Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (446)

Search Parameters:
Keywords = plant disease classification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3628 KB  
Article
A Unified Self-Supervised Framework for Plant Disease Detection on Laboratory and In-Field Images
by Xiaoli Huan, Bernard Chen and Hong Zhou
Electronics 2025, 14(17), 3410; https://doi.org/10.3390/electronics14173410 - 27 Aug 2025
Viewed by 220
Abstract
Early and accurate detection of plant diseases is essential for ensuring food security and maintaining sustainable agricultural productivity. However, most deep learning models for plant disease classification rely heavily on large-scale annotated datasets, which are expensive, labor-intensive, and often impractical to obtain in [...] Read more.
Early and accurate detection of plant diseases is essential for ensuring food security and maintaining sustainable agricultural productivity. However, most deep learning models for plant disease classification rely heavily on large-scale annotated datasets, which are expensive, labor-intensive, and often impractical to obtain in real-world farming environments. To address this limitation, we propose a unified self-supervised learning (SSL) framework that leverages unlabeled plant imagery to learn meaningful and transferable visual representations. Our method integrates three complementary objectives—Bootstrap Your Own Latent (BYOL), Masked Image Modeling (MIM), and contrastive learning—within a ResNet101 backbone, optimized through a hybrid loss function that captures global alignment, local structure, and instance-level distinction. GPU-based data augmentations are used to introduce stochasticity and enhance generalization during pretraining. Experimental results on the challenging PlantDoc dataset demonstrate that our model achieves an accuracy of 77.82%, with macro-averaged precision, recall, and F1-score of 80.00%, 78.24%, and 77.48%, respectively—on par with or exceeding most state-of-the-art supervised and self-supervised approaches. Furthermore, when fine-tuned on the PlantVillage dataset, the pretrained model attains 99.85% accuracy, highlighting its strong cross-domain generalization and practical transferability. These findings underscore the potential of self-supervised learning as a scalable, annotation-efficient, and robust solution for plant disease detection in real-world agricultural settings, especially where labeled data is scarce or unavailable. Full article
Show Figures

Figure 1

26 pages, 40392 KB  
Article
Crop Health Assessment from Predicted AGB and NPK Derived from UAV Spectral Indices and Machine Learning Techniques
by Ayyappa Reddy Allu and Shashi Mesapam
Agronomy 2025, 15(9), 2059; https://doi.org/10.3390/agronomy15092059 - 27 Aug 2025
Viewed by 262
Abstract
Crop health assessment is essential for the early detection of nutrient deficiencies, diseases, and pests, allowing for timely interventions that optimize yield, reduce losses, and support sustainable agricultural practices. While traditional methods and satellite-based remote sensing offer broad scale monitoring, they often suffer [...] Read more.
Crop health assessment is essential for the early detection of nutrient deficiencies, diseases, and pests, allowing for timely interventions that optimize yield, reduce losses, and support sustainable agricultural practices. While traditional methods and satellite-based remote sensing offer broad scale monitoring, they often suffer from coarse spatial resolution, and insufficient precision at the plant level. These limitations hinder accurate and dynamic assessment of crop health, particularly for high-resolution applications such as nutrient diagnosis during different crop growth stages. This study addresses these gaps by leveraging high-resolution UAV (Unmanned Aerial Vehicle) imagery to monitor the health of paddy crops across multiple temporal stages. A novel methodology was implemented to assess the crop health condition from the predicted Above-Ground Biomass (AGB) and essential macro-nutrients (N, P, K) using vegetation indices derived from UAV imagery. Four machine learning models were used to predict these parameters based on field observed data, with Random Forest (RF) and XGBoost outperforming other algorithms, achieving high regression scores (AGB > 0.92, N > 0.96, P > 0.92, K > 0.97) and low prediction errors (AGB < 80 gm/m2, N < 0.11%, P < 0.007%, K < 0.08%). A significant contribution of this study lies in the development of decision-making rules based on threshold values of AGB and specific nutrient critical, optimum, and toxic levels for the paddy crop. These rules were used to derive crop health maps from the predicted AGB and NPK values. The resulting spatial health maps, generated using RF and XGBoost models with high classification accuracy (Kappa coefficient > 0.64), visualize intra-field variability, allowing for site-specific interventions. This research contributes significantly to precision agriculture by offering a robust, plant-level monitoring approach that supports timely, site-specific nutrient management and enhances sustainable crop production practices. Full article
Show Figures

Figure 1

31 pages, 36163 KB  
Article
A Robust Lightweight Vision Transformer for Classification of Crop Diseases
by Karthick Mookkandi, Malaya Kumar Nath, Sanghamitra Subhadarsini Dash, Madhusudhan Mishra and Radak Blange
AgriEngineering 2025, 7(8), 268; https://doi.org/10.3390/agriengineering7080268 - 21 Aug 2025
Viewed by 344
Abstract
Rice, wheat, and maize are important food grains consumed by most of the population in Asian countries (like India, Japan, Singapore, Malaysia, China, and Thailand). These crops’ production is affected by biotic and abiotic factors that cause diseases in several parts of the [...] Read more.
Rice, wheat, and maize are important food grains consumed by most of the population in Asian countries (like India, Japan, Singapore, Malaysia, China, and Thailand). These crops’ production is affected by biotic and abiotic factors that cause diseases in several parts of the crops (including leaves, stems, roots, nodes, and panicles). A severe infection affects the growth of the plant, thereby undermining the economy of a country, if not detected at an early stage. This may cause extensive damage to crops, resulting in decreased yield and productivity. Early safeguarding methods are overlooked because of farmers’ lack of awareness and the variety of crop diseases. This causes significant crop damage and can consequently lower productivity. In this manuscript, a lightweight vision transformer (MaxViT) with 814.7 K learnable parameters and 85 layers is designed for classifying crop diseases in paddy and wheat. The MaxViT DNN architecture consists of a convolutional block attention module (CBAM), squeeze and excitation (SE), and depth-wise (DW) convolution, followed by a ConvNeXt module. This network architecture enhances feature representation by eliminating redundant information (using CBAM) and aggregating spatial information (using SE), and spatial filtering by the DW layer cumulatively enhances the overall classification performance. The proposed model was tested using a paddy dataset (with 7857 images and eight classes, obtained from local paddy farms in Lalgudi district, Tiruchirappalli) and a wheat dataset (with 5000 images and five classes, downloaded from the Kaggle platform). The model’s classification performance for various diseases has been evaluated based on accuracy, sensitivity, specificity, mean accuracy, precision, F1-score, and MCC. During training and testing, the model’s overall accuracy on the paddy dataset was 99.43% and 98.47%, respectively. Training and testing accuracies were 94% and 92.8%, respectively, for the wheat dataset. Ablation analysis was carried out to study the significant contribution of each module to improving the performance. It was found that the model’s performance was immune to the presence of noise. Additionally, there are a minimal number of parameters involved in the proposed model as compared to pre-trained networks, which ensures that the model trains faster. Full article
Show Figures

Figure 1

23 pages, 14694 KB  
Article
PLCNet: A 3D-CNN-Based Plant-Level Classification Network Hyperspectral Framework for Sweetpotato Virus Disease Detection
by Qiaofeng Zhang, Wei Wang, Han Su, Gaoxiang Yang, Jiawen Xue, Hui Hou, Xiaoyue Geng, Qinghe Cao and Zhen Xu
Remote Sens. 2025, 17(16), 2882; https://doi.org/10.3390/rs17162882 - 19 Aug 2025
Viewed by 429
Abstract
Sweetpotato virus disease (SPVD) poses a significant threat to global sweetpotato production; therefore, early, accurate field-scale detection is necessary. To address the limitations of the currently utilized assays, we propose PLCNet (Plant-Level Classification Network), a rapid, non-destructive SPVD identification framework using UAV-acquired hyperspectral [...] Read more.
Sweetpotato virus disease (SPVD) poses a significant threat to global sweetpotato production; therefore, early, accurate field-scale detection is necessary. To address the limitations of the currently utilized assays, we propose PLCNet (Plant-Level Classification Network), a rapid, non-destructive SPVD identification framework using UAV-acquired hyperspectral imagery. High-resolution data from early sweetpotato growth stages were processed via three feature selection methods—Random Forest (RF), Minimum Redundancy Maximum Relevance (mRMR), and Local Covariance Matrix (LCM)—in combination with 24 vegetation indices. Variance Inflation Factor (VIF) analysis reduced multicollinearity, yielding an optimized SPVD-sensitive feature set. First, using the RF-selected bands and vegetation indices, we benchmarked four classifiers—Support Vector Machine (SVM), Gradient Boosting Decision Tree (GBDT), Residual Network (ResNet), and 3D Convolutional Neural Network (3D-CNN). Under identical inputs, the 3D-CNN achieved superior performance (OA = 96.55%, Macro F1 = 95.36%, UA_mean = 0.9498, PA_mean = 0.9504), outperforming SVM, GBDT, and ResNet. Second, with the same spectral–spatial features and 3D-CNN backbone, we compared a pixel-level baseline (CropdocNet) against our plant-level PLCNet. CropdocNet exhibited spatial fragmentation and isolated errors, whereas PLCNet’s two-stage pipeline—deep feature extraction followed by connected-component analysis and majority voting—aggregated voxel predictions into coherent whole-plant labels, substantially reducing noise and enhancing biological interpretability. By integrating optimized feature selection, deep learning, and plant-level post-processing, PLCNet delivers a scalable, high-throughput solution for precise SPVD monitoring in agricultural fields. Full article
Show Figures

Figure 1

25 pages, 1839 KB  
Review
Burkholderia Phages and Control of Burkholderia-Associated Human, Animal, and Plant Diseases
by Bingjie Wang, Jiayi Zhang, Lei Chen, Munazza Ijaz, Ji’an Bi, Chenhao Li, Daixing Dong, Yanxin Wang, Bin Li, Jinyan Luo and Qianli An
Microorganisms 2025, 13(8), 1873; https://doi.org/10.3390/microorganisms13081873 - 11 Aug 2025
Viewed by 500
Abstract
Gram-negative Burkholderia bacteria are known for causing diseases in humans, animals, and plants, and high intrinsic resistance to antibiotics. Phage therapy is a promising alternative to control multidrug-resistant bacterial pathogens. Here, we present an overview of Burkholderia phage characteristics, host specificity, genomic classification, [...] Read more.
Gram-negative Burkholderia bacteria are known for causing diseases in humans, animals, and plants, and high intrinsic resistance to antibiotics. Phage therapy is a promising alternative to control multidrug-resistant bacterial pathogens. Here, we present an overview of Burkholderia phage characteristics, host specificity, genomic classification, and therapeutic potentials across medical, veterinary, and agricultural systems. We evaluate the efficacy and limitations of current phage candidates, the biological and environmental barriers of phage applications, and the phage cocktail strategy. We highlight the innovations on the development of targeted phage delivery systems and the transition from the exploration of clinical phage therapy to plant disease management, advocating integrated disease control strategies. Full article
(This article belongs to the Special Issue Phage–Bacteria Interplay: Phage Biology and Phage Therapy)
Show Figures

Figure 1

14 pages, 8017 KB  
Article
Fast Rice Plant Disease Recognition Based on Dual-Attention-Guided Lightweight Network
by Chenrui Kang, Lin Jiao, Kang Liu, Zhigui Liu and Rujing Wang
Agriculture 2025, 15(16), 1724; https://doi.org/10.3390/agriculture15161724 - 10 Aug 2025
Viewed by 422
Abstract
The yield and quality of rice are severely affected by rice disease, which can result in crop failure. Early and precise identification of rice plant diseases enables timely action, minimizing potential economic losses. Deep convolutional neural networks (CNNs) have significantly advanced image classification [...] Read more.
The yield and quality of rice are severely affected by rice disease, which can result in crop failure. Early and precise identification of rice plant diseases enables timely action, minimizing potential economic losses. Deep convolutional neural networks (CNNs) have significantly advanced image classification accuracy by leveraging powerful feature extraction capabilities, outperforming traditional machine learning methods. In this work, we propose a dual attention-guided lightweight network for fast and precise recognition of rice diseases with small lesions and high similarity. First, to efficiently extract features while reducing computational redundancy, we incorporate FasterNet using partial convolution (PC-Conv). Furthermore, to enhance the network’s ability to capture fine-grained lesion details, we introduce a dual-attention mechanism that aggregates long-range contextual information in both spatial and channel dimensions. Additionally, we construct a large-scale rice disease dataset, named RD-6, which contains 2196 images across six categories, to support model training and evaluation. Finally, the proposed rice disease detection method is evaluated on the RD-6 dataset, demonstrating its superior performance over other state-of-the-art methods, especially in terms of recognition efficiency. For instance, the method achieves an average accuracy of 99.9%, recall of 99.8%, precision of 100%, specificity of 100%, and F1-score of 99.9%. Additionally, the proposed method has only 3.6 M parameters, demonstrating higher efficiency without sacrificing accuracy. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

18 pages, 676 KB  
Review
Advances of Peptides for Plant Immunity
by Minghao Liu, Guangzhong Zhang, Suikang Wang and Quan Wang
Plants 2025, 14(15), 2452; https://doi.org/10.3390/plants14152452 - 7 Aug 2025
Viewed by 652
Abstract
Plant peptides, as key signaling molecules, play pivotal roles in plant growth, development, and stress responses. This review focuses on research progress in plant peptides involved in plant immunity, providing a detailed classification of immunity-related plant polypeptides, including small post-translationally modified peptides, cysteine-rich [...] Read more.
Plant peptides, as key signaling molecules, play pivotal roles in plant growth, development, and stress responses. This review focuses on research progress in plant peptides involved in plant immunity, providing a detailed classification of immunity-related plant polypeptides, including small post-translationally modified peptides, cysteine-rich peptides, and non-cysteine-rich peptides. It discusses the mechanisms by which plant polypeptides confer disease resistance, such as their involvement in pattern-triggered immunity (PTI), effector-triggered immunity (ETI), and regulation of hormone-mediated defense pathways. Furthermore, it explores potential agricultural applications of plant polypeptides, including the development of novel biopesticides and enhancement of crop disease resistance via genetic engineering. By summarizing current research, this review aims to provide a theoretical basis for in-depth studies on peptide-mediated disease resistance and offer innovative insights for plant disease control. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

22 pages, 1909 KB  
Review
Cassava (Manihot esculenta Crantz): Evolution and Perspectives in Genetic Studies
by Vinicius Campos Silva, Gustavo Reis de Brito, Wellington Ferreira do Nascimento, Eduardo Alano Vieira, Felipe Machado Navaes and Marcos Vinícius Bohrer Monteiro Siqueira
Agronomy 2025, 15(8), 1897; https://doi.org/10.3390/agronomy15081897 - 7 Aug 2025
Viewed by 510
Abstract
Cassava (Manihot esculenta Crantz) is essential for global food security, especially in tropical regions. As an important genetic resource, its genetics plays a key role in crop breeding, enabling the development of more productive and pest- and disease-resistant varieties. Scientometrics, which quantitatively [...] Read more.
Cassava (Manihot esculenta Crantz) is essential for global food security, especially in tropical regions. As an important genetic resource, its genetics plays a key role in crop breeding, enabling the development of more productive and pest- and disease-resistant varieties. Scientometrics, which quantitatively analyzes the production and impact of scientific research, is crucial for understanding trends in cassava genetics. This study aimed to apply bibliometric methods to conduct a scientific mapping analysis based on yearly publication trends, paper classification, author productivity, journal impact factor, keywords occurrences, and omic approaches to investigate the application of genetics to the species from 1960 to 2022. From the quantitative data analyzed, 3246 articles were retrieved from the Web of Science platform, of which 654 met the inclusion criteria. A significant increase in scientific production was observed from 1993, peaking in 2018. The first article focused on genetics was published in 1969. Among the most relevant journals, Euphytica stood out with 36 articles, followed by Genetics and Molecular Research (n = 30) and Frontiers in Plant Science (n = 25). Brazil leads in the number of papers on cassava genetics (n = 143), followed by China (n = 110) and the United States (n = 75). The analysis of major methodologies (n = 185) reveals a diversified panorama during the study period. Morpho-agronomic descriptors persisted from 1978 to 2022; however, microsatellite markers were the most widely used, with 102 records. Genomics was addressed in 87 articles, and transcriptomics in 65. By clarifying the current landscape, this study supports cassava conservation and breeding, assists in public policy formulation, and guides future research in the field. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

17 pages, 54671 KB  
Article
Pep-VGGNet: A Novel Transfer Learning Method for Pepper Leaf Disease Diagnosis
by Süleyman Çetinkaya and Amira Tandirovic Gursel
Appl. Sci. 2025, 15(15), 8690; https://doi.org/10.3390/app15158690 - 6 Aug 2025
Viewed by 284
Abstract
The health of crops is a major challenge for productivity growth in agriculture, with plant diseases playing a key role in limiting crop yield. Identifying and understanding these diseases is crucial to preventing their spread. In particular, greenhouse pepper leaves are susceptible to [...] Read more.
The health of crops is a major challenge for productivity growth in agriculture, with plant diseases playing a key role in limiting crop yield. Identifying and understanding these diseases is crucial to preventing their spread. In particular, greenhouse pepper leaves are susceptible to diseases such as mildew, mites, caterpillars, aphids, and blight, which leave distinctive marks that can be used for disease classification. The study proposes a seven-class classifier for the rapid and accurate diagnosis of pepper diseases, with a primary focus on pre-processing techniques to enhance colour differentiation between green and yellow shades, thereby facilitating easier classification among the classes. A novel algorithm is introduced to improve image vibrancy, contrast, and colour properties. The diagnosis is performed using a modified VGG16Net model, which includes three additional layers for fine-tuning. After initialising on the ImageNet dataset, some layers are frozen to prevent redundant learning. The classification is additionally accelerated by introducing flattened, dense, and dropout layers. The proposed model is tested on a private dataset collected specifically for this study. Notably, this work is the first to focus on diagnosing aphid and caterpillar diseases in peppers. The model achieves an average accuracy of 92.00%, showing promising potential for seven-class deep learning-based disease diagnostics. Misclassifications in the aphid class are primarily due to the limited number of samples available. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

17 pages, 1519 KB  
Article
TOM-SSL: Tomato Disease Recognition Using Pseudo-Labelling-Based Semi-Supervised Learning
by Sathiyamohan Nishankar, Thurairatnam Mithuran, Selvarajah Thuseethan, Yakub Sebastian, Kheng Cher Yeo and Bharanidharan Shanmugam
AgriEngineering 2025, 7(8), 248; https://doi.org/10.3390/agriengineering7080248 - 5 Aug 2025
Viewed by 522
Abstract
In the agricultural domain, the availability of labelled data for disease recognition tasks is often limited due to the cost and expertise required for annotation. In this paper, a novel semi-supervised learning framework named TOM-SSL is proposed for automatic tomato leaf disease recognition [...] Read more.
In the agricultural domain, the availability of labelled data for disease recognition tasks is often limited due to the cost and expertise required for annotation. In this paper, a novel semi-supervised learning framework named TOM-SSL is proposed for automatic tomato leaf disease recognition using pseudo-labelling. TOM-SSL effectively addresses the challenge of limited labelled data by leveraging a small labelled subset and confidently pseudo-labelled samples from a large pool of unlabelled data to improve classification performance. Utilising only 10% of the labelled data, the proposed framework with a MobileNetV3-Small backbone achieves the best accuracy at 72.51% on the tomato subset of the PlantVillage dataset and 70.87% on the Taiwan tomato leaf disease dataset across 10 disease categories in PlantVillage and 6 in the Taiwan dataset. While achieving recognition performance on par with current state-of-the-art supervised methods, notably, the proposed approach offers a tenfold enhancement in label efficiency. Full article
Show Figures

Figure 1

20 pages, 1644 KB  
Article
A Symmetric Multi-Scale Convolutional Transformer Network for Plant Disease Image Classification
by Chuncheng Xu and Tianjin Yang
Symmetry 2025, 17(8), 1232; https://doi.org/10.3390/sym17081232 - 4 Aug 2025
Viewed by 307
Abstract
Plant disease classification is critical for effective crop management. Recent advances in deep learning, especially Vision Transformers (ViTs), have shown promise due to their strong global feature modeling capabilities. However, ViTs often overlook local features and suffer from feature extraction degradation during patch [...] Read more.
Plant disease classification is critical for effective crop management. Recent advances in deep learning, especially Vision Transformers (ViTs), have shown promise due to their strong global feature modeling capabilities. However, ViTs often overlook local features and suffer from feature extraction degradation during patch merging as channels increase. To address these issues, we propose PLTransformer, a hybrid model designed to symmetrically capture both global and local features. We design a symmetric multi-scale convolutional module that combines two different-scale receptive fields to simultaneously extract global and local features so that the model can better perceive multi-scale disease morphologies. Additionally, we propose an overlap-attentive channel downsampler that utilizes inter-channel attention mechanisms during spatial downsampling, effectively preserving local structural information and mitigating semantic loss caused by feature compression. On the PlantVillage dataset, PLTransformer achieves 99.95% accuracy, outperforming DeiT (96.33%), Twins (98.92%), and DilateFormer (98.84%). These results demonstrate its superiority in handling multi-scale disease features. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

25 pages, 4145 KB  
Article
Advancing Early Blight Detection in Potato Leaves Through ZeroShot Learning
by Muhammad Shoaib Farooq, Ayesha Kamran, Syed Atir Raza, Muhammad Farooq Wasiq, Bilal Hassan and Nitsa J. Herzog
J. Imaging 2025, 11(8), 256; https://doi.org/10.3390/jimaging11080256 - 31 Jul 2025
Viewed by 448
Abstract
Potatoes are one of the world’s most widely cultivated crops, but their yield is coming under mounting pressure from early blight, a fungal disease caused by Alternaria solani. Early detection and accurate identification are key to effective disease management and yield protection. [...] Read more.
Potatoes are one of the world’s most widely cultivated crops, but their yield is coming under mounting pressure from early blight, a fungal disease caused by Alternaria solani. Early detection and accurate identification are key to effective disease management and yield protection. This paper introduces a novel deep learning framework called ZeroShot CNN, which integrates convolutional neural networks (CNNs) and ZeroShot Learning (ZSL) for the efficient classification of seen and unseen disease classes. The model utilizes convolutional layers for feature extraction and employs semantic embedding techniques to identify previously untrained classes. Implemented on the Kaggle potato disease dataset, ZeroShot CNN achieved 98.50% accuracy for seen categories and 99.91% accuracy for unseen categories, outperforming conventional methods. The hybrid approach demonstrated superior generalization, providing a scalable, real-time solution for detecting agricultural diseases. The success of this solution validates the potential in harnessing deep learning and ZeroShot inference to transform plant pathology and crop protection practices. Full article
(This article belongs to the Section Image and Video Processing)
Show Figures

Figure 1

27 pages, 4228 KB  
Article
Whole-Genome Analysis of Halomonas sp. H5 Revealed Multiple Functional Genes Relevant to Tomato Growth Promotion, Plant Salt Tolerance, and Rhizosphere Soil Microecology Regulation
by Yan Li, Meiying Gu, Wanli Xu, Jing Zhu, Min Chu, Qiyong Tang, Yuanyang Yi, Lijuan Zhang, Pan Li, Yunshu Zhang, Osman Ghenijan, Zhidong Zhang and Ning Li
Microorganisms 2025, 13(8), 1781; https://doi.org/10.3390/microorganisms13081781 - 30 Jul 2025
Viewed by 442
Abstract
Soil salinity adversely affects crop growth and development, leading to reduced soil fertility and agricultural productivity. The indigenous salt-tolerant plant growth-promoting rhizobacteria (PGPR), as a sustainable microbial resource, do not only promote growth and alleviate salt stress, but also improve the soil microecology [...] Read more.
Soil salinity adversely affects crop growth and development, leading to reduced soil fertility and agricultural productivity. The indigenous salt-tolerant plant growth-promoting rhizobacteria (PGPR), as a sustainable microbial resource, do not only promote growth and alleviate salt stress, but also improve the soil microecology of crops. The strain H5 isolated from saline-alkali soil in Bachu of Xinjiang was studied through whole-genome analysis, functional annotation, and plant growth-promoting, salt-tolerant trait gene analysis. Phylogenetic tree analysis and 16S rDNA sequencing confirmed its classification within the genus Halomonas. Functional annotation revealed that the H5 genome harbored multiple functional gene clusters associated with plant growth promotion and salt tolerance, which were critically involved in key biological processes such as bacterial survival, nutrient acquisition, environmental adaptation, and plant growth promotion. The pot experiment under moderate salt stress demonstrated that seed inoculation with Halomonas sp. H5 not only significantly improved the agronomic traits of tomato seedlings, but also increased plant antioxidant enzyme activities under salt stress. Additionally, soil analysis revealed H5 treatment significantly decreased the total salt (9.33%) and electrical conductivity (8.09%), while significantly improving organic matter content (11.19%) and total nitrogen content (10.81%), respectively (p < 0.05). Inoculation of strain H5 induced taxonomic and functional shifts in the rhizosphere microbial community, increasing the relative abundance of microorganisms associated with plant growth-promoting and carbon and nitrogen cycles, and reduced the relative abundance of the genera Alternaria (15.14%) and Fusarium (9.76%), which are closely related to tomato diseases (p < 0.05). Overall, this strain exhibits significant potential in alleviating abiotic stress, enhancing growth, improving disease resistance, and optimizing soil microecological conditions in tomato plants. These results provide a valuable microbial resource for saline soil remediation and utilization. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

28 pages, 2789 KB  
Review
A Review of Computer Vision and Deep Learning Applications in Crop Growth Management
by Zhijie Cao, Shantong Sun and Xu Bao
Appl. Sci. 2025, 15(15), 8438; https://doi.org/10.3390/app15158438 - 30 Jul 2025
Viewed by 950
Abstract
Agriculture is the foundational industry for human survival, profoundly impacting economic, ecological, and social dimensions. In the face of global challenges such as rapid population growth, resource scarcity, and climate change, achieving technological innovation in agriculture and advancing smart farming have become increasingly [...] Read more.
Agriculture is the foundational industry for human survival, profoundly impacting economic, ecological, and social dimensions. In the face of global challenges such as rapid population growth, resource scarcity, and climate change, achieving technological innovation in agriculture and advancing smart farming have become increasingly critical. In recent years, deep learning and computer vision have developed rapidly. Key areas in computer vision—such as deep learning-based image processing, object detection, and multimodal fusion—are rapidly transforming traditional agricultural practices. Processes in agriculture, including planting planning, growth management, harvesting, and post-harvest handling, are shifting from experience-driven methods to digital and intelligent approaches. This paper systematically reviews applications of deep learning and computer vision in agricultural growth management over the past decade, categorizing them into four key areas: crop identification, grading and classification, disease monitoring, and weed detection. Additionally, we introduce classic methods and models in computer vision and deep learning, discussing approaches that utilize different types of visual information. Finally, we summarize current challenges and limitations of existing methods, providing insights for future research and promoting technological innovation in agriculture. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

27 pages, 2123 KB  
Article
Exploring Cloned Disease Resistance Gene Homologues and Resistance Gene Analogues in Brassica nigra, Sinapis arvensis, and Sinapis alba: Identification, Characterisation, Distribution, and Evolution
by Aria Dolatabadian, Junrey C. Amas, William J. W. Thomas, Mohammad Sayari, Hawlader Abdullah Al-Mamun, David Edwards and Jacqueline Batley
Genes 2025, 16(8), 849; https://doi.org/10.3390/genes16080849 - 22 Jul 2025
Viewed by 402
Abstract
This study identifies and classifies resistance gene analogues (RGAs) in the genomes of Brassica nigra, Sinapis arvensis and Sinapis alba using the RGAugury pipeline. RGAs were categorised into four main classes: receptor-like kinases (RLKs), receptor-like proteins (RLPs), nucleotide-binding leucine-rich repeat (NLR) proteins [...] Read more.
This study identifies and classifies resistance gene analogues (RGAs) in the genomes of Brassica nigra, Sinapis arvensis and Sinapis alba using the RGAugury pipeline. RGAs were categorised into four main classes: receptor-like kinases (RLKs), receptor-like proteins (RLPs), nucleotide-binding leucine-rich repeat (NLR) proteins and transmembrane-coiled-coil (TM-CC) genes. A total of 4499 candidate RGAs were detected, with species-specific proportions. RLKs were the most abundant across all genomes, followed by TM-CCs and RLPs. The sub-classification of RLKs and RLPs identified LRR-RLKs, LRR-RLPs, LysM-RLKs, and LysM-RLPs. Atypical NLRs were more frequent than typical ones in all species. Atypical NLRs were more frequent than typical ones in all species. We explored the relationship between chromosome size and RGA count using regression analysis. In B. nigra and S. arvensis, larger chromosomes generally harboured more RGAs, while S. alba displayed the opposite trend. Exceptions were observed in all species, where some larger chromosomes contained fewer RGAs in B. nigra and S. arvensis, or more RGAs in S. alba. The distribution and density of RGAs across chromosomes were examined. RGA distribution was skewed towards chromosomal ends, with patterns differing across RGA types. Sequence hierarchical pairwise similarity analysis revealed distinct gene clusters, suggesting evolutionary relationships. The study also identified homologous genes among RGAs and non-RGAs in each species, providing insights into disease resistance mechanisms. Finally, RLKs and RLPs were co-localised with reported disease resistance loci in Brassica, indicating significant associations. Phylogenetic analysis of cloned RGAs and QTL-mapped RLKs and RLPs identified distinct clusters, enhancing our understanding of their evolutionary trajectories. These findings provide a comprehensive view of RGA diversity and genomics in these Brassicaceae species, providing valuable insights for future research in plant disease resistance and crop improvement. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop