Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = poly(phosphonate)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2714 KB  
Article
A Study on Phosphorous-Based Flame Retardants for Transparent PET Composites: Fire, Mechanical, and Optical Performance
by Sara Villanueva-Díez and Alberto Sánchez-de-Andrés
Polymers 2025, 17(16), 2191; https://doi.org/10.3390/polym17162191 - 11 Aug 2025
Viewed by 974
Abstract
Flame-retardant poly (ethylene terephthalate) composites (FR PET) have been developed with the potential to be used as substrates in applications where flexibility and transparency are required. Several phosphorous-based flame retardants of a different nature were selected here for compounding by melt blending with [...] Read more.
Flame-retardant poly (ethylene terephthalate) composites (FR PET) have been developed with the potential to be used as substrates in applications where flexibility and transparency are required. Several phosphorous-based flame retardants of a different nature were selected here for compounding by melt blending with a low-molecular-weight PET polymer. The fire reaction, transparency, and mechanical properties were analyzed. TGA and cone calorimetry were used to elucidate the gas-phase and condensed-phase actions of flame retardants and their effectivity. Cone calorimeters showed an improved performance with the addition of flame retardants, particularly a reduction in generated heat, improving the FGI (fire growth index) value. However, a V0 classification (following the UL94 standard) was achieved only with the addition of an organic phosphonate, Aflammit PCO900, to the PET matrix. This behavior was linked to the early reaction of this flame retardant in the gas phase, in addition to a plastification effect that causes the removal of the polymer from the incident flame. The presence of flame retardants reduced the transparency of composites over the neat PET, but, nevertheless, a good optical performance remained. No special effect was observed on the crystallization parameters. Therefore, the increase in opacity can be attributed to the poor miscibility of flame retardants and/or differences in the diffraction index of the polymer and FR additives. Full article
(This article belongs to the Special Issue Flame-Retardant Polymer Composites II)
Show Figures

Figure 1

19 pages, 3200 KB  
Article
Polyphosphoramidate Glycohydrogels with Biorecognition Properties and Potential Antibacterial Activity
by Zornica Todorova, Oyundari Tumurbaatar, Violeta Mitova, Neli Koseva, Iva Ugrinova, Penka Petrova and Kolio Troev
Molecules 2025, 30(15), 3140; https://doi.org/10.3390/molecules30153140 - 26 Jul 2025
Viewed by 440
Abstract
In the present study, for the first time, a biodegradable and non-toxic polyphosphoramidate glycohydrogel (PPAGHGel) was prepared by crosslinking a polyphosphoramidate glycoconjugate (PPAG) with hexamethylene diisocyanate (HMDI) under mild conditions. Poly(oxyethylene H-phosphonate) (POEHP) was used as a precursor and was converted into PPAG [...] Read more.
In the present study, for the first time, a biodegradable and non-toxic polyphosphoramidate glycohydrogel (PPAGHGel) was prepared by crosslinking a polyphosphoramidate glycoconjugate (PPAG) with hexamethylene diisocyanate (HMDI) under mild conditions. Poly(oxyethylene H-phosphonate) (POEHP) was used as a precursor and was converted into PPAG via the Staudinger reaction with glucose-containing azide (2-p-azidobenzamide-2-deoxy-1,3,4,6-tetra-O-trimethylsilyl-α-D-glucopyranose). Then, crosslinking of PPAG was performed to yield PPAGHGel, which was thoroughly characterized. The gel showed a gel fraction of 83%, a swelling degree of 1426 ± 98%, and G″ = 1560 ± 65 Pa. The gel was fully degraded by alkaline phosphatase (400 U/L, pH 9) in 19 days, while hydrolytically, up to 52% degradation was observed under similar conditions. Multivalent studies of the obtained hydrogel with lectin–Concanavalin A were performed. PPAGHGel binds 92% of Concanavalin A within 24 h and the complex remains stable until the amount of glucose reaches 0.3 mM. PPAGHGel acts as a stabilizer for silver nanoparticles (12 nm). SEM shows pores measuring 10 µm (surface) and 0.1 mm (interior) with capillary channels, confirming the gel’s suitability for biosensors, drug delivery, or wound dressings. The cytotoxic (IC50) and cell-adhesive properties of the obtained hydrogel were investigated on human cell lines (HeLa). Antibacterial activity tests were also performed with gel containing silver nanoparticles against skin-associated pathogenic bacteria. The results show that PPAGHGel possesses excellent biocompatibility, non-adhesive properties and antibacterial activity. Full article
Show Figures

Figure 1

18 pages, 9768 KB  
Article
Impact of Mixed-In Polyacrylic- and Phosphonate-Based Additives on Lime Mortar Microstructure
by Dulce Elizabeth Valdez Madrid, Encarnación Ruiz-Agudo, Sarah Bonilla-Correa, Nele De Belie and Veerle Cnudde
Materials 2025, 18(14), 3322; https://doi.org/10.3390/ma18143322 - 15 Jul 2025
Viewed by 582
Abstract
Aminotris(methylene phosphonic acid) (ATMP) and poly(acrylic acid) sodium salt (PAA) have shown favorable results in the treatment of porous building materials against weathering damage, showing promising potential as mixed-in additives during the production of lime-based mortars. This study investigates the impact of these [...] Read more.
Aminotris(methylene phosphonic acid) (ATMP) and poly(acrylic acid) sodium salt (PAA) have shown favorable results in the treatment of porous building materials against weathering damage, showing promising potential as mixed-in additives during the production of lime-based mortars. This study investigates the impact of these additives on microstructure and mechanical properties. Additives were introduced in various concentrations to assess their influence on CaCO3 crystallization, porosity, strength, and carbonation behavior. Results revealed significant modifications in the morphology of CaCO3 precipitates, showing evidence of nanostructured CaCO3 aggregates and vaterite stabilization, thus indicating a non-classical crystallization pathway through the formation of amorphous CaCO3 phase(s), facilitated by organic occlusions. These nanostructural changes, resembling biomimetic calcitic precipitates enhanced mechanical performance by enabling plastic deformation and intergranular bridging. Increased porosity and pore connectivity facilitated CO2 diffusion towards the mortar matrix, contributing to strength development over time. However, high additive concentrations resulted in poor mechanical performance due to the excessive air entrainment capabilities of short-length polymers. Overall, this study demonstrates that the optimized dosages of ATMP and PAA can significantly enhance the durability and mechanical performance of lime-based mortars and suggests a promising alternative for the tailored manufacturing of highly compatible and durable materials for both the restoration of cultural heritage and modern sustainable construction. Full article
Show Figures

Figure 1

15 pages, 3865 KB  
Article
Mechanically Tunable Composite Hydrogel for Multi-Gesture Motion Monitoring
by Jiabing Zhang, Zilong He, Bin Shen, Jiang Li, Yongtao Tang, Shuhuai Pang, Xiaolin Tian, Shuang Wang and Fengyu Li
Biosensors 2025, 15(7), 412; https://doi.org/10.3390/bios15070412 - 27 Jun 2025
Viewed by 574
Abstract
Intrinsic conductive ionic hydrogels, endowed with excellent mechanical properties, hold significant promise for applications in wearable and implantable electronics. However, the complexity of exercise and athletics calls for mechanical tunability, facile processability and high conductivity of wearable sensors, which remains a persistent challenge. [...] Read more.
Intrinsic conductive ionic hydrogels, endowed with excellent mechanical properties, hold significant promise for applications in wearable and implantable electronics. However, the complexity of exercise and athletics calls for mechanical tunability, facile processability and high conductivity of wearable sensors, which remains a persistent challenge. In this study, we developed a mechanically tunable and high ionic conductive hydrogel patch to approach multi-gesture or motion monitoring. Through adjustment of the ratio of amino trimethylene phosphonic acid (ATMP) and poly(vinyl alcohol) (PVA), the composite hydrogel attains tunable mechanical strength (varying from 50 kPa to 730 kPa), remarkable stretchability (reaching up to 1900% strain), high conductivity (measuring 15.43 S/m), and strong linear sensitivity (with a gauge factor of 2.34 within 100% strain). Benefitting with the tunable mechanical sensitivity, the composite hydrogel patch can perform subtle movement monitoring, such as epidermal pulses or pronounced muscle vibrations; meanwhile, it can also recognize and detect major motions, such as hand gestures. The mechanically tunable composite hydrogel contributes a versatile sensing platform for health or athletic monitoring, with wide and sensitive adoptability. Full article
(This article belongs to the Special Issue Wearable Sensors for Precise Exercise Monitoring and Analysis)
Show Figures

Figure 1

14 pages, 2320 KB  
Review
Sixty Years at the Rega Institute
by Erik De Clercq
Viruses 2025, 17(2), 222; https://doi.org/10.3390/v17020222 - 5 Feb 2025
Viewed by 1416
Abstract
I started my research career (in 1965) on interferon by identifying polyacrylic acid (PAA) as an interferon inducer. Poly(I).poly(C), discovered by Maurice Hilleman’s group, proved to be more potent as an interferon inducer, and through its mRNA, we were able to clone and [...] Read more.
I started my research career (in 1965) on interferon by identifying polyacrylic acid (PAA) as an interferon inducer. Poly(I).poly(C), discovered by Maurice Hilleman’s group, proved to be more potent as an interferon inducer, and through its mRNA, we were able to clone and express human β-interferon. The discovery of the reverse transcriptase (RT) by Temin and Baltimore (in 1970) brought me to the detection of suramin as a powerful RT inhibitor and enabled Sam Broder and his colleagues to identify suramin as the first inhibitor of HIV replication. In this capacity, it was subsequently superseded by AZT and other 2′,3′-dideoxynucleoside (ddN) analogs, including d4T. In collaboration with Antonín Holý, we discovered several acyclic nucleoside phosphonates as potent inhibitors of both HIV and HBV (hepatitis B virus) replication. In collaboration with Paul Janssen, we identified various non-nucleoside RT inhibitors (NNRTIs) of HIV-1 replication. Of the nucleotide RT inhibitors (NtRTTs), tenofovir emerged as the most promising congener. It was derivatized to its oral prodrugs TDF and TAF. To enhance their efficacy, they were combined with other anti-HIV drugs, and two of them were pursued (and found efficacious) in the Pre-Exposure Prophylaxis (PrEP) of HIV infections. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

16 pages, 6579 KB  
Article
Thermo- and Photoresponsive Smart Nanomaterial Based on Poly(diethyl vinyl phosphonate)-Capped Gold Nanoparticles
by Antonio Buonerba, Rosita Lapenta, Francesco Della Monica, Roberto Piacentini, Lucia Baldino, Maria Rosa Scognamiglio, Vito Speranza, Stefano Milione, Carmine Capacchione, Bernhard Rieger and Alfonso Grassi
Nanomaterials 2024, 14(19), 1589; https://doi.org/10.3390/nano14191589 - 1 Oct 2024
Cited by 2 | Viewed by 1808
Abstract
A new nanodevice based on gold nanoparticles (AuNPs) capped with poly(diethylvinylphosphonate) (PDEVP) has been synthesized, showing interesting photophysical and thermoresponsive properties. The synthesis involves a properly designed Yttriocene catalyst coordinating the vinyl-lutidine (VL) initiator active in diethyl vinyl phosphonate polymerization. The unsaturated PDEVP [...] Read more.
A new nanodevice based on gold nanoparticles (AuNPs) capped with poly(diethylvinylphosphonate) (PDEVP) has been synthesized, showing interesting photophysical and thermoresponsive properties. The synthesis involves a properly designed Yttriocene catalyst coordinating the vinyl-lutidine (VL) initiator active in diethyl vinyl phosphonate polymerization. The unsaturated PDEVP chain ending was thioacetylated, deacetylated, and reacted with tetrachloroauric acid and sodium borohydride to form PDEVP-VL-capped AuNPs. The NMR, UV–Vis, and ESI-MS characterization of the metal nanoparticles confirmed the formation of the synthetic intermediates and the expected colloidal systems. AuNPs of subnanometric size were determined by WAXD and UV–Vis analysis. UV–Vis and fluorescence analysis confirmed the effective anchoring of the thiolated PDEVP to AuNPs. The formation of 50–200 nm globular structures was assessed by SEM and AFM microscopy in solid state and confirmed by DLS in aqueous dispersion. Hydrodynamic radius studies showed colloidal contraction with temperature, demonstrating thermoresponsive behavior. These properties suggest potential biomedical applications for the photoablation of malignant cells or controlled drug delivery induced by light or heat for the novel PDEVP-capped AuNP systems. Full article
(This article belongs to the Special Issue Nanosomes in Precision Nanomedicine (Second Edition))
Show Figures

Figure 1

11 pages, 2151 KB  
Article
Influence of Hole Transport Layers on Buried Interface in Wide-Bandgap Perovskite Phase Segregation
by Fangfang Cao, Liming Du, Yongjie Jiang, Yangyang Gou, Xirui Liu, Haodong Wu, Junchuan Zhang, Zhiheng Qiu, Can Li, Jichun Ye, Zhen Li and Chuanxiao Xiao
Nanomaterials 2024, 14(11), 963; https://doi.org/10.3390/nano14110963 - 1 Jun 2024
Cited by 1 | Viewed by 1817
Abstract
Light-induced phase segregation, particularly when incorporating bromine to widen the bandgap, presents significant challenges to the stability and commercialization of perovskite solar cells. This study explores the influence of hole transport layers, specifically poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA) and [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz), on the dynamics of [...] Read more.
Light-induced phase segregation, particularly when incorporating bromine to widen the bandgap, presents significant challenges to the stability and commercialization of perovskite solar cells. This study explores the influence of hole transport layers, specifically poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA) and [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz), on the dynamics of phase segregation. Through detailed characterization of the buried interface, we demonstrate that Me-4PACz enhances perovskite photostability, surpassing the performance of PTAA. Nanoscale analyses using in situ Kelvin probe force microscopy and quantitative nanomechanical mapping techniques elucidate defect distribution at the buried interface during phase segregation, highlighting the critical role of substrate wettability in perovskite growth and interface integrity. The integration of these characterization techniques provides a thorough understanding of the impact of the buried bottom interface on perovskite growth and phase segregation. Full article
Show Figures

Figure 1

21 pages, 19406 KB  
Article
A Phosphorylated Dendrimer-Supported Biomass-Derived Magnetic Nanoparticle Adsorbent for Efficient Uranium Removal
by Mingyang Ma, Qunyin Luo, Ruidong Han, Hongyi Wang, Junjie Yang and Chunyuan Liu
Nanomaterials 2024, 14(9), 810; https://doi.org/10.3390/nano14090810 - 6 May 2024
Cited by 2 | Viewed by 1894
Abstract
A novel biomass-based magnetic nanoparticle (Fe3O4-P-CMC/PAMAM) was synthesized by crosslinking carboxymethyl chitosan (CMC) and poly(amidoamine) (PAMAM), followed by phosphorylation with the incorporation of magnetic ferric oxide nanoparticles. The characterization results verified the successful functionalization and structural integrity of the [...] Read more.
A novel biomass-based magnetic nanoparticle (Fe3O4-P-CMC/PAMAM) was synthesized by crosslinking carboxymethyl chitosan (CMC) and poly(amidoamine) (PAMAM), followed by phosphorylation with the incorporation of magnetic ferric oxide nanoparticles. The characterization results verified the successful functionalization and structural integrity of the adsorbents with a surface area of ca. 43 m2/g. Batch adsorption experiments revealed that the adsorbent exhibited a maximum adsorption capacity of 1513.47 mg·g−1 for U(VI) at pH 5.5 and 298.15 K, with Fe3O4-P-CMC/G1.5-2 showing the highest affinity among the series. The adsorption kinetics adhered to a pseudo-second-order model (R2 = 0.99, qe,exp = 463.81 mg·g−1, k2 = 2.15×10−2 g·mg−1·min−1), indicating a chemically driven process. Thermodynamic analysis suggested that the adsorption was endothermic and spontaneous (ΔH° = 14.71 kJ·mol−1, ΔG° = −50.63 kJ·mol−1, 298. 15 K), with increasing adsorption capacity at higher temperatures. The adsorbent demonstrated significant selectivity for U(VI) in the presence of competing cations, with Fe3O4-P-CMC/G1.5-2 showing a high selectivity coefficient. The performed desorption and reusability tests indicated that the adsorbent could be effectively regenerated using 1M HCl, maintaining its adsorption capacity after five cycles. XPS analysis highlighted the role of phosphonate and amino groups in the complexation with uranyl ions, and validated the existence of bimodal U4f peaks at 380.1 eV and 390.1 eV belonging to U 4f7/2 and U 4f5/2. The results of this study underscore the promise of the developed adsorbent as an effective and selective material for the treatment of uranium-contaminated wastewater. Full article
Show Figures

Figure 1

11 pages, 3395 KB  
Article
Phosphonate poly(vinylbenzyl chloride)-Modified Sulfonated poly(aryl ether nitrile) for Blend Proton Exchange Membranes: Enhanced Mechanical and Electrochemical Properties
by Zetian Zhang, Hao Liu, Tiandu Dong, Yingjiao Deng, Yunxi Li, Chuanrui Lu, Wendi Jia, Zihan Meng, Mingzheng Zhou and Haolin Tang
Polymers 2023, 15(15), 3203; https://doi.org/10.3390/polym15153203 - 28 Jul 2023
Cited by 7 | Viewed by 1637
Abstract
Blend proton exchange membranes (BPEMs) were prepared by blending sulfonated poly(aryl ether nitrile) (SPAEN) with phosphorylated poly(vinylbenzyl chloride) (PPVBC) and named as SPM-x%, where x refers to the proportion of PPVBC to the weight of SPAEN. The chemical complexation interaction between the phosphoric [...] Read more.
Blend proton exchange membranes (BPEMs) were prepared by blending sulfonated poly(aryl ether nitrile) (SPAEN) with phosphorylated poly(vinylbenzyl chloride) (PPVBC) and named as SPM-x%, where x refers to the proportion of PPVBC to the weight of SPAEN. The chemical complexation interaction between the phosphoric acid and sulfonic acid groups in the PPVBC–SPAEN system resulted in BPEMs with reduced water uptake and enhanced mechanical properties compared to SPAEN proton exchange membranes. Furthermore, the flame retardancy of the PPVBC improved the thermal stability of the BPEMs. Despite a decrease in ion exchange capacity, the proton conductivity of the BPEMs in the through-plane direction was significantly enhanced due to the introduction of phosphoric acid groups, especially in low relative humidity (RH) environments. The measured proton conductivity of SPM-8% was 147, 98, and 28 mS cm−1 under 95%, 70%, and 50% RH, respectively, which is higher than that of the unmodified SPAEN membrane and other SPM-x% membranes. Additionally, the morphology and anisotropy of the membrane proton conductivities were analyzed and discussed. Overall, the results indicated that PPVBC doping can effectively enhance the mechanical and electrochemical properties of SPAEN membranes. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

16 pages, 3052 KB  
Article
Synthesis and Characterization of Amphiphilic Diblock Polyphosphoesters Containing Lactic Acid Units for Potential Drug Delivery Applications
by Tatsuya Sakuma, Kimiko Makino, Hiroshi Terada, Issei Takeuchi, Violeta Mitova and Kolio Troev
Molecules 2023, 28(13), 5243; https://doi.org/10.3390/molecules28135243 - 6 Jul 2023
Cited by 4 | Viewed by 1871
Abstract
Multistep one-pot polycondensation reactions synthesized amphiphilic diblock polyphosphoesters containing lactic acid units in the polymer backbone. At the first step was synthesized poly[poly(ethylene glycol) H-phosphonate–b-poly(ethylene glycol)lactate H-phosphonate] was converted through one pot oxidation into poly[alkylpoly(ethylene glycol) phosphate-b-alkylpoly(ethylene glycol)lactate phosphate]s. [...] Read more.
Multistep one-pot polycondensation reactions synthesized amphiphilic diblock polyphosphoesters containing lactic acid units in the polymer backbone. At the first step was synthesized poly[poly(ethylene glycol) H-phosphonate–b-poly(ethylene glycol)lactate H-phosphonate] was converted through one pot oxidation into poly[alkylpoly(ethylene glycol) phosphate-b-alkylpoly(ethylene glycol)lactate phosphate]s. They were characterized by 1H, 13C {H},31P NMR, and size exclusion chromatography (SEC). The effects of the polymer composition on micelle formation and stability, and micelle size were studied via dynamic light scattering (DLS). The hydrophilic/hydrophobic balance of these polymers can be controlled by changing the chain lengths of hydrophobic alcohols. Drug loading and encapsulation efficiency tests using Sudan III and doxorubicin revealed that hydrophobic substances can be incorporated inside the hydrophobic core of polymer micelles. The micelle size was 72–108 nm when encapsulating Sudan III and 89–116 nm when encapsulating doxorubicin. Loading capacity and encapsulation efficiency depend on the length of alkyl side chains. Changing the alkyl side chain from 8 to 16 carbon atoms increased micelle-encapsulated Sudan III and doxorubicin by 1.6- and 1.1-fold, respectively. The results obtained indicate that these diblock copolymers have the potential as drug carriers. Full article
Show Figures

Figure 1

16 pages, 9562 KB  
Article
Acrylate Copolymer-Reinforced Hydrogel Electrolyte for Strain Sensors and Flexible Supercapacitors
by Ruixue Liu, Wenkang Liu, Jichao Chen, Xiangli Bian, Kaiqi Fan, Junhong Zhao and Xiaojing Zhang
Batteries 2023, 9(6), 304; https://doi.org/10.3390/batteries9060304 - 31 May 2023
Cited by 6 | Viewed by 2271
Abstract
Ionic conductive hydrogels with good conductivity and biocompatibility have become one of the research highlights in the field of wearable flexible sensors and supercapacitors. In this work, poly(methacrylic acid–methyl methacrylate)-reinforced poly(sodium acrylate–vinyl phosphonic acid) composite hydrogels (P(AAS-VPA)/PMMS) were designed and tested for strain [...] Read more.
Ionic conductive hydrogels with good conductivity and biocompatibility have become one of the research highlights in the field of wearable flexible sensors and supercapacitors. In this work, poly(methacrylic acid–methyl methacrylate)-reinforced poly(sodium acrylate–vinyl phosphonic acid) composite hydrogels (P(AAS-VPA)/PMMS) were designed and tested for strain sensor or supercapacitor applications. The results showed recoverability for 20 cycles of tension and compression experiments, an excellent breaking strain of 2079%, and ionic conductivity of 0.045 S·cm−1, demonstrating strong support for the application of the P(AAS-VPA)/PMMS hydrogel in strain sensors and supercapacitors. The composite hydrogel exhibited outstanding sensing and monitoring capability with high sensitivity (GF = 4.0). The supercapacitor based on the P(AAS-VPA)/PMMS composite hydrogel showed excellent capacitance performance (area capacitance 100.8 mF·cm−2 and energy density 8.96 μWh·cm−2) at ambient temperature and even −30 °C (25.3 mF·cm−2 and 2.25 μWh·cm−2). The hydrogel has stable electrochemical stability (1000 cycles, Coulomb efficiency > 97%) and exhibits electrochemical properties similar to those in the normal state under different deformations. The excellent results demonstrate the great potential of the P(AAS-VPA)/PMMS composite hydrogel in the field of strain sensors and flexible supercapacitors. Full article
(This article belongs to the Special Issue Materials and Interface Designs for Batteries)
Show Figures

Figure 1

13 pages, 4260 KB  
Article
Biocompatible Polymer-Grafted TiO2 Nanoparticle Sonosensitizers Prepared Using Phosphonic Acid-Functionalized RAFT Agent
by Yukiya Kitayama, Aoi Katayama, Zhicheng Shao and Atsushi Harada
Polymers 2023, 15(11), 2426; https://doi.org/10.3390/polym15112426 - 23 May 2023
Cited by 2 | Viewed by 2580
Abstract
Sonodynamic therapy is widely used in clinical studies including cancer therapy. The development of sonosensitizers is important for enhancing the generation of reactive oxygen species (ROS) under sonication. Herein, we have developed poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC)-modified TiO2 nanoparticles as new biocompatible sonosensitizers with [...] Read more.
Sonodynamic therapy is widely used in clinical studies including cancer therapy. The development of sonosensitizers is important for enhancing the generation of reactive oxygen species (ROS) under sonication. Herein, we have developed poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC)-modified TiO2 nanoparticles as new biocompatible sonosensitizers with high colloidal stability under physiological conditions. To fabricate biocompatible sonosensitizers, a grafting-to approach was adopted with phosphonic-acid-functionalized PMPC, which was prepared by reversible addition–fragmentation chain transfer (RAFT) polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) using a newly designed water-soluble RAFT agent possessing a phosphonic acid group. The phosphonic acid group can conjugate with the OH groups on the TiO2 nanoparticles. We have clarified that the phosphonic acid end group is more crucial for creating colloidally stable PMPC-modified TiO2 nanoparticles under physiological conditions than carboxylic-acid-functionalized PMPC-modified ones. Furthermore, the enhanced generation of singlet oxygen (1O2), an ROS, in the presence of PMPC-modified TiO2 nanoparticles was confirmed using a 1O2-reactive fluorescent probe. We believe that the PMPC-modified TiO2 nanoparticles prepared herein have potential utility as novel biocompatible sonosensitizers for cancer therapy. Full article
(This article belongs to the Special Issue Polymeric Drugs and Drug Delivery Systems)
Show Figures

Figure 1

13 pages, 2036 KB  
Article
Tailoring the Electrical Energy Storage Capability of Dielectric Polymer Nanocomposites via Engineering of the Host–Guest Interface by Phosphonic Acids
by Shaojing Wang, Peng Xu, Xiangyi Xu, Da Kang, Jie Chen, Zhe Li and Xingyi Huang
Molecules 2022, 27(21), 7225; https://doi.org/10.3390/molecules27217225 - 25 Oct 2022
Cited by 3 | Viewed by 1833
Abstract
Polymer nanocomposites have attracted broad attention in the area of dielectric and energy storage. However, the electrical and chemical performance mismatch between inorganic nanoparticles and polymer leads to interfacial incompatibility. In this study, phosphonic acid molecules with different functional ligands were introduced to [...] Read more.
Polymer nanocomposites have attracted broad attention in the area of dielectric and energy storage. However, the electrical and chemical performance mismatch between inorganic nanoparticles and polymer leads to interfacial incompatibility. In this study, phosphonic acid molecules with different functional ligands were introduced to the surface of BaTiO3 (BT) nanoparticles to tune their surface properties and tailor the host–guest interaction between BT and poly(vinylideneflyoride-co-hexafluroro propylene) (P(VDF-HFP)). The dielectric properties and electrical energy storage capability of the nanocomposites were recorded by broadband dielectric spectroscopy and electric displacement measurements, respectively. The influence of the ligand length and polarity on the dielectric properties and electrical energy storage of the nanocomposites was documented. The nanocomposite with 5 vol% 2,3,4,5,6-pentafluorobenzyl phosphonic acid (PFBPA)-modified BT had the highest energy density of 12.8 J cm−3 at 400 MV m−1, i.e., a 187% enhancement in the electrical energy storage capability over the pure P(VDF-HFP). This enhancement can be attributed to the strong electron-withdrawing effect of the pentafluorobenzyl group of PFBPA, which changed the electronic nature of the polymer–particle interface. On the other hand, PFBPA improves the compatibility of the host–guest interface in the nanocomposites and decreases the electrical mismatch of the interface. These results provide new insights into the design and preparation of high-performance dielectric nanocomposites. Full article
(This article belongs to the Special Issue Recent Advances in Dielectric Polymers)
Show Figures

Figure 1

14 pages, 901 KB  
Article
Thermoresponsive Polyphosphoester via Polycondensation Reactions: Synthesis, Characterization, and Self-Assembly
by Yoshihiro Yamakita, Issei Takeuchi, Kimiko Makino, Hiroshi Terada, Akihiko Kikuchi and Kolio Troev
Molecules 2022, 27(18), 6006; https://doi.org/10.3390/molecules27186006 - 15 Sep 2022
Cited by 4 | Viewed by 2293
Abstract
Using a novel strategy, amphiphilic polyphosphoesters based on poly(oxyethylene H-phosphonate)s (POEHP) with different poly(ethylene glycol) segment lengths and aliphatic alcohols with various alkyl chain lengths were synthesized using polycondensation reactions. They were characterized by 1H NMR, 13C {H} NMR 31P [...] Read more.
Using a novel strategy, amphiphilic polyphosphoesters based on poly(oxyethylene H-phosphonate)s (POEHP) with different poly(ethylene glycol) segment lengths and aliphatic alcohols with various alkyl chain lengths were synthesized using polycondensation reactions. They were characterized by 1H NMR, 13C {H} NMR 31P NMR, IR, and size exclusion chromatography (SEC). The effects of the polymer structure on micelle formation and stability, micelle size, and critical micelle temperature were studied via dynamic light scattering (DLS). The hydrophilic/hydrophobic balance of these polymers can be controlled by changing the chain lengths of hydrophilic PEG and hydrophobic alcohols. A solubilizing test, using Sudan III, revealed that hydrophobic substances can be incorporated inside the hydrophobic core of polymer associates. Loading capacity depends on the length of alkyl side chains. The results obtained indicate that these structurally flexible polymers have the potential as drug carriers. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

18 pages, 3332 KB  
Article
Substituted Poly(Vinylphosphonate) Coatings of Magnetite Nanoparticles and Clusters
by Alexander Bunge, Cristian Leoștean, Teodora Radu, Septimiu Cassian Tripon, Gheorghe Borodi and Rodica Turcu
Magnetochemistry 2022, 8(8), 79; https://doi.org/10.3390/magnetochemistry8080079 - 27 Jul 2022
Cited by 5 | Viewed by 2665
Abstract
Magnetite nanoparticles and clusters of nanoparticles have been of Increasing scientific interest in the past decades. In order to prepare nanoparticles and clusters that are stable in suspension, different coatings have been used. Phosphates and phosphonates are a preferred anchoring group for the [...] Read more.
Magnetite nanoparticles and clusters of nanoparticles have been of Increasing scientific interest in the past decades. In order to prepare nanoparticles and clusters that are stable in suspension, different coatings have been used. Phosphates and phosphonates are a preferred anchoring group for the coating of magnetite nanomaterials. However, poly(vinylphosphonates) have rarely been used as a coating agent for any nanoparticles. Here, poly(methylvinylphosphonate) and other substituted polyvinylphosphonates are described as new coatings for magnetite nanoparticles and clusters. They show great stability in aqueous suspension. This is also the first time phosphonate-coated magnetite clusters have been synthesized in a one-pot polyol reaction. The coated magnetite nanoparticles and clusters have been characterized by TEM, EDX, FTIR, magnetization measurement, XRD as well as XPS. It has been shown that substituted vinylphosphonates can be easily synthesized in one-step procedures and as a polymeric coating can imbue important properties such as stability in suspension, tight binding to the particle surface, the ability to be further functionalized or to tightly adsorb metal ions. For the synthesis of magnetite clusters the cluster formation, polymerization and coating are done in a one-pot reaction and the resulting magnetite clusters show a higher amount of phosphonate coating than with a three-step procedure including a ligand exchange. Full article
Show Figures

Figure 1

Back to TopTop