Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = plant configuration modes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 11424 KB  
Article
AI-Based Optimization of a Neural Discrete-Time Sliding Mode Controller via Bayesian, Particle Swarm, and Genetic Algorithms
by Carlos E. Castañeda
Robotics 2025, 14(9), 128; https://doi.org/10.3390/robotics14090128 - 19 Sep 2025
Viewed by 409
Abstract
This work introduces a unified Artificial Intelligence-based framework for the optimal tuning of gains in a neural discrete-time sliding mode controller (SMC) applied to a two-degree-of-freedom robotic manipulator. The novelty lies in combining surrogate-assisted optimization with normalized search spaces to enable a fair [...] Read more.
This work introduces a unified Artificial Intelligence-based framework for the optimal tuning of gains in a neural discrete-time sliding mode controller (SMC) applied to a two-degree-of-freedom robotic manipulator. The novelty lies in combining surrogate-assisted optimization with normalized search spaces to enable a fair comparative analysis of three metaheuristic strategies: Bayesian Optimization (BO), Particle Swarm Optimization (PSO), and Genetic Algorithms (GAs). The manipulator dynamics are identified via a discrete-time recurrent high-order neural network (NN) trained online using an Extended Kalman Filter with adaptive noise covariance updates, allowing the model to accurately capture unmodeled dynamics, nonlinearities, parametric variations, and process/measurement noise. This neural representation serves as the predictive plant for the discrete-time SMC, enabling precise control of joint angular positions under sinusoidal phase-shifted references. To construct the optimization dataset, MATLAB® simulations sweep the controller gains (k0*,k1*) over a bounded physical domain, logging steady-state tracking errors. These are normalized to mitigate scaling effects and improve convergence stability. Optimization is executed in Python® using integrated scikit-learn, DEAP, and scikit-optimize routines. Simulation results reveal that all three algorithms reach high-performance gain configurations. Here, the combined cost is the normalized aggregate objective J˜ constructed from the steady-state tracking errors of both joints. Under identical experimental conditions (shared data loading/normalization and a single Python pipeline), PSO attains the lowest error in Joint 1 (7.36×105 rad) with the shortest runtime (23.44 s); GA yields the lowest error in Joint 2 (8.18×103 rad) at higher computational expense (≈69.7 s including refinement); and BO is competitive in both joints (7.81×105 rad, 8.39×103 rad) with a runtime comparable to PSO (23.65 s) while using only 50 evaluations. Full article
(This article belongs to the Section AI in Robotics)
Show Figures

Figure 1

33 pages, 7120 KB  
Article
Operational Analysis of a Pilot-Scale Plant for Hydrogen Production via an Electrolyser Powered by a Photovoltaic System
by Lucio Bonaccorsi, Rosario Carbone, Fabio La Foresta, Concettina Marino, Antonino Nucara, Matilde Pietrafesa and Mario Versaci
Energies 2025, 18(15), 3949; https://doi.org/10.3390/en18153949 - 24 Jul 2025
Viewed by 719
Abstract
This study presents preliminary findings from an experimental campaign conducted on a pilot-scale green hydrogen production plant powered by a photovoltaic (PV) system. The integrated setup, implemented at the University “Mediterranea” of Reggio Calabria, includes renewable energy generation, hydrogen production via electrolysis, on-site [...] Read more.
This study presents preliminary findings from an experimental campaign conducted on a pilot-scale green hydrogen production plant powered by a photovoltaic (PV) system. The integrated setup, implemented at the University “Mediterranea” of Reggio Calabria, includes renewable energy generation, hydrogen production via electrolysis, on-site storage, and reconversion through fuel cells. The investigation assessed system performance under different configurations (on-grid and selective stand-alone modes), focusing on key operational phases such as inerting, purging, pressurization, hydrogen generation, and depressurization. Results indicate a strong linear correlation between the electrolyser’s power setpoint and the pressure rise rate, with a maximum gradient of 0.236 bar/min observed at 75% power input. The system demonstrated robust and stable operation, efficient control of shutdown sequences, and effective integration with PV input. These outcomes support the technical feasibility of small-scale hydrogen systems driven by renewables and offer valuable reference data for calibration models and future optimization strategies. Full article
(This article belongs to the Special Issue Renewable Energy and Hydrogen Energy Technologies)
Show Figures

Figure 1

23 pages, 5289 KB  
Article
Predefined-Performance Sliding-Mode Tracking Control of Uncertain AUVs via Adaptive Disturbance Observer
by Yuhang Guo, Zijun Gao, Yuhang Hu and Zhankui Song
J. Mar. Sci. Eng. 2025, 13(7), 1252; https://doi.org/10.3390/jmse13071252 - 28 Jun 2025
Viewed by 526
Abstract
In this paper, a sliding-mode control strategy incorporating prescribed features was systematically designed, resolving the dual challenges of trajectory tracking precision maintenance and disturbance attenuation for an AUV subjected to dynamic model inaccuracies and disturbances. To neutralize the impact of parametric uncertainties and [...] Read more.
In this paper, a sliding-mode control strategy incorporating prescribed features was systematically designed, resolving the dual challenges of trajectory tracking precision maintenance and disturbance attenuation for an AUV subjected to dynamic model inaccuracies and disturbances. To neutralize the impact of parametric uncertainties and environmental disturbances on the controlled plant, an adaptive finite-time sliding-mode disturbance observer (AFTSMDO), the upper bound of perturbations was not required for the proposed observer. Subsequently, by embedding error transformations and prescribed performance functions, we designed a novel sliding-mode surface. This surface ensured that tracking errors and their derivatives converge to specified regions within predefined temporal bounds, irrespective of initial configurations. This overcomes the longstanding limitations of traditional prescribed performance control methods and contributes to enhancing system performance. Finally, we conducted comparative simulation experiments with existing sliding-mode control methods to prove the practical viability and comparative advantage of the synthesized control methodology. Full article
(This article belongs to the Special Issue Control and Optimization of Ship Propulsion System)
Show Figures

Figure 1

19 pages, 5580 KB  
Article
Stand-Alone Operation of Multi-Phase Doubly-Fed Induction Generator Supplied by SiC-Based Current Source Converter
by Łukasz Sienkiewicz, Filip Wilczyński and Szymon Racewicz
Energies 2025, 18(11), 2753; https://doi.org/10.3390/en18112753 - 26 May 2025
Cited by 1 | Viewed by 642
Abstract
This paper investigates the performance of a five-phase silicon carbide (SiC)-based current-source converter (CSC) integrated with a Doubly Fed Induction Generator (DFIG) for wind energy applications. The study explores both healthy and faulty operation, focusing on system behavior under transient conditions and various [...] Read more.
This paper investigates the performance of a five-phase silicon carbide (SiC)-based current-source converter (CSC) integrated with a Doubly Fed Induction Generator (DFIG) for wind energy applications. The study explores both healthy and faulty operation, focusing on system behavior under transient conditions and various load scenarios in stand-alone mode. A novel five-phase space vector PWM strategy in dual coordinate planes is introduced, which enables stable control during normal and open-phase fault conditions. Experimental results demonstrate improved stator voltage and current quality, particularly in terms of reduced Total Harmonic Distortion (THD), compared to traditional voltage-source converter-based systems. Furthermore, the system maintains operational stability under a single-phase open fault, despite increased oscillations in stator quantities. The results highlight the potential of five-phase CSC-DFIG systems as a robust and efficient alternative for wind power plants, particularly in configurations involving long cable connections and requiring low generator losses. Future work will focus on enhancing fault-tolerant capabilities and expanding control strategies for improved performance under different operating conditions. Full article
(This article belongs to the Special Issue Modeling, Control and Optimization of Wind Power Systems)
Show Figures

Figure 1

21 pages, 14844 KB  
Article
On the Design of Bionic Hierarchical H-Type Whip Restraints for Nuclear Power Plants
by Zheng He, Yuhang Yang, Libang Hu and Shuitao Gu
Appl. Sci. 2025, 15(10), 5507; https://doi.org/10.3390/app15105507 - 14 May 2025
Viewed by 541
Abstract
Whip restraints based on thin-walled structures are widely used for protection against high-energy pipe breaks in nuclear power plants due to their excellent impact resistance. Recently, biomimetic and hierarchical structures have emerged as focal points in thin-walled structure research, aimed at enhancing energy [...] Read more.
Whip restraints based on thin-walled structures are widely used for protection against high-energy pipe breaks in nuclear power plants due to their excellent impact resistance. Recently, biomimetic and hierarchical structures have emerged as focal points in thin-walled structure research, aimed at enhancing energy absorption capacities. Drawing inspiration from the nautilus shell and Fibonacci spiral, based on the nautilus bionic hierarchical multi-cell (NBHMC) structure, this study introduces a novel Nautilus Bionic Double Hierarchical Multi-Cell (NBDHMC) structure. Finite element analysis was employed to evaluate the energy absorption performance of the structure under axial and oblique loads using four crashworthiness parameters. Crashworthiness studies showed that the NBDHMC exhibits superior crashworthiness compared to the NBHMC and hollow circular tube configurations. Finally, the study investigated the influence of combination modes, hierarchical levels, cross-sectional characteristics, and other parameters on the parameterization of the NBDHMC. The results offer innovative insights for the design of highly efficient energy absorbers. Full article
Show Figures

Figure 1

17 pages, 8768 KB  
Article
Teager–Kaiser Energy Operator-Based Short-Circuit Fault Localization Method for Multi-Circuit Parallel Cables
by Zhichao Li, Jian Mao, Changhao Luo, Yuangang Sun, Chuanjian Zheng and Zhenfei Chen
Energies 2025, 18(10), 2432; https://doi.org/10.3390/en18102432 - 9 May 2025
Viewed by 573
Abstract
Medium-voltage cables in hydropower plants are typically arranged in multi-circuit configurations to ensure reliability, yet their exposure to harsh operational conditions accelerates insulation degradation and increases partial discharge risks. Traditional fault localization methods, such as the traveling wave method using wavelet transform to [...] Read more.
Medium-voltage cables in hydropower plants are typically arranged in multi-circuit configurations to ensure reliability, yet their exposure to harsh operational conditions accelerates insulation degradation and increases partial discharge risks. Traditional fault localization methods, such as the traveling wave method using wavelet transform to process fault signals, suffer from wavefront distortion due to inter-line reflections and noise interference in multi-circuit systems, because wavelet-based techniques are limited by preset basis functions and environmental noise. To address these challenges, a fault localization method for multi-circuit parallel cables based on the Teager–Kaiser Energy Operator (TKEO) is proposed in this paper. First, the fault signal is decoupled using Clarke transformation to suppress common-mode interference, obtaining the α component. Subsequently, the α component is subjected to wavelet transform to obtain the high-frequency components, which are then optimized using the TKEO. The TKEO is applied to optimize the wavelet-transformed signal, enhancing transient energy variations to precisely identify the arrival time of the fault wavefront at measurement points, thereby enabling accurate fault localization. The results of the four types of fault experiments indicate that the use of the TKEO to optimize the wavelet transform of the traveling wave method improved the accuracy of fault localization. Full article
Show Figures

Figure 1

14 pages, 4754 KB  
Article
Economic Optimization of Hybrid Energy Storage Capacity for Wind Power Based on Coordinated SGMD and PSO
by Kai Qi, Keqilao Meng, Xiangdong Meng, Fengwei Zhao and Yuefei Lü
Energies 2025, 18(10), 2417; https://doi.org/10.3390/en18102417 - 8 May 2025
Viewed by 614
Abstract
Under the dual carbon objectives, wind power penetration has accelerated markedly. However, the inherent volatility and insufficient peak regulation capability in energy storage allocation hamper efficient grid integration. To address these challenges, this paper presents a hybrid storage capacity configuration method that combines [...] Read more.
Under the dual carbon objectives, wind power penetration has accelerated markedly. However, the inherent volatility and insufficient peak regulation capability in energy storage allocation hamper efficient grid integration. To address these challenges, this paper presents a hybrid storage capacity configuration method that combines Symplectic Geometry Mode Decomposition (SGMD) with Particle Swarm Optimization (PSO). SGMD provides fine-grained, multi-scale decomposition of load–power curves to reduce modal aliasing, while PSO determines globally optimal ESS capacities under peak-shaving constraints. Case-study simulations showed a 25.86% reduction in the storage investment cost compared to EMD-based baselines, maintenance of the state of charge (SOC) within 0.3–0.6, and significantly enhanced overall energy management efficiency. The proposed framework thus offers a cost-effective and robust solution for energy storage at renewable energy plants. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

34 pages, 6977 KB  
Article
Quantifying the Economic Advantages of Energy Management Systems for Domestic Prosumers with Electric Vehicles
by Domenico Gioffrè, Giampaolo Manzolini, Sonia Leva, Rémi Jaboeuf, Paolo Tosco and Emanuele Martelli
Energies 2025, 18(7), 1774; https://doi.org/10.3390/en18071774 - 1 Apr 2025
Cited by 1 | Viewed by 961
Abstract
The increasing adoption of intermittent renewable energy sources and electric vehicles in households necessitates effective energy management systems (EMS) in the residential sector. This study quantifies the economic benefits of using a state-of-the-art EMS for optimally controlling a grid-connected smart home, which includes [...] Read more.
The increasing adoption of intermittent renewable energy sources and electric vehicles in households necessitates effective energy management systems (EMS) in the residential sector. This study quantifies the economic benefits of using a state-of-the-art EMS for optimally controlling a grid-connected smart home, which includes PV panels, a battery, and an EV charging station with either monodirectional or bidirectional charging modes. The EMS uses a two-layer approach: the first layer handles strategic decisions with day-ahead forecasts and solving a mixed-integer linear program (MILP) model; the second layer manages the real-time control decisions based on a heuristic strategy. Tested on 396 real-world case studies (based on measured data) with varying user types and energy systems (different PV plant sizes, with or without BESS, and different EV charging modes), different EV models, and weekly commutes, the results demonstrate the EMS’s cost-effectiveness compared to current non-predictive heuristic strategies. Annual cost savings exceed 20% in all cases and reach up to 900 €/year for configurations with large (6 kW) PV plants. Additionally, while installing a battery is not economically advantageous, bidirectional EV chargers yield 10–15% additional savings compared to monodirectional chargers, increasing with more weekly remote working days. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

18 pages, 2586 KB  
Article
The Effects of Different Plant Configuration Modes on Soil Organic Carbon Fractions in the Lakeshore of Hongze Lake
by Tianyi Guo, Xinrui Li, Yuan He and Jiang Jiang
Forests 2025, 16(4), 611; https://doi.org/10.3390/f16040611 - 30 Mar 2025
Viewed by 481
Abstract
The effects of plant configuration modes on soil organic carbon fractions are mainly reflected in plant species, root structure, apoplastic input, and microbial activity, and different plant configuration modes affect the accumulation and stability of soil organic carbon by changing the input and [...] Read more.
The effects of plant configuration modes on soil organic carbon fractions are mainly reflected in plant species, root structure, apoplastic input, and microbial activity, and different plant configuration modes affect the accumulation and stability of soil organic carbon by changing the input and decomposition processes of organic matter. Considering the common use of local species in ecological restoration and their diverse ecological functions, we selected five different plant configuration modes in the lakeshore zone of Hongze Lake (Metasequoia glyptostroboides-Amorpha fruticosa L. (M-Af), Metasequoia glyptostroboides-Acorus calamus L. (M-Ac), Salix babylonica L.-Amorpha fruticosa L. (S-Af), Magnolia grandiflora L.-Nandina domestica Thunb. (Mg-N), and Pterocarya stenoptera C. DC.-Nandina domestica Thunb. (P-N)) in this study. The objective of the present study was to analyze the carbon content in the vegetation, the content of soil organic carbon and its components in the understorey, and the activity of the soil carbon pool and their interrelationships under different plant configuration modes in the lakeshore zone of Hongze Lake to reveal the dynamic change law in the carbon pool under different plant configuration modes. The findings demonstrated that within the Metasequoia glyptostroboides mode, M-Ac exhibited notable benefits in accumulating soil organic carbon and enhancing the stability of carbon fractions. The soil organic carbon (SOC) content was recorded at 3.93 g·kg−1, the total carbon (TC) content at 4.73 g·kg−1, and the mineral-associated organic carbon (MAOC) content of 2.20 g·kg−1 in the soil layer of 0–20 cm, which were 23.4%–71.6%, 9%–24.5%, and 18.9%–54.3% (p < 0.05), respectively, and were higher than the other configuration modes. Regarding the percentage of inactive carbon (NLC/SOC), the corresponding values for M-Ac and M-Af were 74.21% and 70.33%, respectively, which were significantly higher than the other modes. Redundancy analysis further showed that the soil whole carbon and arbor layer branch carbon content were the pivotal factors driving the accumulation of soil organic carbon fractions (with a cumulative explanation of 71.26%). This study has the potential to provide a theoretical basis and practical reference for optimizing plant allocation and enhancing the carbon sink function in the ecological restoration of the lakeshore zone. Full article
(This article belongs to the Special Issue Soil Carbon Storage in Forests: Dynamics and Management)
Show Figures

Figure 1

20 pages, 38855 KB  
Article
A Self-Configurable BUS Network Topology Based on LoRa Nodes for the Transmission of Data and Alarm Messages in Power Line-Monitoring Systems
by Bartomeu Alorda-Ladaria, Marta Pons and Eugeni Isern
Sensors 2025, 25(5), 1484; https://doi.org/10.3390/s25051484 - 28 Feb 2025
Cited by 2 | Viewed by 1765
Abstract
Power transmission lines transfer energy between power plants and substations by means of a linear chain of towers. These towers are often situated over extensive distances, sometimes in regions that are difficult to access. Wireless sensor networks present a viable solution for monitoring [...] Read more.
Power transmission lines transfer energy between power plants and substations by means of a linear chain of towers. These towers are often situated over extensive distances, sometimes in regions that are difficult to access. Wireless sensor networks present a viable solution for monitoring these long chains of towers due to their wide coverage, ease of installation and cost-effectiveness. The proposed LoRaBUS approach implements and analyses the benefits of a linear topology using a mixture of LoRa and LoRaWAN protocols. This approach is designed to enable automatic detection of nearby nodes, optimise energy consumption and provide a prioritised transmission mode in emergency situations. On remote, hard-to-reach towers, a prototype fire protection system was implemented and tested. The results demonstrate that LoRaBUS creates a self-configurable linear topology which proves advantageous for installation processes, node maintenance and troubleshooting node failures. The discovery process collects data from a neighbourhood to construct the network and to save energy. The network’s autonomous configuration can be completed within approximately 2 min. In addition, energy consumption is effectively reduced 25% by dynamically adjusting the transmission power based on the detected channel quality and the distance to the nearest neighbour nodes. Full article
(This article belongs to the Special Issue LoRa Communication Technology for IoT Applications)
Show Figures

Figure 1

24 pages, 2765 KB  
Article
Valorization of Biomass Through Anaerobic Digestion and Hydrothermal Carbonization: Integrated Process Flowsheet and Supply Chain Network Optimization
by Sanja Potrč, Aleksandra Petrovič, Jafaru M. Egieya and Lidija Čuček
Energies 2025, 18(2), 334; https://doi.org/10.3390/en18020334 - 14 Jan 2025
Cited by 3 | Viewed by 1200
Abstract
Utilization of biomass through anaerobic digestion and hydrothermal carbonization is crucial to maximize resource efficiency. At the same time, supply chain integration ensures sustainable feedstock management and minimizes environmental and logistical impacts, enabling a holistic approach to a circular bioeconomy. This study presents [...] Read more.
Utilization of biomass through anaerobic digestion and hydrothermal carbonization is crucial to maximize resource efficiency. At the same time, supply chain integration ensures sustainable feedstock management and minimizes environmental and logistical impacts, enabling a holistic approach to a circular bioeconomy. This study presents an integrated approach to simultaneously optimize the biomass supply chain network and process flowsheet, which includes anaerobic digestion, cogeneration, and hydrothermal carbonization. A three-layer supply chain network superstructure was hence developed to integrate the optimization of process variables with supply chain features such as transportation modes, feedstock supply, plant location, and demand location. A mixed-integer nonlinear programming model aimed at maximizing the economic performance of the system was formulated and applied to a case study of selected regions in Slovenia. The results show a great potential for the utilization of organic biomass with an annual after tax profit of 23.13 million USD per year, with the production of 245.70 GWh/yr of electricity, 298.83 GWh/yr of heat, and 185.08 kt/yr of hydrochar. The optimal configuration of the supply chain network, including the selection of supply zones, plant locations and demand locations, transportation links, and mode of transportation is presented, along with the optimal process variables within the plant. Full article
Show Figures

Figure 1

17 pages, 8773 KB  
Article
Numerical Study on Combustion Characteristics of a 600 MW Boiler Under Low-Load Conditions
by Peian Chong, Jianning Li, Xiaolei Zhu, Dengke Jing and Lei Deng
Processes 2024, 12(11), 2496; https://doi.org/10.3390/pr12112496 - 10 Nov 2024
Cited by 2 | Viewed by 1935
Abstract
Under the background of achieving carbon dioxide peaking and carbon neutrality, the rapid development of renewable energy power generation poses new challenges to the flexible adjustment capabilities of traditional power plants. To explore the furnace combustion stability and optimal operation modes during deep [...] Read more.
Under the background of achieving carbon dioxide peaking and carbon neutrality, the rapid development of renewable energy power generation poses new challenges to the flexible adjustment capabilities of traditional power plants. To explore the furnace combustion stability and optimal operation modes during deep peak shaving, a simulation of the combustion process under low-load conditions for a 600 MW wall-fired boiler is performed utilizing computational fluid dynamics (CFD) analysis. The impact of burner combination modes on the combustion process within the furnace is explored at 25% and 35% boiler maximum continuous ratings (BMCRs). This study investigates two configurations of burner combinations. One mode operates burners in layers A, B, and C, which include the lower layers of burners on the front and rear walls of the boiler, as well as the middle-layer burners on the rear wall, referred to as OM1. The other mode operates burners in layers A and C, which include the lower layers of burners on the front and rear walls of the boiler, referred to as OM2. The results indicate that OM2 exhibits superior capabilities in orchestrating the distribution of the airflow velocity field and temperature field under the premise of ensuring no more than a 1% decrease in the pulverized coal burnout rate. When OM1 is employed, the airflow ejected from the middle-level burners hinders the upward movement of pulverized coal sprayed from the lower-level burners, causing a larger proportion of pulverized coal to enter the ash hopper for combustion. Consequently, the ash hopper attains a peak mole fraction of CO2 at 0.163. OM2 delays the blending of pulverized coal with air by enhancing the injection quantity of pulverized coal per burner. As a result, the generation of CO in the ash hopper reaches a notable mole fraction of up to 0.108. The decreased furnace temperature promotes the formation of fuel-based NOx during low-load operation. Taking the 25% BMCR as an example, the NOx emissions measured at the furnace outlet are 743 and 1083 ppm for OM1 and OM2, respectively. This study focuses on the impact of combustion combinations on the combustion stability when the boiler is operating at low loads. The findings could enrich previous research on combustion stability and contribute to the optimization of combustion schemes for power plant boilers operating at low loads. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

17 pages, 8715 KB  
Article
Design and Simulation of a Combined Trencher for Transverse Sugarcane Planter
by Biao Zhang, Xinsan Yang and Yingying Zhu
Agriculture 2024, 14(8), 1416; https://doi.org/10.3390/agriculture14081416 - 21 Aug 2024
Cited by 3 | Viewed by 1740
Abstract
The trencher design of the pre-cut transverse sugarcane planter is the basis for realizing deep planting and shallow burial. Aimed at the problems of insufficient seeding space provided by furrows and high resistance to trenching, a structural configuration of a combined trencher suitable [...] Read more.
The trencher design of the pre-cut transverse sugarcane planter is the basis for realizing deep planting and shallow burial. Aimed at the problems of insufficient seeding space provided by furrows and high resistance to trenching, a structural configuration of a combined trencher suitable for transverse cane planting agronomy was proposed to improve the stability, simplicity, and efficiency of trenching. The collaborative operations of components such as the soil lifting of the leak-proof plow, the soil fragmentation and throwing of the double-disc rotary tiller, the rebound of the fender, the lateral diversion of the furrowing plow, and the motion control of the double rocker arms were comprehensively utilized. The trenching principle of using double-sided guards to block soil backfilling to form a seeding space was applied, as well as pre-side diversion to reduce the forward resistance of plow surfaces. The simulation of the trenching process showed that the combined trencher was available in terms of soil particle transfer and dynamic space-forming capabilities, and the stress distribution of the advancing plow surface was analyzed. Moreover, based on the minimum resistance characteristics, the optimal spacing between the rotary tiller and the furrowing plow and the blade arrangement mode were configured, and the structural parameters of the furrowing plow were optimized to include a soil penetration angle of 20°, an oblique cutting angle of 75°, and a curvature radius of 280 mm. Field experiments have proven that the soil entry movement trajectory, the length and width of the accessible seed placement space, and the average planting depth of cane seeds could all achieve respective design anticipations of the combined trencher. The measured trenching resistance was 7609.7 N, with an error of 22.2% from the predicted value under the same configuration. Full article
Show Figures

Figure 1

24 pages, 21271 KB  
Article
In Vitro and Randomized Controlled Clinical Study of Natural Constituents’ Anti-HPV Potential for Treatment of Plantar Warts Supported with In Silico Studies and Network Analysis
by Nourhan Hisham Shady, Fatma Alzahraa Mokhtar, Hend Samy Abdullah, Salah A. Abdel-Aziz, Soad A. Mohamad, Mohamed S. Imam, Sherin Refat El Afify and Usama Ramadan Abdelmohsen
Pharmaceuticals 2024, 17(6), 759; https://doi.org/10.3390/ph17060759 - 10 Jun 2024
Cited by 1 | Viewed by 8206
Abstract
The aim of this study is to evaluate the anti-HPV potential of a Moringa olifera Lam seed, Nigella sativa L. seed, and Musa Acuminata peel herbal mixture in the form of polymer film-forming systems. A clinical trial conducted in outpatient clinics showed that [...] Read more.
The aim of this study is to evaluate the anti-HPV potential of a Moringa olifera Lam seed, Nigella sativa L. seed, and Musa Acuminata peel herbal mixture in the form of polymer film-forming systems. A clinical trial conducted in outpatient clinics showed that the most significant outcome was wart size and quantity. Compared to the placebo group, the intervention group’s size and number of warts were considerably better according to the results. Chemical profiling assisted by LC-HRMS led to the dereplication of 49 metabolites. Furthermore, network pharmacology was established for the mixture of three plants; each plant was studied separately to find out the annotated target genes, and then, we combined all annotated genes of all plants and filtered the genes to specify the genes related to human papilloma virus. In a backward step, the 24 configured genes related to HPV were used to specify only 30 compounds involved in HPV infection based on target genes. CA2 and EGFR were the top identified genes with 16 and 12 edges followed by PTGS2, CA9, and MMP9 genes with 11 edges each. A molecular docking study for the top active identified compounds of each species was conducted in the top target HPV genes, CA2 and EGFR, to investigate the mode of interaction between these compounds and the targets’ active sites. Full article
(This article belongs to the Special Issue Antiviral Compounds in Medicinal Plants 2023)
Show Figures

Graphical abstract

24 pages, 9718 KB  
Article
Study on the Effect and Enhancement of Near-Natural Integrated Plant Positioning Configuration in the Hilly Gully Region, China
by Hongsheng Zhao, Shuang Feng, Wanjiao Li and Yong Gao
Forests 2024, 15(5), 841; https://doi.org/10.3390/f15050841 - 11 May 2024
Cited by 3 | Viewed by 1255
Abstract
The establishment of protective forests plays a crucial role in mitigating soil erosion on slopes within hilly and gully regions. However, in practical applications, the configuration of protective forests on slopes is intricate and diverse, and the suitability and rationality of different configuration [...] Read more.
The establishment of protective forests plays a crucial role in mitigating soil erosion on slopes within hilly and gully regions. However, in practical applications, the configuration of protective forests on slopes is intricate and diverse, and the suitability and rationality of different configuration patterns for various slope sections have not been thoroughly investigated. This study focuses on a 40-year-old artificial protective forest, examining 16 different configuration patterns on the top, middle, and lower slopes. It compares the growth conditions, community structure stability, and characteristics of the saturated soil’s hydraulic conductivity. The findings indicate that the top slope should be identified as a critical area for slope protection. The optimal configuration for this area is the “tree + grass” pattern with a spacing of 5 m × 5 m, which promotes the optimal growth of tree species and effectively reduces the surface runoff of gravel particles ranging from 1 cm to 3 cm in diameter. On the middle slope, the “tree + shrub + grass” structure proves effective in slowing down the erosive force of slope runoff. The recommended spacing for trees is 5 m × 6 m, and for understory shrubs, it is 1 m × 6 m. This configuration pattern results in the most stable structure for the plant community and maximizes the water conservation potential of forest litter. By analyzing the characteristics of the saturated soil’s hydraulic conductivity, we find that the complexity of the plant configuration on the lower slopes is correlated with a greater coefficient of variation in the saturated soil’s hydraulic conductivity. Nevertheless, there is no significant difference in the average soil saturated hydraulic conductivity per unit area between the different configuration patterns. Consequently, the lower slope can rely on the natural recovery of herbaceous plants. The results of this research contribute valuable scientific and technical insights to the management of soil erosion in hilly and gully areas, both in China and around the world. Full article
Show Figures

Figure 1

Back to TopTop