetary boundary layer height

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4146 KB  
Article
Analysis of Spatiotemporal Distribution Trends of Aerosol Optical Depth and Meteorological Influences in Gansu Province, Northwest China
by Fangfang Huang, Chongshui Gong, Weiqiang Ma, Hao Liu, Binbin Zhong, Cuiwen Jing, Jie Fu, Chunyan Zhang and Xinghua Zhang
Remote Sens. 2025, 17(16), 2874; https://doi.org/10.3390/rs17162874 - 18 Aug 2025
Viewed by 481
Abstract
Atmospheric pollution constitutes one of the key environmental challenges hindering Atmospheric pollution is a key environmental challenge constraining the sustainable development of Gansu Province’s land-based Belt and Road corridor and its regional ecological barrier function. The spatiotemporal heterogeneity of aerosol optical depth (AOD) [...] Read more.
Atmospheric pollution constitutes one of the key environmental challenges hindering Atmospheric pollution is a key environmental challenge constraining the sustainable development of Gansu Province’s land-based Belt and Road corridor and its regional ecological barrier function. The spatiotemporal heterogeneity of aerosol optical depth (AOD) profoundly impacts regional environmental quality. Based on MODIS AOD, NCEP reanalysis, and emission data, this study employed trend analysis (Mann–Kendall test) and attribution analysis (multiple linear regression combined with LMG and Spearman correlation) to investigate the spatiotemporal evolution of AOD over Gansu Province during 2009–2019 and its meteorological and emission drivers. Key findings include the following: (1) AOD exhibited significant spatial heterogeneity, with high values concentrated in the Hexi Corridor and central regions; monthly variation showed a unimodal pattern (peak value of 0.293 in April); and AOD generally declined slowly province-wide during 2009–2019 (52.8% of the area showed significant decreases). (2) Following the implementation of the Air Pollution Prevention and Control Action Plan in 2013 (2014–2019), AOD trends stabilized or declined in 99.8% of the area, indicating significant improvement. (3) Meteorological influences displayed distinct regional-seasonal specificity—the Hexi Corridor (arid zone) was characterized by strong negative correlations with relative humidity (RH2) and wind speed (WS) year-round, and positive correlations with temperature (T2) in spring but negative in summer in the north; the Hedong region (industrial zone) featured strong positive correlations with planetary boundary layer height (PBLH) in summer (r > 0.6) and with T2 in spring/summer; and the Gannan Plateau (alpine zone) showed positive WS correlations in spring and weak positive RH2 correlations in spring/autumn, highlighting the decisive regulatory role of underlying surface properties. (4) Emission factors (PM2.5, SO42, NO3, NH4+, OM, and BC) dominated (>50% relative contribution) in 80% of seasonal scenarios, prevailing in most regions (Hexi: 71–95% year-round; Hedong: 68–80% year-round; and Gannan: 69–72% in spring/summer). Key components included BC (contributing > 30% in 11 seasons, e.g., 52.5% in Hedong summer), NO3 + NH4+ (>57% in Hexi summer/autumn), and OM (20.3% in Gannan summer, 19.0% province-wide spring). Meteorological factors were the primary driver exclusively in Gannan winter (82%, T2-dominated) and province-wide summer (67%, RH2 + WS-dominated). In conclusion, Gansu’s AOD evolution is co-driven by emission factors (dominant province-wide) and meteorological factors (regionally and seasonally specific). Post-2013 environmental policies effectively promoted regional air quality improvement, providing a scientific basis for differentiated aerosol pollution control in arid, industrial, and alpine zones. Full article
Show Figures

Graphical abstract

11 pages, 2212 KB  
Article
Vertical Evolution of Volatile Organic Compounds from Unmanned Aerial Vehicle Measurements in the Pearl River Delta, China
by Meng-Xue Tang, Bi-Xuan Wang, Yong Cheng, Hui Zeng and Xiao-Feng Huang
Atmosphere 2025, 16(8), 955; https://doi.org/10.3390/atmos16080955 - 10 Aug 2025
Viewed by 490
Abstract
The vertical distribution of volatile organic compounds (VOCs) within the planetary boundary layer (PBL) is critical for understanding ozone (O3) formation, yet knowledge remains limited in complex urban environments. In this study, vertical measurements of 117 VOC species were conducted using [...] Read more.
The vertical distribution of volatile organic compounds (VOCs) within the planetary boundary layer (PBL) is critical for understanding ozone (O3) formation, yet knowledge remains limited in complex urban environments. In this study, vertical measurements of 117 VOC species were conducted using an unmanned aerial vehicle (UAV) equipped with a VOC multi-channel sampling system, up to a height of 500 m in Shenzhen, China. Results showed that total VOC (TVOC) concentrations decreased with altitude in the morning, reflecting the influence of surface-level local emissions, but increased with height at midday, likely driven by regional transport and potentially stronger photochemical processes. Source apportionment revealed substantial industrial emissions across all altitudes, vehicular emissions concentrated near the surface, and biomass burning primarily impacting higher layers. Clear evidence of enhanced secondary formation of oxygenated VOCs (OVOCs) was observed along the vertical gradient, particularly at midday, indicating intensified photochemical processes at higher altitudes. These findings underscore the importance of considering vertical heterogeneity in VOC distributions when modeling O3 formation or developing measures to reduce emissions at different altitudes, and also demonstrate the potential of UAV platforms to provide high-resolution atmospheric chemical data in complex urban environments. Full article
(This article belongs to the Special Issue Biogenic Volatile Organic Compound: Measurement and Emissions)
Show Figures

Figure 1

23 pages, 3831 KB  
Article
Estimating Planetary Boundary Layer Height over Central Amazonia Using Random Forest
by Paulo Renato P. Silva, Rayonil G. Carneiro, Alison O. Moraes, Cleo Quaresma Dias-Junior and Gilberto Fisch
Atmosphere 2025, 16(8), 941; https://doi.org/10.3390/atmos16080941 - 5 Aug 2025
Viewed by 494
Abstract
This study investigates the use of a Random Forest (RF), an artificial intelligence (AI) model, to estimate the planetary boundary layer height (PBLH) over Central Amazonia from climatic elements data collected during the GoAmazon experiment, held in 2014 and 2015, as it is [...] Read more.
This study investigates the use of a Random Forest (RF), an artificial intelligence (AI) model, to estimate the planetary boundary layer height (PBLH) over Central Amazonia from climatic elements data collected during the GoAmazon experiment, held in 2014 and 2015, as it is a key metric for air quality, weather forecasting, and climate modeling. The novelty of this study lies in estimating PBLH using only surface-based meteorological observations. This approach is validated against remote sensing measurements (e.g., LIDAR, ceilometer, and wind profilers), which are seldom available in the Amazon region. The dataset includes various meteorological features, though substantial missing data for the latent heat flux (LE) and net radiation (Rn) measurements posed challenges. We addressed these gaps through different data-cleaning strategies, such as feature exclusion, row removal, and imputation techniques, assessing their impact on model performance using the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and r2 metrics. The best-performing strategy achieved an RMSE of 375.9 m. In addition to the RF model, we benchmarked its performance against Linear Regression, Support Vector Regression, LightGBM, XGBoost, and a Deep Neural Network. While all models showed moderate correlation with observed PBLH, the RF model outperformed all others with statistically significant differences confirmed by paired t-tests. SHAP (SHapley Additive exPlanations) values were used to enhance model interpretability, revealing hour of the day, air temperature, and relative humidity as the most influential predictors for PBLH, underscoring their critical role in atmospheric dynamics in Central Amazonia. Despite these optimizations, the model underestimates the PBLH values—by an average of 197 m, particularly in the spring and early summer austral seasons when atmospheric conditions are more variable. These findings emphasize the importance of robust data preprocessing and higtextight the potential of ML models for improving PBLH estimation in data-scarce tropical environments. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in Atmospheric Sciences)
Show Figures

Figure 1

23 pages, 12403 KB  
Article
A Comprehensive Ensemble Model for Marine Atmospheric Boundary-Layer Prediction in Meteorologically Sparse and Complex Regions: A Case Study in the South China Sea
by Yehui Chen, Tao Luo, Gang Sun, Wenyue Zhu, Qing Liu, Ying Liu, Xiaomei Jin and Ningquan Weng
Remote Sens. 2025, 17(12), 2046; https://doi.org/10.3390/rs17122046 - 13 Jun 2025
Cited by 1 | Viewed by 741
Abstract
Marine atmospheric boundary-layer height (MABLH) is crucial for ocean heat, momentum, and substance transfer, affecting ocean circulation, climate, and ecosystems. Due to the unique geographical location of the South China Sea (SCS), coupled with its complex atmospheric environment and sparse ground-based observation stations, [...] Read more.
Marine atmospheric boundary-layer height (MABLH) is crucial for ocean heat, momentum, and substance transfer, affecting ocean circulation, climate, and ecosystems. Due to the unique geographical location of the South China Sea (SCS), coupled with its complex atmospheric environment and sparse ground-based observation stations, accurately determining the MABLH remains challenging. Coherent Doppler wind lidar (CDWL), as a laser-based active remote sensing technology, provides high-resolution wind profiling by transmitting pulsed laser beams and analyzing backscattered signals from atmospheric aerosols. In this study, we developed a stacking optimal ensemble model (SOEM) to estimate MABLH in the vicinity of the site by integrating CDWL measurements from a representative SCS site with ERA5 (fifth-generation reanalysis dataset from the European Centre for Medium-Range Weather Forecasts) data from December 2019 to May 2021. Based on the categorization of the total cloud cover data into weather conditions such as clear/slightly cloudy, cloudy/transitional, and overcast/rainy, the SOEM demonstrates enhanced performance with an average mean absolute percentage error of 3.7%, significantly lower than the planetary boundary-layer-height products of ERA5. The SOEM outperformed random forest, extreme gradient boosting, and histogram-based gradient boosting models, achieving a robustness coefficient (R2) of 0.95 and the lowest mean absolute error of 32 m under the clear/slightly cloudy condition. The validation conducted in the coastal city of Qingdao further confirmed the superiority of the SOEM in resolving meteorological heterogeneity. The predictions of the SOEM aligned well with CDWL observations during Typhoon Sinlaku (2020), capturing dynamic disturbances in MABLH. Overall, the SOEM provides a precise approach for estimating convective boundary-layer height, supporting marine meteorology, onshore wind power, and coastal protection applications. Full article
Show Figures

Graphical abstract

19 pages, 3892 KB  
Article
Impact of Fengyun-4A Atmospheric Motion Vector Data Assimilation on PM2.5 Simulation
by Kaiqiang Gu, Jinyan Wang, Shixiang Su, Jiangtao Zhu, Yu Zhang, Feifan Bian and Yi Yang
Remote Sens. 2025, 17(11), 1952; https://doi.org/10.3390/rs17111952 - 5 Jun 2025
Viewed by 448
Abstract
PM2.5 pollution poses significant risks to human health and the environment, underscoring the importance of accurate PM2.5 simulation. This study simulated a representative PM2.5 pollution event using the Weather Research and Forecasting model coupled with chemistry (WRF-Chem), incorporating the assimilation [...] Read more.
PM2.5 pollution poses significant risks to human health and the environment, underscoring the importance of accurate PM2.5 simulation. This study simulated a representative PM2.5 pollution event using the Weather Research and Forecasting model coupled with chemistry (WRF-Chem), incorporating the assimilation of infrared atmospheric motion vector (AMV) data from the Fengyun-4A (FY-4A) satellite. A comprehensive analysis was conducted to examine the meteorological characteristics of the event and their influence on PM2.5 concentration simulations. The results demonstrate that the assimilation of FY-4A infrared AMV data significantly enhanced the simulation performance of meteorological variables, particularly improving the wind field and capturing local and small-scale wind variations. Moreover, PM2.5 concentrations simulated with AMV assimilation showed improved spatial and temporal agreement with ground-based observations, reducing the root mean square error (RMSE) by 8.2% and the mean bias (MB) by 15.2 µg/m3 relative to the control (CTL) experiment. In addition to regional improvements, the assimilation notably enhanced PM2.5 simulation accuracy in severely polluted cities, such as Tangshan and Tianjin. Mechanistic analysis revealed that low wind speeds and weak atmospheric divergence restricted pollutant dispersion, resulting in higher near-surface concentrations. This was exacerbated by cooler nighttime temperatures and a lower planetary boundary layer height (PBLH). These findings underscore the utility of assimilating satellite-derived wind products to enhance regional air quality modeling and forecasting accuracy. This study highlights the potential of FY-4A infrared AMV data in improving regional pollution simulations, offering scientific support for the application of next-generation Chinese geostationary satellite data in numerical air quality forecasting. Full article
Show Figures

Graphical abstract

17 pages, 8234 KB  
Article
Modeling the Atmospheric CO2 Concentration in the Beijing Region and Assessing the Impacts of Fossil Fuel Emissions
by Zhoutong Liang, Qixiang Cai, Ning Zeng, Wenhan Tang, Pengfei Han, Yu Zhang, Weijun Quan, Bo Yao, Pucai Wang and Zhiqiang Liu
Environments 2025, 12(5), 156; https://doi.org/10.3390/environments12050156 - 8 May 2025
Viewed by 520
Abstract
Reducing anthropogenic fossil fuel CO2 (FFCO2) emissions in urban areas is key to mitigating climate change. To better understand the spatial characteristics and temporal variations in urban CO2 levels in the Beijing (BJ) region, we conducted a long-term CO [...] Read more.
Reducing anthropogenic fossil fuel CO2 (FFCO2) emissions in urban areas is key to mitigating climate change. To better understand the spatial characteristics and temporal variations in urban CO2 levels in the Beijing (BJ) region, we conducted a long-term CO2 simulation study by using the Weather Research and Forecasting WRF-Chem model and CO2 observation data. To assess the model performance, three representative sites with high-precision CO2 observation data were chosen in this study: the rural regional background Shangdianzi (SDZ) site, the suburban Xianghe (XH) site, and the urban BJ site. The simulation results generally captured the observed variations at these three sites, but the model performed much better at the SDZ and XH sites, with mean biases of −0.7 ppm and −2.3 ppm, respectively, and RMSE of 12.3 ppm and 21.4 ppm, respectively. The diurnal variations in the model results agreed well with those in the observed CO2 concentrations at the SDZ and XH sites during all seasons. In the meanwhile, the diurnal variations in the modeled FFCO2 were similar to those in the CO2 observation with a positive bias at the BJ site, which may have been caused by higher emissions especially in winter. Moreover, both the modeled FFCO2 and biospheric CO2 (BIOCO2) have positive correlations with the observed CO2 concentration, whereas the planetary boundary layer height (PBLH) and observed CO2 concentration exhibited negative correlations at all sites. In addition, the contributions of FFCO2 and BIOCO2 to CO2 varies depending on the seasons and the location of sites. Full article
Show Figures

Figure 1

21 pages, 8847 KB  
Article
Characteristics of Eddy Dissipation Rates in Atmosphere Boundary Layer Using Doppler Lidar
by Yufei Chu, Guo Lin, Min Deng and Zhien Wang
Remote Sens. 2025, 17(9), 1652; https://doi.org/10.3390/rs17091652 - 7 May 2025
Viewed by 900
Abstract
The eddy dissipation rate (EDR, or turbulence dissipation rate) is a crucial parameter in the study of the atmospheric boundary layer (ABL). However, the existing Doppler lidar-based estimates of EDR seldom offer long-term comparisons that span the entire ABL. Building upon prior research [...] Read more.
The eddy dissipation rate (EDR, or turbulence dissipation rate) is a crucial parameter in the study of the atmospheric boundary layer (ABL). However, the existing Doppler lidar-based estimates of EDR seldom offer long-term comparisons that span the entire ABL. Building upon prior research utilizing Doppler lidar wind-field data, we optimized the EDR retrieval algorithm using a genetic adaptive approach. The newly developed algorithm demonstrates enhanced accuracy in EDR estimation. The daily evolution of EDR reveals a distinct diurnal pattern in its variation. A detailed four consecutive days study of turbulence generated via low-level jets (LLJs) indicated that EDR driven by heat flux (~10−2 m2/s3) is significantly stronger than that produced through wind shear (~10−3 m2/s3). Subsequently, we examined seasonal variations in EDR at different mixing layer heights (MLH, Zi): elevated EDR values in summer (~7 × 10−3 m2/s3 at 0.1Zi) contrasted with reduced levels in winter (~6 × 10−4 m2/s3 at 0.1Zi). In the early morning, EDR decreases with height for 1 magnitude, while in later stages, it remains relatively stable within 0.1 order of magnitude across 0.1Zi to 0.9Zi. Notably, the EDR during DJF exceeds that of MAM and SON in the afternoon. This suggests that ML turbulence is not solely dependent on surface fluxes (SHF + LHF) but may also be influenced by MLH. A lower MLH (smaller volume), even with reduced surface fluxes, could potentially result in a stronger EDR. Finally, we compared the evolution of the EDR and MLH in the boundary layer using Doppler lidar data from ARM sites and the PBL (Planetary Boundary Layer) Moving Active Profiling System (PBLMAPS) Airborne Doppler Lidar (ADL). The results show that the vertical wind data exhibit strong consistency (R = 0.96) when the ADL is positioned near ARM Southern Great Plains (SGP) sites C1 or E37. The ADL’s mobility and flexibility provide significant advantages for future field experiments, particularly in challenging environments such as mountainous or complex terrains. This study not only highlights the potential of utilizing Doppler lidar alone for EDR calculations but also extensively explores the development patterns of EDR within the ABL. Full article
Show Figures

Figure 1

25 pages, 2706 KB  
Article
Spatiotemporal Analysis of Air Pollution and Climate Change Effects on Urban Green Spaces in Bucharest Metropolis
by Maria Zoran, Dan Savastru, Marina Tautan, Daniel Tenciu and Alexandru Stanciu
Atmosphere 2025, 16(5), 553; https://doi.org/10.3390/atmos16050553 - 7 May 2025
Viewed by 920
Abstract
Being an essential issue in global climate warming, the response of urban green spaces to air pollution and climate variability because of rapid urbanization has become an increasing concern at both the local and global levels. This study explored the response of urban [...] Read more.
Being an essential issue in global climate warming, the response of urban green spaces to air pollution and climate variability because of rapid urbanization has become an increasing concern at both the local and global levels. This study explored the response of urban vegetation to air pollution and climate variability in the Bucharest metropolis in Romania from a spatiotemporal perspective during 2000–2024, with a focus on the 2020–2024 period. Through the synergy of time series in situ air pollution and climate data, and derived vegetation biophysical variables from MODIS Terra/Aqua satellite data, this study applied statistical regression, correlation, and linear trend analysis to assess linear relationships between variables and their pairwise associations. Green spaces were measured with the MODIS normalized difference vegetation index (NDVI), leaf area index (LAI), photosynthetically active radiation (FPAR), evapotranspiration (ET), and net primary production (NPP), which capture the complex characteristics of urban vegetation systems (gardens, street trees, parks, and forests), periurban forests, and agricultural areas. For both the Bucharest center (6.5 km × 6.5 km) and metropolitan (40.5 km × 40.5 km) test areas, during the five-year investigated period, this study found negative correlations of the NDVI with ground-level concentrations of particulate matter in two size fractions, PM2.5 (city center r = −0.29; p < 0.01, and metropolitan r = −0.39; p < 0.01) and PM10 (city center r = −0.58; p < 0.01, and metropolitan r = −0.56; p < 0.01), as well as between the NDVI and gaseous air pollutants (nitrogen dioxide—NO2, sulfur dioxide—SO2, and carbon monoxide—CO. Also, negative correlations between NDVI and climate parameters, air relative humidity (RH), and land surface albedo (LSA) were observed. These results show the potential of urban green to improve air quality through air pollutant deposition, retention, and alteration of vegetation health, particularly during dry seasons and hot summers. For the same period of analysis, positive correlations between the NDVI and solar surface irradiance (SI) and planetary boundary layer height (PBL) were recorded. Because of the summer season’s (June–August) increase in ground-level ozone, significant negative correlations with the NDVI (r = −0.51, p < 0.01) were found for Bucharest city center and (r = −76; p < 0.01) for the metropolitan area, which may explain the degraded or devitalized vegetation under high ozone levels. Also, during hot summer seasons in the 2020–2024 period, this research reported negative correlations between air temperature at 2 m height (TA) and the NDVI for both the Bucharest city center (r = −0.84; p < 0.01) and metropolitan scale (r = −0.90; p < 0.01), as well as negative correlations between the land surface temperature (LST) and the NDVI for Bucharest (city center r = −0.29; p< 0.01) and the metropolitan area (r = −0.68, p < 0.01). During summer seasons, positive correlations between ET and climate parameters TA (r = 0.91; p < 0.01), SI (r = 0.91; p < 0.01), relative humidity RH (r = 0.65; p < 0.01), and NDVI (r = 0.83; p < 0.01) are associated with the cooling effects of urban vegetation, showing that a higher vegetation density is associated with lower air and land surface temperatures. The negative correlation between ET and LST (r = −0.92; p < 0.01) explains the imprint of evapotranspiration in the diurnal variations of LST in contrast with TA. The decreasing trend of NPP over 24 years highlighted the feedback response of vegetation to air pollution and climate warming. For future green cities, the results of this study contribute to the development of advanced strategies for urban vegetation protection and better mitigation of air quality under an increased frequency of extreme climate events. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

18 pages, 3381 KB  
Article
Sea Breeze-Driven Variations in Planetary Boundary Layer Height over Barrow: Insights from Meteorological and Lidar Observations
by Hui Li, Wei Gong, Boming Liu, Yingying Ma, Shikuan Jin, Weiyan Wang, Ruonan Fan, Shuailong Jiang, Yujie Wang and Zhe Tong
Remote Sens. 2025, 17(9), 1633; https://doi.org/10.3390/rs17091633 - 5 May 2025
Viewed by 771
Abstract
The planetary boundary layer height (PBLH) in coastal Arctic regions is influenced by sea breeze circulation. However, the specific mechanisms through which sea breeze affects PBLH evolution remain insufficiently explored. This study uses meteorological data, micro-pulse lidar (MPL) data, and sounding profiles from [...] Read more.
The planetary boundary layer height (PBLH) in coastal Arctic regions is influenced by sea breeze circulation. However, the specific mechanisms through which sea breeze affects PBLH evolution remain insufficiently explored. This study uses meteorological data, micro-pulse lidar (MPL) data, and sounding profiles from 2014 to 2021 to investigate the annual and polar day PBLH evolution driven by sea breezes in the Barrow region of Alaska, as well as the specific mechanisms. The results show that sea breeze events significantly suppress PBLH, especially during the polar day, when prolonged solar radiation intensifies the thermal contrast between land and ocean. The cold, moist sea breeze stabilizes the atmospheric conditions, reducing net radiation and sensible heat flux. All these factors inhibit turbulent mixing and PBLH development. Lidar and sounding analyses further reveal that PBLH is lower during sea breeze events compared to non-sea-breeze conditions, with the peak of its probability density distribution occurring at a lower PBLH range. The variable importance in projection (VIP) analysis identifies relative humidity (VIP = 1.95) and temperature (VIP = 1.1) as the primary factors controlling PBLH, highlighting the influence of atmospheric stability in regulating PBLH. These findings emphasize the crucial role of sea breeze in modulating PBL dynamics in the Arctic, with significant implications for improving climate models and studies on pollutant dispersion in polar regions. Full article
Show Figures

Figure 1

25 pages, 18349 KB  
Article
Surface-Dependent Meteorological Responses to a Taklimakan Dust Event During Summer near the Northern Slope of the Tibetan Plateau
by Binrui Wang, Hongyu Ji, Zhida Zhang, Jiening Liang, Lei Zhang, Mengqi Li, Rui Qiu, Hongjing Luo, Weiming An, Pengfei Tian and Mansur O. Amonov
Remote Sens. 2025, 17(9), 1561; https://doi.org/10.3390/rs17091561 - 28 Apr 2025
Viewed by 573
Abstract
The northern slope of the Tibetan Plateau (TP) is the crucial affected area for dust originating from the Taklimakan Desert (TD). However, few studies have focused on the meteorological element responses to TD dust over different surface types near the TP. Satellite data [...] Read more.
The northern slope of the Tibetan Plateau (TP) is the crucial affected area for dust originating from the Taklimakan Desert (TD). However, few studies have focused on the meteorological element responses to TD dust over different surface types near the TP. Satellite data and the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) were used to analyze the dust being transported from the TD to the TP and its effect from 30 July to 2 August 2016. In the TD, the middle-upper dust layer weakened the solar radiation reaching the lower dust layer, which reduced the temperature within the planetary boundary layer (PBL) during daytime. At night, the dust’s thermal preservation effect increased temperatures within the PBL and decreased temperatures at approximately 0.5 to 2.5 km above PBL. In the TP without snow cover, dust concentration was one-fifth of the TD, while the cooling layer intensity was comparable to the TD. However, within the PBL, the lower concentration and thickness of dust allowed dust to heat atmospheric continuously throughout the day. In the TP with snow cover, dust diminished planetary albedo, elevating temperatures above 6 km, hastening snow melting, which absorbed latent heat and increased the atmospheric water vapor content, consequently decreasing temperatures below 6 km. Surface meteorological element responses to dust varied significantly across different surface types. In the TD, 2 m temperature (T2) decreased by 0.4 °C during daytime, with the opposite nighttime variation. In the TP without snow cover, T2 was predominantly warming. In the snow-covered TP, T2 decreased throughout the day, with a maximum cooling of 1.12 °C and decreased PBL height by up to 258 m. Additionally, a supplementary simulation of a dust event from 17 June to 19 June 2016 further validated our findings. The meteorological elements response to dust is significantly affected by the dust concentration, thickness, and surface type, with significant day–night differences, suggesting that surface types and dust distribution should be considered in dust effect studies to improve the accuracy of climate predictions. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

24 pages, 26319 KB  
Article
Modeling PM2.5 Levels Due to Combustion Activities and Fireworks in Quito (Ecuador) for Forecasting Using WRF-Chem
by Rene Parra
Atmosphere 2025, 16(5), 495; https://doi.org/10.3390/atmos16050495 - 25 Apr 2025
Viewed by 840
Abstract
PM2.5 levels increase in cities during the first hours of the year due to combustion activities and the use of fireworks. In Quito (2800 masl), the capital of Ecuador, air quality records at the beginning of 2020 to 2025 (6 years) ranged [...] Read more.
PM2.5 levels increase in cities during the first hours of the year due to combustion activities and the use of fireworks. In Quito (2800 masl), the capital of Ecuador, air quality records at the beginning of 2020 to 2025 (6 years) ranged between 13.4 and 217.8 µg m−3 (maximum mean levels for 24 h), most of them being higher than 15.0 µg m−3, the current recommended concentration by the World Health Organization (WHO), highlighting the need to decrease these emissions and promote actions to reduce the exposure to these extreme events. Air pollution forecasting as a preventive warning system could help achieve this objective. Therefore, the primary aim of this research was to analyze the variation in PM2.5 levels in this city during the initial hours of the year to define, through numerical experiments, the spatiotemporal configuration of PM2.5 emissions to reproduce the observed PM2.5 levels and obtain insights to build an emission-based forecasting tool. For this purpose, we modeled atmospheric variables and the PM2.5 levels using the Weather Research and Forecasting with Chemistry (WRF-Chem) model. Consistent with the behavior suggested by records of associated meteorological variables, the modeled planetary boundary layer height (PBLH) was generally lower in the city’s south compared with the center and the north. The records and modeled results indicated that in the south, the higher PM2.5 levels were produced by higher emissions and lower values of the PBLH compared with the center and north, highlighting the importance of reducing the PM2.5 emissions. The emission maps used for modeling the dispersion at the beginning of 2024 and 2025 are proposed as inputs for the future forecasting of the PM2.5 levels at the start of the year, as preventive information for the public, to discourage, in advance, both combustion activities and the use of fireworks and to take action to avoid exposure. Full article
Show Figures

Figure 1

17 pages, 6721 KB  
Article
Characterization of the Planetary Boundary Layer Height in Huelva (Spain) During an Episode of High NO2 Pollutant Concentrations
by Ainhoa Comas Muguruza, Raúl Arasa Agudo and Mireia Udina
Earth 2025, 6(2), 26; https://doi.org/10.3390/earth6020026 - 8 Apr 2025
Viewed by 994
Abstract
This study investigates the estimation of the boundary layer height (PBLH) in Huelva, Spain, in November 2023, using different methods: Richardson number, humidity gradient and refractivity gradient. From the virtual potential profiles of temperature and specific humidity, in the case of daytime PBLH, [...] Read more.
This study investigates the estimation of the boundary layer height (PBLH) in Huelva, Spain, in November 2023, using different methods: Richardson number, humidity gradient and refractivity gradient. From the virtual potential profiles of temperature and specific humidity, in the case of daytime PBLH, which method works best in some situations when there are discrepancies between results is discussed. The results are then compared with the PBLH values obtained from the ERA-5 reanalysis. The synoptic analysis shows that the decrease in PBLH in the central weeks of the month is compatible with a thermal inversion by subsidence due to a persistent anticyclonic situation. Regarding air quality, the NO2 concentrations in the air quality station of Matalascañas, which is a background station, show negative correlations with the PBLH. Full article
Show Figures

Figure 1

22 pages, 19397 KB  
Article
An Evaluation of the Applicability of a Microwave Radiometer Under Different Weather Conditions at the Southern Edge of the Taklimakan Desert
by Jiawei Guo, Meiqi Song, Ali Mamtimin, Yayong Xue, Jian Peng, Hajigul Sayit, Yu Wang, Junjian Liu, Jiacheng Gao, Ailiyaer Aihaiti, Cong Wen, Fan Yang, Wen Huo and Chenglong Zhou
Remote Sens. 2025, 17(7), 1171; https://doi.org/10.3390/rs17071171 - 26 Mar 2025
Viewed by 548
Abstract
As an important means to monitor atmospheric vertical temperature and humidity, the ground-based microwave radiometer has been widely used in environmental monitoring, climate prediction, and other fields, but its application in desert areas is particularly limited. At Minfeng Station on the southern edge [...] Read more.
As an important means to monitor atmospheric vertical temperature and humidity, the ground-based microwave radiometer has been widely used in environmental monitoring, climate prediction, and other fields, but its application in desert areas is particularly limited. At Minfeng Station on the southern edge of the Taklimakan Desert, Global Telecommunications System (GTS) detection technology was used to evaluate the microwave radiometer observations under different weather conditions and at different altitudes. The planetary boundary layer height (PBLH) was calculated using the potential temperature gradient method, and the planetary boundary layer results were calculated by analyzing dust and rainfall events. The results show that the determination coefficients (R2) of the overall observed temperature (T), specific humidity (q), and water vapor density (ρv) of the microwave radiometer are all above 0.8 under different weather conditions. When the relative humidity is 0–10%, the temperature is the best, and the R2 is 0.9819. When the relative humidity is 70–80%, the R2 of q and ρv is the best, and the R2 is 0.9630 and 0.9777, respectively. This is in good agreement with the temperature observed by the FY–4A satellite; the observation effect is the best in May, and its R2 is 0.9142. Under the conditions of clear sky, precipitation day, and dusty weather, the R2 of the atmospheric boundary layer height calculated by the microwave radiometer is greater than 0.7 compared to the GTS sounding calculation results. These results demonstrate the reliability of microwave radiometry in extremely arid environments, providing valuable insights for boundary layer studies in desert regions. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

27 pages, 10720 KB  
Article
Evaluation of the Sensitivity of PBL and SGS Treatments in Different Flow Fields Using the WRF-LES at Perdigão
by Erkan Yılmaz, Şükran Sibel Menteş and Gokhan Kirkil
Energies 2025, 18(6), 1372; https://doi.org/10.3390/en18061372 - 11 Mar 2025
Viewed by 767
Abstract
This study investigates the effectiveness of the large eddy simulation version of the Weather Research and Forecasting model (WRF-LES) in reproducing the atmospheric conditions observed during a Perdigão field experiment. When comparing the results of the WRF-LES with observations, using LES settings can [...] Read more.
This study investigates the effectiveness of the large eddy simulation version of the Weather Research and Forecasting model (WRF-LES) in reproducing the atmospheric conditions observed during a Perdigão field experiment. When comparing the results of the WRF-LES with observations, using LES settings can accurately represent both large-scale events and the specific characteristics of atmospheric circulation at a small scale. Six sensitivity experiments are performed to evaluate the impact of different planetary boundary layer (PBL) schemes, including the MYNN, YSU, and Shin and Hong (SH) PBL models, as well as large eddy simulation (LES) with Smagorinsky (SMAG), a 1.5-order turbulence kinetic energy closure (TKE) model, and nonlinear backscatter and anisotropy (NBA) subgrid-scale (SGS) stress models. Two case studies are selected to be representative of flow conditions. In the northeastern flow, the MYNN NBA simulation yields the best result at a height of 100 m with an underestimation of 3.4%, despite SH generally producing better results than PBL schemes. In the southwestern flow, the MYNN TKE simulation at station Mast 29 is the best result, with an underestimation of 1.2%. The choice of SGS models over complex terrain affects wind field features in the boundary layer more than above the boundary layer. The NBA model generally produces better results in complex terrain when compared to other SGS models. In general, the WRF-LES can model the observed flow with high-resolution topographic maps in complex terrain with different SGS models for both flow regimes. Full article
(This article belongs to the Special Issue Computational and Experimental Fluid Dynamics for Wind Energy)
Show Figures

Figure 1

28 pages, 10473 KB  
Article
Urbanization Effect on Local Summer Climate in Arid Region City of Urumqi: A Numerical Case Study
by Aerzuna Abulimiti, Yongqiang Liu, Qing He, Ali Mamtimin, Junqiang Yao, Yong Zeng and Abuduwaili Abulikemu
Remote Sens. 2025, 17(3), 476; https://doi.org/10.3390/rs17030476 - 30 Jan 2025
Cited by 1 | Viewed by 1092
Abstract
The urbanization effect (UE) on local or regional climate is a prominent research topic in the research field of urban climates. However, there is little research on the UE of Urumqi, a typical arid region city, concerning various climatic factors and their spatio–temporal [...] Read more.
The urbanization effect (UE) on local or regional climate is a prominent research topic in the research field of urban climates. However, there is little research on the UE of Urumqi, a typical arid region city, concerning various climatic factors and their spatio–temporal characteristics. This study quantitatively investigates the UE of Urumqi on multiple climatic factors in summer based on a decade-long period of WRF–UCM (Weather Research and Forecasting model coupled with the Urban Canopy Model) simulation data. The findings reveal that the UE of Urumqi has resulted in a reduction in the diurnal temperature range (DTR) within the urban area by causing an increase in night-time minimum temperatures, with the maximum decrease reaching −2.5 °C. Additionally, the UE has also led to a decrease in the water vapor mixing ratio (WVMR) and relative humidity (RH) at 2 m, with the maximum reductions being 0.45 g kg−1 and −6.5%, respectively. Furthermore, the UE of Urumqi has led to an increase in planetary boundary layer height (PBLH), with a more pronounced effect in the central part of the city than in its surroundings, reaching a maximum increase of over 750 m at 19:00 Local Solar Time (LST, i.e., UTC + 6). The UE has also resulted in an increase in precipitation in the northern part of the city by up to 7.5 mm while inhibiting precipitation in the southern part by more than 6 mm. Moreover, the UE of Urumqi has enhanced precipitation both upstream and downstream of the city, with a maximum increase of 7.9 mm. The UE of Urumqi has also suppressed precipitation during summer mornings while enhancing it in summer afternoons. The UE has exerted certain influences on the aforementioned climatic factors, with the UE varying across different directions for each factor. Except for precipitation and PBLH, the UE on the remaining factors exhibit a greater magnitude in the northern region compared to the southern region of Urumqi. Full article
Show Figures

Figure 1

Back to TopTop