Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = poly-plug

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1158 KB  
Article
High-Pressure- and High-Temperature-Resistant Resins as Leakage Control Materials in Drilling Fluids
by Chunsheng Wang, Zhen Zhang, Tao Wang, Keming Fu and Gang Xie
Processes 2025, 13(5), 1353; https://doi.org/10.3390/pr13051353 - 28 Apr 2025
Cited by 1 | Viewed by 587
Abstract
Well leakage is a recurring hazard in drilling operations that can lead to significant loss of drilling fluids and serious consequences when drilling fluids seep into the formation. Increasing drilling depths correspond to elevated formation temperatures and pressures, which place stringent demands on [...] Read more.
Well leakage is a recurring hazard in drilling operations that can lead to significant loss of drilling fluids and serious consequences when drilling fluids seep into the formation. Increasing drilling depths correspond to elevated formation temperatures and pressures, which place stringent demands on leakage control materials. In this study, a high-pressure- and high-temperature-resistant branched resin, poly-BDEB, was synthesized using 2,2-bis(4-hydroxyphenyl)propane diepoxyglycidyl ether and epoxy crack adhesive B. The properties of the branched resin poly-BDEB were characterized. Leakage control performance of the branched resin poly-BDEB was evaluated through single-stage and multi-stage crack plugging experiments to determine its effectiveness. The results show that poly-BDEB maintains structural stability under pressures of up to 198.33 MPa. Poly-BDEB has a stable structure and will not be thermally decomposed at 352.25 °C. These properties demonstrate poly-BDEB’s excellent pressure and temperature resistance. The density of branched resin poly-BDEB is 1.07 g/cm3. When its concentration in the drilling fluid reaches 24% (8%A + 8%B + 8%C), it still maintains good sedimentation stability. Poly-BDEB can effectively plug single-stage and multi-stage fractures ranging from 1 to 3 mm in width. Unlike conventional leakage circulation materials (LCMs), poly-BDEB features a branched molecular structure that improves its mechanical strength, thermal stability, and bridging efficiency in fractures. This study can provide technical support for leakage control in deep and ultra-deep wells during drilling. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

14 pages, 4535 KB  
Article
Preparation and Performance Evaluation of a Supramolecular Polymer Gel-Based Temporary Plugging Agent for Heavy Oil Reservoir
by Cheng Niu, Sheng Fan, Xiuping Chen, Zhong He, Liyao Dai, Zhibo Wen and Meichun Li
Gels 2024, 10(8), 536; https://doi.org/10.3390/gels10080536 - 19 Aug 2024
Cited by 4 | Viewed by 1912
Abstract
When encountering heavy oil reservoirs during drilling, due to the change in pressure difference inside the well, heavy oil will invade the drilling fluid, and drilling fluid will spill into the reservoir along the formation fractures, affecting the drilling process. A supramolecular polymer [...] Read more.
When encountering heavy oil reservoirs during drilling, due to the change in pressure difference inside the well, heavy oil will invade the drilling fluid, and drilling fluid will spill into the reservoir along the formation fractures, affecting the drilling process. A supramolecular polymer gel-based temporary plugging agent was prepared using acrylamide (AM), butyl acrylate (BA), and styrene (ST) as reacting monomers, N, N-methylenebisacrylamide (MBA) as a crosslinking agent, ammonium persulfate (APS) as an initiator, and poly(vinyl alcohol) (PVA) as a non-covalent component. A supermolecular polymer gel with a temperature tolerance of 120 °C and acid solubility of 90% was developed. The experimental results demonstrated that a mechanically robust, thermally stable supramolecular polymer gel was successfully synthesized through the copolymerization of AM, BA, and ST, as well as the in situ formation hydrogen bonding between poly (AM-co-BA-co-ST) and PVA, leading to a three-dimensional entangled structure. The gel-forming solution possessed excellent gelling performance even in the presence of a high content of salt and heavy oil, demonstrating superior resistance to salt and heavy oil under harsh reservoir conditions. High-temperature and high-pressure plugging displacement experiments proved that the supramolecular polymer gel exhibited high pressure-bearing capacity, and the blocking strength reached 5.96 MPa in a wedge-shaped fracture with a length of 30 cm. Furthermore, the dissolution rate of the supramolecular polymer gel was as high as 96.2% at 120 °C for 48 h under a 15% HCl solution condition. Full article
(This article belongs to the Special Issue Polymer Gels for the Oil and Gas Industry)
Show Figures

Figure 1

25 pages, 4744 KB  
Article
Tribomechanical Properties of PVA/Nomex® Composite Hydrogels for Articular Cartilage Repair
by Francisco Santos, Carolina Marto-Costa, Ana Catarina Branco, Andreia Sofia Oliveira, Rui Galhano dos Santos, Madalena Salema-Oom, Roberto Leonardo Diaz, Sophie Williams, Rogério Colaço, Célio Figueiredo-Pina and Ana Paula Serro
Gels 2024, 10(8), 514; https://doi.org/10.3390/gels10080514 - 3 Aug 2024
Cited by 2 | Viewed by 2541
Abstract
Due to the increasing prevalence of articular cartilage diseases and limitations faced by current therapeutic methodologies, there is an unmet need for new materials to replace damaged cartilage. In this work, poly(vinyl alcohol) (PVA) hydrogels were reinforced with different amounts of Nomex® [...] Read more.
Due to the increasing prevalence of articular cartilage diseases and limitations faced by current therapeutic methodologies, there is an unmet need for new materials to replace damaged cartilage. In this work, poly(vinyl alcohol) (PVA) hydrogels were reinforced with different amounts of Nomex® (known for its high mechanical toughness, flexibility, and resilience) and sterilized by gamma irradiation. Samples were studied concerning morphology, chemical structure, thermal behavior, water content, wettability, mechanical properties, and rheological and tribological behavior. Overall, it was found that the incorporation of aramid nanostructures improved the hydrogel’s mechanical performance, likely due to the reinforcement’s intrinsic strength and hydrogen bonding to PVA chains. Additionally, the sterilization of the materials also led to superior mechanical properties, possibly related to the increased crosslinking density through the hydrogen bonding caused by the irradiation. The water content, wettability, and tribological performance of PVA hydrogels were not compromised by either the reinforcement or the sterilization process. The best-performing composite, containing 1.5% wt. of Nomex®, did not induce cytotoxicity in human chondrocytes. Plugs of this hydrogel were inserted in porcine femoral heads and tested in an anatomical hip simulator. No significant changes were observed in the hydrogel or cartilage, demonstrating the material’s potential to be used in cartilage replacement. Full article
Show Figures

Graphical abstract

19 pages, 4498 KB  
Article
Development and Characterization of Thermoresponsive Smart Self-Adaptive Chitosan-Based Polymer for Wellbore Plugging
by Huimei Wu, Yishan Lou, Zhonghui Li, Xiaopeng Zhai and Fei Gao
Polymers 2023, 15(24), 4632; https://doi.org/10.3390/polym15244632 - 7 Dec 2023
Cited by 2 | Viewed by 1499
Abstract
To meet the escalating demand for oil and gas exploration in microporous reservoirs, it has become increasingly crucial to develop high-performance plugging materials. Through free radical grafting polymerization technology, a carboxymethyl chitosan grafted poly (oligoethylene glycol) methyl ether methyl methacrylate acrylic acid copolymer [...] Read more.
To meet the escalating demand for oil and gas exploration in microporous reservoirs, it has become increasingly crucial to develop high-performance plugging materials. Through free radical grafting polymerization technology, a carboxymethyl chitosan grafted poly (oligoethylene glycol) methyl ether methyl methacrylate acrylic acid copolymer (CCMMA) was successfully synthesized. The resulting CCMMA exhibited thermoresponsive self-assembling behavior. When the temperature was above its lower critical solution temperature (LCST), the nanomicelles began to aggregate, forming mesoporous aggregated structures. Additionally, the electrostatic repulsion of AA chains increased the value of LCST. By precisely adjusting the content of AA, the LCST of CCMMA could be raised from 84.7 to 122.9 °C. The rheology and filtration experiments revealed that when the temperature surpassed the switching point, CCMMA exhibited a noteworthy plugging effect on low-permeability cores. Furthermore, it could be partially released as the temperature decreased, exhibiting temperature-switchable and self-adaptive plugging properties. Meanwhile, CCMMA aggregates retained their reversibility, along with thermal thickening behavior in the pores. However, more detailed experiments and analysis are needed to validate these claims, such as a comprehensive study of the CCMMA copolymer’s physical properties, its interaction with the reservoir environment, and its performance under various conditions. Additionally, further studies are required to optimize its synthesis process and improve its efficiency as a plugging material for oil and gas recovery in microporous reservoirs. Full article
Show Figures

Figure 1

8 pages, 3488 KB  
Communication
Investigation of the Connection Schemes between Decks in 3D NAND Flash
by Jianquan Jia, Lei Jin, Kaikai You and Anyi Zhu
Micromachines 2023, 14(9), 1779; https://doi.org/10.3390/mi14091779 - 17 Sep 2023
Cited by 2 | Viewed by 3210
Abstract
Dual-deck stacking technology is an effective solution for solving the contradiction between the demand for increasing storage layers and the challenge of the deep hole etching process in 3D NAND flash. The connection scheme between decks is a key technology for the dual-deck [...] Read more.
Dual-deck stacking technology is an effective solution for solving the contradiction between the demand for increasing storage layers and the challenge of the deep hole etching process in 3D NAND flash. The connection scheme between decks is a key technology for the dual-deck structure. It has become one of the necessary techniques for 3D NAND flash storage density improvement. This article mainly studies the impact of connection schemes between decks on cell reliability. Based on experimental data and simulation analysis, unfavorable effects were found as the gate channeling the breakdown and data retention characteristics of the top cells in the lower deck deteriorated due to the local electric field enhancement in the connection scheme without a poly-plug. This mainly contributed to the structural change of these cells within process impact. They will suffer secondary etching during the upper deck channel etching process due to alignment issues between the upper and lower decks. In another scheme with a poly-plug connection between decks, the saturation current of the channel decreased and the current variation increased. The fundamental cause of the current anomaly is that the Poly-plug has a certain shielding effect on channel inversion and the weak inversion region becomes a bottleneck for the channel current. The increase in variation is due to the shielding effect differences in the different structures of the poly-plug. Therefore, for the connection scheme without a poly-plug, the article proposes to improve device reliability by increasing the oxide thickness between decks and setting the top cells of the lower decks to be virtual cells. For the connection scheme with a poly-plug, the plug‘s N-type doping scheme is proposed to avoid the current dropping anomaly. Full article
(This article belongs to the Special Issue Advances in Emerging Nonvolatile Memory, Volume II)
Show Figures

Figure 1

16 pages, 7266 KB  
Article
Evaluation of Self-Degradation and Plugging Performance of Temperature-Controlled Degradable Polymer Temporary Plugging Agent
by Hualei Xu, Liangjun Zhang, Jie Wang and Houshun Jiang
Polymers 2023, 15(18), 3732; https://doi.org/10.3390/polym15183732 - 11 Sep 2023
Cited by 9 | Viewed by 1993
Abstract
Temporary plugging diversion fracturing (TPDF) technology has been widely used in various oil fields for repeated reconstruction of high-water-cut old oil wells and horizontal well reservoir reconstruction. Previous studies have carried out in-depth study on the pressure-bearing law and placement morphology of different [...] Read more.
Temporary plugging diversion fracturing (TPDF) technology has been widely used in various oil fields for repeated reconstruction of high-water-cut old oil wells and horizontal well reservoir reconstruction. Previous studies have carried out in-depth study on the pressure-bearing law and placement morphology of different types of temporary plugging agents (TPAs) in fractures, but there are relatively few studies on TPA accumulation body permeability. To solve this problem, an experimental device for evaluating the TPA performance with adjustable fracture pores is proposed in this paper. Based on the test of fracturing fluid breaking time and residue content, the low damage of fracturing fluid to the reservoir is determined. The TPA degradation performance test determines whether the TPA causes damage to the hydraulic fracture after the temporary plugging fracturing. Finally, by testing the TPA pressure-bearing capacity and the temporary plugging aggregation body permeability, the plugging performance and the aggregation body permeability are determined. The results show the following: (1) Guar gum fracturing fluid shows good gel-breaking performance under the action of breaking agent, and the recommended concentration of breaking agent is 300 ppm. At 90~120 °C, the degradation rate of the three types of TPAs can reach more than 65%, and it can be effectively carried into the wellbore during the fracturing fluid flowback stage to achieve the effect of removing the TPA in the fracture. (2) The results of the pressure-bearing performance of the TPA show that the two kinds of TPAs can quickly achieve the plugging effect after plugging start: the effect of ZD-2 (poly lactic-co-glycolic acid (PLGA)) particle-and-powder combined TPA on forming an effective temporary plugging accumulation body in fractures is better than that of ZD-1 (PLGA) pure powder. There are large pores between the particles, and the fracturing fluid can still flow through the pores, so the ZD-3 (a mixture of lactide and PLGA) granular temporary plugging agent cannot form an effective plugging. (3) The law of length of the temporary plugging accumulation body shows that the ZD-2 combined TPA has stronger plugging ability for medium-aperture simulated fracture pores, while the ZD-1 powder TPA has stronger plugging ability for small aperture simulated fracture pores, and the ZD-3 granular TPA should be avoided alone as far as possible. This study further enriches and improves the understanding of the mechanism of temporary plugging diverting fracturing fluid. Full article
(This article belongs to the Special Issue Preparation and Applications of Biodegradable Polymer Materials)
Show Figures

Figure 1

22 pages, 31131 KB  
Article
Investigation of Auxetic Structural Deformation Behavior of PBAT Polymers Using Process and Finite Element Simulation
by Yanling Schneider, Vinzenz Guski, Ahmet O. Sahin, Siegfried Schmauder, Javad Kadkhodapour, Jonas Hufert, Axel Grebhardt and Christian Bonten
Polymers 2023, 15(14), 3142; https://doi.org/10.3390/polym15143142 - 24 Jul 2023
Cited by 1 | Viewed by 1762
Abstract
The current work investigates the auxetic tensile deformation behavior of the inversehoneycomb structure with 5 × 5 cells made of biodegradable poly(butylene adipate-coterephthalate) (PBAT). Fused deposition modeling, an additive manufacturing method, was used to produce such specimens. Residual stress (RS) and warpage, more [...] Read more.
The current work investigates the auxetic tensile deformation behavior of the inversehoneycomb structure with 5 × 5 cells made of biodegradable poly(butylene adipate-coterephthalate) (PBAT). Fused deposition modeling, an additive manufacturing method, was used to produce such specimens. Residual stress (RS) and warpage, more or less, always exist in such specimens due to their layer-by-layer fabrication, i.e., repeated heating and cooling. The RS influences the auxetic deformation behavior, but its measurement is challenging due to its very fine structure. Instead, the finite-element (FE)-based process simulation realized using an ABAQUS plug-in numerically predicts the RS and warpage. The predicted warpage shows a negligibly slight deviation compared to the design topology. This process simulation also provides the temperature evolution of a small-volume material, revealing the effects of local cyclic heating and cooling. The achieved RS serves as the initial condition for the FE model used to investigate the auxetic tensile behavior. With the outcomes from FE calculation without consideration of the RS, the effect of the RS on the deformation behavior is discussed for the global force–displacement curve, the structural Poisson’s ratio evolution, the deformed structural status, the stress distribution, and the evolution, where the first three and the warpage are also compared with the experimental results. Furthermore, the FE simulation can easily provide the global stress–strain flow curve with the total stress calculated from the elemental stresses. Full article
(This article belongs to the Special Issue Computational Modeling and Simulations of Polymers)
Show Figures

Figure 1

12 pages, 4934 KB  
Article
LCST-UCST Transition Property of a Novel Retarding Swelling and Thermosensitive Particle Gel
by Liang Li, Jixiang Guo and Chuanhong Kang
Materials 2023, 16(7), 2761; https://doi.org/10.3390/ma16072761 - 30 Mar 2023
Cited by 11 | Viewed by 4052
Abstract
Super absorbent resin particles used as profile control and water plugging agent remains a deficiency that the particles swells with high speed when absorbing water, resulting in low strength and limited depth of migration. To address this issue, we proposed a thermosensitive particle [...] Read more.
Super absorbent resin particles used as profile control and water plugging agent remains a deficiency that the particles swells with high speed when absorbing water, resulting in low strength and limited depth of migration. To address this issue, we proposed a thermosensitive particle gel possessing the upper critical solution temperature (UCST), which was synthesized from hydrophobically modified poly(vinyl alcohol)s (PVA) with glutaraldehyde (GA) as a cross-linker. The structure of the hydrogel was characterized by Fourier transform infrared spectrophotometer (FTIR) and nuclear magnetic resonance (NMR). The thermosensitive-transparency measurement and swelling experiment show that the hydrophobic-modified PVA solutions and corresponding hydrogels exhibited thermosensitive phase transition behaviors with lower critical solution temperature (LCST) and UCST. The results indicated that the temperature-induced phase transition behavior of CHPVA hydrogels leads to their retarding swelling property and great potential as an efficient water plugging agent with excellent temperature and salt resistance. Full article
(This article belongs to the Special Issue Advanced Polymer Matrix Nanocomposite Materials)
Show Figures

Figure 1

19 pages, 8364 KB  
Article
Styrene-Lauryl Acrylate Rubber Nanogels as a Plugging Agent for Oil-Based Drilling Fluids with the Function of Improving Emulsion Stability
by Hongyan Du, Kaihe Lv, Jinsheng Sun, Xianbin Huang and Haokun Shen
Gels 2023, 9(1), 23; https://doi.org/10.3390/gels9010023 - 28 Dec 2022
Cited by 12 | Viewed by 3219
Abstract
With the exploration and development of unconventional oil and gas, the use frequency of oil-based drilling fluid (ODF) is increasing gradually. During the use of ODFs, wellbore instability caused by invasion of drilling fluid into formation is a major challenge. To improve the [...] Read more.
With the exploration and development of unconventional oil and gas, the use frequency of oil-based drilling fluid (ODF) is increasing gradually. During the use of ODFs, wellbore instability caused by invasion of drilling fluid into formation is a major challenge. To improve the plugging property of ODFs, nano-sized poly(styrene-lauryl acrylate) (PSL) rubber nanogels were synthesized using styrene and lauryl acrylate through soap-free emulsion polymerization method and were characterized using FTIR, NMR, SEM, TEM, particle size analysis and TGA. The results show that, due to good dispersion stability and oil-absorbing expansion ability, the PSL rubber nanogels have a wide range of adaptations for nano-scale pores to deposit a layer of dense filter cake on the surface of filter paper with various pore diameters, reducing the filtration of mineral oil and W/O emulsion significantly. Due to the unique wettability, the PSL rubber nanogels can be adsorbed stably at the oil–water interface and form a dense granular film to prevent droplets coalescing, which improves the emulsification stability of W/O emulsion. Furthermore, the PSL rubber nanogels are soap-free and compatible with ODFs without foaming problems. The PSL rubber nanogels can increase the hole-cleaning performance of ODFs by raising viscosity and yield point. The PSL rubber nanogels outperformed hydrophobic modified nano silica and polystyrene nanospheres in plugging and filtration reduction. Therefore, the PSL rubber nanogels are expected to be used as a new plugging agent in oil-based drilling fluid. This research provide important insights for the use of organic nanogels in ODFs and the optimization of plugging conditions. Full article
(This article belongs to the Special Issue Gels for Oil Drilling and Enhanced Recovery)
Show Figures

Graphical abstract

13 pages, 5152 KB  
Article
Synthesis and Plugging Performance of Poly (MMA-BA-ST) as a Plugging Agent in Oil-Based Drilling Fluid
by Jian Yang, Zhen Lei, Bo Dong, Zhongqiang Ai, Lin Peng and Gang Xie
Energies 2022, 15(20), 7626; https://doi.org/10.3390/en15207626 - 15 Oct 2022
Cited by 11 | Viewed by 2367
Abstract
Nanopolymer was developed in order to solve the problem that the micron-scale plugging agent cannot effectively plug nanopores, which leads to instability of the wellbore. The oil-based nano plugging agent poly (MMA-BA-ST) was synthesized by Michael addition reaction using styrene, methyl methacrylate and [...] Read more.
Nanopolymer was developed in order to solve the problem that the micron-scale plugging agent cannot effectively plug nanopores, which leads to instability of the wellbore. The oil-based nano plugging agent poly (MMA-BA-ST) was synthesized by Michael addition reaction using styrene, methyl methacrylate and butyl acrylate compounds as raw materials. Poly (MMA-BA-ST) has a particle size distribution of 43.98–248.80 nm, with an average particle size of 108.70 nm, and can resist high temperatures of up to 364 °C. Poly (MMA-BA-ST) has little effect on the rheological performance parameters of drilling fluids, no significant change in the emulsion breaking voltage, significant improvement in the yield point of drilling fluids and good stability of drilling fluids. The mud cake experiment, and artificial rock properties of poly (MMA-BA-ST), showed that the best-plugging effect was achieved at 0.5% addition, with a mud cake permeability of 6.3 × 10−5 mD, a plugging rate of 72.12%, an artificial core permeability of 4.1 × 10−4 mD and a plugging rate of 88.41%. The nano plugging agent poly (MMA-BA-ST) can enter the nanopore joints under the action of formation pressure to form an effective seal, thus reducing the effect of filtrate intrusion on well wall stability. Full article
(This article belongs to the Special Issue Reservoir Formation Damage Analysis)
Show Figures

Figure 1

21 pages, 5198 KB  
Article
Compatibility Evaluation of In-Depth Profile Control Agents for Low-Permeability Fractured Reservoirs
by Xuanran Li, Jincai Wang, Jun Ni, Libing Fu, Anzhu Xu and Lun Zhao
Gels 2022, 8(9), 575; https://doi.org/10.3390/gels8090575 - 9 Sep 2022
Cited by 6 | Viewed by 2164
Abstract
Under the background that the in-depth profile control technology is gradually applied in low-permeability fractured reservoirs, this paper regards block H of Changqing Oilfield as the research object, referring to the range of its physical parameters and field application data. Three common in-depth [...] Read more.
Under the background that the in-depth profile control technology is gradually applied in low-permeability fractured reservoirs, this paper regards block H of Changqing Oilfield as the research object, referring to the range of its physical parameters and field application data. Three common in-depth profile control agents (PCAs), nanosphere suspension, poly(ethylene glycol) single-phase gel particle (PEG) and cross-linked bulk gel and swelling particle (CBG-SP), are selected to investigate the compatibility between the fractured channels and the PCAs through a series of experiments. The experimental results show that the nanospheres with particle sizes of 100 nm and 300 nm have good injectivity and deep migration ability, which remains the overall core plugging rate at a high level. The residual resistance coefficient of 800 nm nanospheres decreases in a “cliff” manner along the injection direction due to the formation of blockage in the front section, resulting in a very low plugging rate in the rear section. The injection rate is an important parameter that affects the effect of PEG in the fractured channels. When the injection rate is lower than 0.1 mL/min, the plugging ability will be weakened, and if the injection rate is higher than 0.2 mL/min, the core plugging will occur. The appropriate injection rate will promote the better effect of PEG with the plugging rate > 90%. The average plugging rate of CBG-SP in fractured rock core is about 80%, and the overall control and displacement effect is good. Based on the experimental data of PCAs, the optimization criteria of slug configuration and pro-duction parameters are proposed. According to the principle “blocking, controlling and displacing”, references are provided for PCAs screening and parameters selection of field implementation. Full article
(This article belongs to the Special Issue Gels for Oil Drilling and Enhanced Recovery)
Show Figures

Figure 1

13 pages, 3563 KB  
Article
Preparation and Properties of Double Network Hydrogel with High Compressive Strength
by Bo Kang, Qingli Lang, Jian Tu, Jun Bu, Jingjing Ren, Bin Lyu and Dangge Gao
Polymers 2022, 14(5), 966; https://doi.org/10.3390/polym14050966 - 28 Feb 2022
Cited by 17 | Viewed by 3854
Abstract
In this work, p–double network (p–DN) hydrogels were formed by the interpenetration of poly(2–acrylamide–2–methylpropanesulfonic acid–copolymer– acrylamide) microgel and polyacrylamide. The initial viscosity of prepolymer solution before hydrogel polymerization, mechanical properties, temperature and salt resistance of the hydrogels were studied. The results showed that [...] Read more.
In this work, p–double network (p–DN) hydrogels were formed by the interpenetration of poly(2–acrylamide–2–methylpropanesulfonic acid–copolymer– acrylamide) microgel and polyacrylamide. The initial viscosity of prepolymer solution before hydrogel polymerization, mechanical properties, temperature and salt resistance of the hydrogels were studied. The results showed that the initial viscosity of the prepolymer was less than 30 mP·s, and the p–DN hydrogel not only exhibited high compressive stress (37.80 MPa), but the compressive strength of p–DN hydrogel could also reach 23.45 MPa after heating at 90 °C, and the compressive strength of p–DN hydrogel could reach 13.32 MPa after soaking for 24 h in the solution of 5W mineralization. In addition, the cyclic loading behavior of hydrogel was studied. The dissipation energy of p–DN hydrogel under 80% strain was 7.89 MJ/m3, which effectively dissipated energy. Meanwhile, p–DN hydrogel maintained its original form while breaking the pressure greater than 30 MPa, indicating excellent plugging performance. Full article
(This article belongs to the Special Issue Development of Functional Polymer Composites)
Show Figures

Figure 1

12 pages, 2632 KB  
Article
Laboratory Experimental Study on Influencing Factors of Drainage Pipe Crystallization in Highway Tunnel in Karst Area
by Huaming Li, Shiyang Liu, Shuai Xiong, Hao Leng, Huiqiang Chen, Bin Zhang and Zhen Liu
Coatings 2021, 11(12), 1493; https://doi.org/10.3390/coatings11121493 - 3 Dec 2021
Cited by 10 | Viewed by 2829
Abstract
The crystalline blockage of tunnel drainage pipes in a karst area seriously affects the normal operation of drainage system and buries hidden dangers for the normal operation of the tunnel. In order to obtain the influencing factors and laws of tunnel drainage pipe [...] Read more.
The crystalline blockage of tunnel drainage pipes in a karst area seriously affects the normal operation of drainage system and buries hidden dangers for the normal operation of the tunnel. In order to obtain the influencing factors and laws of tunnel drainage pipe crystallization in a karst area, based on the field investigation of crystallization pipe plugging, the effects of groundwater velocity, drainage pipe diameter, drainage pipe material, and structure on the crystallization law of tunnel drainage pipe in karst area are studied by indoor model test. The results show that: (1) With the increase of drainage pipe diameter (20–32 mm), the crystallinity of drainage pipes first increases and then decreases. (2) With the increase of water velocity in the drainage pipe (22.0–63.5 cm·s−1), the crystallinity of the drainage pipes gradually decreases from 1.20 g to 0.70 g. (3) The crystallinity of existing material drainage pipe is: M3 (poly tetra fluoroethylene) > M2 (pentatricopeptide repeats) > M4 (high density polyethylene) > M1 (polyvinyl chloride); M8 (polyvinyl chloride + coil magnetic field) is used to change the crystallinity of drain pipe wall material. (4) When the groundwater flow rate is 34.5 cm·s−1, M1 (polyvinyl chloride) and M8 (polyvinyl chloride + coil magnetic field) can be selected for the tunnel drainage pipe. The research on the influencing factors of tunnel drainage pipe crystallization plugging fills a gap in the research of tunnel drainage pipe crystallization plugging. The research results can provide a basis for the prevention and treatment technology of tunnel drainage pipe crystallization plugging. Full article
(This article belongs to the Special Issue Corrosion and Degradation of Materials)
Show Figures

Figure 1

15 pages, 9696 KB  
Article
Innovative 3D Microfluidic Tools for On-Chip Fluids and Particles Manipulation: From Design to Experimental Validation
by Sofia Zoupanou, Maria Serena Chiriacò, Iolena Tarantini and Francesco Ferrara
Micromachines 2021, 12(2), 104; https://doi.org/10.3390/mi12020104 - 21 Jan 2021
Cited by 19 | Viewed by 4376
Abstract
Micromixers are essential components in lab-on-a-chip devices, of which the low efficiency can limit many bio-application studies. Effective mixing with automation capabilities is still a crucial requirement. In this paper, we present a method to fabricate a three-dimensional (3D) poly(methyl methacrylate) (PMMA) fluidic [...] Read more.
Micromixers are essential components in lab-on-a-chip devices, of which the low efficiency can limit many bio-application studies. Effective mixing with automation capabilities is still a crucial requirement. In this paper, we present a method to fabricate a three-dimensional (3D) poly(methyl methacrylate) (PMMA) fluidic mixer by combining computer-aided design (CAD), micromilling technology, and experimental application via manipulating fluids and nanoparticles. The entire platform consists of three microfabricated layers with a bottom reservoir-shaped microchannel, a central serpentine channel, and a through-hole for interconnection and an upper layer containing inlets and outlet. The sealing process of the three layers and the high-precision and customizable methods used for fabrication ensure the realization of the monolithic 3D architecture. This provides buried running channels able to perform passive chaotic mixing and dilution functions, thanks to a portion of the pathway in common between the reservoir and serpentine layers. The possibility to plug-and-play micropumping systems allows us to easily demonstrate the feasibility and working features of our device for tracking the mixing and dilution performances of the micromixer by using colored fluids and fluorescent nanoparticles as the proof of concept. Exploiting the good transparency of the PMMA, spatial liquid composition and better control over reaction variables are possible, and the real-time monitoring of experiments under a fluorescence microscope is also allowed. The tools shown in this paper are easily integrable in more complex lab-on-chip platforms. Full article
(This article belongs to the Special Issue Particles Separation in Microfluidic Devices, Volume II)
Show Figures

Figure 1

15 pages, 3084 KB  
Article
Bi-Polymer Electrospun Nanofibers Embedding Ag3PO4/P25 Composite for Efficient Photocatalytic Degradation and Anti-Microbial Activity
by Zunaira Habib, Chang-Gu Lee, Qilin Li, Sher Jamal Khan, Nasir Mahmood Ahmad, Yousuf Jamal, Xiaochuan Huang and Hassan Javed
Catalysts 2020, 10(7), 784; https://doi.org/10.3390/catal10070784 - 14 Jul 2020
Cited by 10 | Viewed by 4303
Abstract
Using a bi-polymer system comprising of transparent poly(methyl methacrylate) (PMMA) and poly(vinyl pyrrolidone) (PVP), a visible light active Ag3PO4/P25 composite was immobilized into the mats of polymeric electrospun nanofibers. After nanofibers synthesis, sacrificial PVP was removed, leaving behind rough [...] Read more.
Using a bi-polymer system comprising of transparent poly(methyl methacrylate) (PMMA) and poly(vinyl pyrrolidone) (PVP), a visible light active Ag3PO4/P25 composite was immobilized into the mats of polymeric electrospun nanofibers. After nanofibers synthesis, sacrificial PVP was removed, leaving behind rough surface nanofibers with easy access to Ag3PO4/P25 composite. The remarkable photocatalytic efficiency was attained using a PMMA and Ag3PO4/P25 weight ratio of 1:0.6. Methyl orange (MO) was used to visualize pollutant removal and exhibited stable removal kinetics up to five consecutive cycles under simulated daylight. Also, these polymeric nanofibers (NFs) revealed an important role in the destruction of microorganisms (E. coli), signifying their potential in water purification. A thin film fibrous mat was also used in a small bench scale plug flow reactor (PFR) for polishing of synthetic secondary effluent and the effects of inorganic salts were studied upon photocatalytic degradation in terms of total organic carbon (TOC) and turbidity removal. Lower flow rate (5 mL/h) resulted in maximum TOC and turbidity removal rates of 86% and 50%, respectively. Accordingly, effective Ag3PO4/P25 immobilization into an ideal support material and selectivity towards target pollutants could both enhance the efficiency of photocatalytic process under solar radiations without massive energy input. Full article
Show Figures

Graphical abstract

Back to TopTop