Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (94)

Search Parameters:
Keywords = polyurethane filament

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4703 KB  
Article
Multi-Layer Laminate of Fibreglass Thermoplastic Composite Reinforced with Fused Filament Fabrication TPU Layers
by Ana Paula Duarte, Pedro R. da Costa and Manuel Freitas
Polymers 2025, 17(19), 2622; https://doi.org/10.3390/polym17192622 - 28 Sep 2025
Abstract
Thermoset fibre-reinforced composites are widely used in high-end industries, but a growing demand for more sustainable and recyclable alternatives conveyed the research efforts towards thermoplastics. To expand their usage, new approaches to their manufacture and mechanical performance must be tackled and tailored to [...] Read more.
Thermoset fibre-reinforced composites are widely used in high-end industries, but a growing demand for more sustainable and recyclable alternatives conveyed the research efforts towards thermoplastics. To expand their usage, new approaches to their manufacture and mechanical performance must be tackled and tailored to each engineering challenge. The present study designed, manufactured and tested advanced multi-layer laminated composites of thermoplastic polypropylene prepreg reinforced with continuous woven fibreglass with interlayer toughening through thermoplastic polyurethane elastomer (TPU) layers manufactured by fused filament fabrication. The manufacturing process was iteratively optimized, resulting in successful adhesion between layers. Three composite configurations were produced: baseline glass fibre polypropylene (GFPP) prepreg and two multi-layer composites, with solid and honeycomb structured TPU layers. Thermal and mechanical analyses were conducted with both the polyurethane elastomer and the manufactured laminates. Tensile testing was conducted on additively manufactured polyurethane elastomer specimens, while laminated composites were tested in three-point bending. The results demonstrated the potential of the developed laminates. TPU multi-layer laminates exhibit higher thermal stability compared to the baseline GFPP prepreg-based composites. The addition of elastomeric layers decreases the flexural modulus but increases the ability to sustain plastic deformation. Multi-layer laminate composites presenting honeycomb TPU layers exhibit improved geometric and mechanical consistency, lower delamination and fibre breakage, and a high elastic recoverability after testing. Full article
Show Figures

Figure 1

22 pages, 6408 KB  
Article
Design and Characterization of Negative-Stiffness Lattice Structures for Diabetic Midsoles
by Gianpaolo Savio and Francesca Uccheddu
Appl. Sci. 2025, 15(17), 9544; https://doi.org/10.3390/app15179544 - 30 Aug 2025
Viewed by 393
Abstract
Diabetes mellitus often leads to peripheral neuropathy that compromises protective sensation in the feet and raises ulcer risk through mechanical overload. While prior research has introduced cellular-metamaterial-based shoe midsoles for dynamic plantar pressure redistribution, this study advances the field by delivering a complete, [...] Read more.
Diabetes mellitus often leads to peripheral neuropathy that compromises protective sensation in the feet and raises ulcer risk through mechanical overload. While prior research has introduced cellular-metamaterial-based shoe midsoles for dynamic plantar pressure redistribution, this study advances the field by delivering a complete, application-oriented workflow for physical prototyping and mechanical validation of such structures. Our pipeline integrates analytical synthesis of curved-beam unit cells, process calibration, and fabrication via thermoplastic polyurethane (TPU) fused-filament fabrication, producing customized, test-ready lattices suitable for future gait-simulation studies and in vivo assessment. Printed TPU tests showed a Young’s modulus of 44.5 MPa, ultimate tensile strength of 4.9 MPa, and strain at break ≈ 20% (Shore 84.5 A/37.2 D). The cellular unit’s compressive response was quantified by theoretical force-threshold estimates and controlled compression tests, enabling data-driven selection of unit cell geometry and arrangement for effective offloading. The response is rate-dependent: higher loading speed increases peak force and hysteresis, indicating that loading rate should be treated as a design parameter to tune dynamic behavior for the target application. Although the analytical model overestimates forces by roughly 50% on average relative to experiments, it accurately captures the influence of key geometric parameters on peak force. Accordingly, experimental data can identify cell strategic geometric parameters (i.e., Q), while the achievable maximum force can be predicted from the model by applying an appropriate correction factor. By connecting modeling, calibration, and experimental validation in one coherent path, the proposed workflow enables manufacturable lattices with controllable activation thresholds for plantar pressure redistribution and provides a practical bridge from concept to application. Full article
Show Figures

Figure 1

19 pages, 3482 KB  
Article
Enhancing the Energy Absorption Performance of 3D-Printed CF/TPU Composite Materials by Introducing a “Rigid–Elastic” Structure Through Multi-Scale Synergies
by Xuanyu Zhou, He Ouyang, Yuan Zhang, Ziqiang Zhu, Zhen Wang, Zirui Cheng, Yubing Hu and Yanan Zhang
Polymers 2025, 17(13), 1880; https://doi.org/10.3390/polym17131880 - 6 Jul 2025
Viewed by 866
Abstract
Thermoplastic polyurethane (TPU) combines elastomeric and thermoplastic properties but suffers from insufficient rigidity and strength for structural applications. Herein, we developed novel carbon fiber-reinforced TPU (CF/TPU) composites filaments and utilize melt extrusion for 3D printing to maintain elasticity, while achieving enhanced stiffness and [...] Read more.
Thermoplastic polyurethane (TPU) combines elastomeric and thermoplastic properties but suffers from insufficient rigidity and strength for structural applications. Herein, we developed novel carbon fiber-reinforced TPU (CF/TPU) composites filaments and utilize melt extrusion for 3D printing to maintain elasticity, while achieving enhanced stiffness and strength through multi scale-the control of fiber content and optimization of printing parameters, reaching a rigid–elastic balance. A systematic evaluation of CF content (0–25%) and printing parameters revealed optimal performance to be at 220–230 °C and 40 mm/s for ensuring proper flow to wet fibers without polymer degradation. Compared with TPU, 20% CF/TPU exhibited 63.65%, 105.51%, and 93.69% improvements in tensile, compressive, and impact strength, respectively, alongside 70.88% and 72.92% enhancements in compression and impact energy absorption. This work establishes a fundamental framework for developing rigid–elastic hybrid materials with tailored energy absorption capabilities through rational material design and optimized additive manufacturing processes. Full article
(This article belongs to the Special Issue Research on Additive Manufacturing of Polymer Composites)
Show Figures

Figure 1

17 pages, 3434 KB  
Article
Experimental Study of Comprehensive Performance Analysis Regarding the Dynamical/Mechanical Aspects of 3D-Printed UAV Propellers and Sound Footprint
by Florin Popișter
Polymers 2025, 17(11), 1466; https://doi.org/10.3390/polym17111466 - 25 May 2025
Cited by 3 | Viewed by 1366
Abstract
The present study evaluates the viability of fabricating unmanned aerial vehicle (UAV) propellers using fused filament fabrication (FFF), with an emphasis on low-cost, desktop-scale production. The study’s backdrop is the recent adoption of UAVs and advancements in additive manufacturing. While the scope targets [...] Read more.
The present study evaluates the viability of fabricating unmanned aerial vehicle (UAV) propellers using fused filament fabrication (FFF), with an emphasis on low-cost, desktop-scale production. The study’s backdrop is the recent adoption of UAVs and advancements in additive manufacturing. While the scope targets accessibility for individual and small-scale users, the results have broader implications for scalable UAV propulsion systems. The research was conducted within an experimental UAV development framework aimed at optimizing propeller performance through strategic material selection, geometrical design optimization, and additive manufacturing processes. Six propeller variants were manufactured using widely available thermoplastic polymers, including polyethylene terephthalate glycol-modified (PETG) and thermoplastic polyurethane (TPU), as well as photopolymer-based propellers fabricated using vat photopolymerization, also known as digital light processing (DLP). Mechanical and aerodynamic characterizations were performed to assess the structural integrity, flexibility, and performance of each material under dynamic conditions. Two blade configurations, a toroidal propeller with anticipated aerodynamic advantages and a conventional tri-blade propeller (Gemfan 51466-3)—were comparatively analyzed. The primary contribution of this work is the systematic evaluation of performance metrics such as thrust generation, acoustic signature, mechanical strength, and thermal stress imposed on the electrical motor, thereby establishing a benchmark for polymer-based propeller fabrication via additive manufacturing. The findings underscore the potential of polymeric materials and layer-based manufacturing techniques in advancing the design and production of UAV propulsion components. Full article
(This article belongs to the Special Issue 3D Printing and Molding Study in Polymeric Materials)
Show Figures

Figure 1

14 pages, 7321 KB  
Article
Elastic Properties of Thermoplastic Polyurethane Fabricated Using Multi Jet Fusion Additive Technology
by Karolina Wilińska, Marta Kozuń and Celina Pezowicz
Polymers 2025, 17(10), 1363; https://doi.org/10.3390/polym17101363 - 16 May 2025
Viewed by 3891
Abstract
This study investigates the elastic properties of thermoplastic polyurethane (TPU) produced through Multi Jet Fusion (MJF) (HP Inc., Palo Alto, CA, USA) additive technology. TPU specimens of varying thicknesses (0.5 mm to 1.0 mm) and orientations (horizontal, diagonal, vertical) were tested. Results show [...] Read more.
This study investigates the elastic properties of thermoplastic polyurethane (TPU) produced through Multi Jet Fusion (MJF) (HP Inc., Palo Alto, CA, USA) additive technology. TPU specimens of varying thicknesses (0.5 mm to 1.0 mm) and orientations (horizontal, diagonal, vertical) were tested. Results show anisotropic behavior, with diagonally oriented specimens exhibiting the highest elastic properties. The study emphasizes the importance of specifying the method for determining elastic properties in TPU filaments for accurate material selection in applications. The findings highlight that a single-value Young’s modulus is insufficient to describe TPU’s elastic behavior, emphasizing the need for more detailed methodological specification in material datasheets. Additionally, SEM (Thermo Fisher Scientific, Waltham, MA, USA). analysis reveals that build orientation significantly affects failure modes in MJF-printed TPU: vertical prints tend to fracture in a brittle-like manner due to interlayer delamination, whereas horizontal and diagonal orientations promote ductile failure with better layer cohesion. These insights are critical for both accurate material selection and for optimizing TPU parts in functional applications, particularly where mechanical performance under tension is essential. Full article
(This article belongs to the Special Issue 3D Printing Polymer Materials and Their Biomedical Applications)
Show Figures

Figure 1

26 pages, 28205 KB  
Article
Enhanced Mechanical Performance of Resin-Infused 3D-Printed Polymer Lattices
by Jakub J. Słowiński, Maciej Roszak, Mikołaj Kazimierczak, Grzegorz Skrzypczak and Maksymilian Stępczak
Polymers 2025, 17(8), 1028; https://doi.org/10.3390/polym17081028 - 10 Apr 2025
Cited by 2 | Viewed by 1159
Abstract
Fused deposition modelling (FDM) technology provides a flexible and cost-effective solution for the manufacture of polymer components, enabling the precise design of structures and the incorporation of a variety of composite materials. Its development is confirmed by numerous studies on fibre reinforcements (e.g., [...] Read more.
Fused deposition modelling (FDM) technology provides a flexible and cost-effective solution for the manufacture of polymer components, enabling the precise design of structures and the incorporation of a variety of composite materials. Its development is confirmed by numerous studies on fibre reinforcements (e.g., GFRP and CF) and thermosetting resin modifications, resulting in improved impact strength and fracture toughness and increased thermal stability of products. The final mechanical properties are significantly influenced by processing parameters (e.g., fill density, layer height, and printing speed) and internal geometry (e.g., lattice structures), which can be further optimised by numerical analyses using constitutive models such as the Johnson–Cook model. The focus of the study presented here is on the fabrication of composites from FDM dies filled with F8 polyurethane resin. Filaments, including PETG carbon and PETG, were tested for potential applications with the resin. A static compression test, supported by numerical analysis using the Johnson–Cook model, was carried out to identify key mechanical characteristics and to predict the material’s behaviour under different loading conditions. The results indicate that these structures exhibit numerous potential delamination planes and voids between filament paths, leading to relatively low maximum stress values (σm ≈ 2.5–3 MPa). However, the impregnation with polyurethane resin significantly enhances these properties by bonding the layers and filling the pores, resulting in a more homogeneous and stronger composite. Additionally, numerical simulations effectively captured key aspects of structural behaviour, identifying critical stress concentration areas, particularly along the side walls and in regions forming triangular stress zones. These findings provide valuable insights into the potential of resin-filled FDM structures in engineering applications, demonstrating their improved performance over purely printed samples. Full article
(This article belongs to the Special Issue Polymers and Polymer Composite Structures for Energy Absorption)
Show Figures

Figure 1

14 pages, 3084 KB  
Article
Metal Surface Treatments for Enhanced Heat Transfer in Metal–Composite Hybrid Structures
by Dong Hyun Kim, Wonhwa Lee, Jung Bin Park and Jea Uk Lee
Micromachines 2025, 16(4), 399; https://doi.org/10.3390/mi16040399 - 29 Mar 2025
Viewed by 729
Abstract
Recently, there has been an increasing emphasis on improving the performance of metal components across various industries, such as automotive, aerospace, electronics, medical devices, and military applications. However, the challenges related to efficient heat generation and transfer in equipment and devices are becoming [...] Read more.
Recently, there has been an increasing emphasis on improving the performance of metal components across various industries, such as automotive, aerospace, electronics, medical devices, and military applications. However, the challenges related to efficient heat generation and transfer in equipment and devices are becoming increasingly critical. A solution to these issues involves the adoption of a metal–composite hybrid structure, designed to efficiently manage heat, while substituting conventional metal components with polymer–carbon composites. In this study, nanopores were formed on the metal surface using an anodization process, serving as the basis for creating 3D-printed polymer/metal hybrid constructions. Various surface treatments, including plasma treatment, mixed electrolyte anodization, and etching, were applied to the metal surface to enhance the bonding strength between the 3D-printed polymer and the aluminum alloy. These processes were essential for developing lightweight polymer/metal hybrid structures utilizing a range of 3D-printed polymer filaments, such as polylactic acid, thermoplastic polyurethane, acrylonitrile butadiene styrene, polypropylene, thermoplastic polyester elastomer, and composite materials composed of polymer and carbon. In particular, the hybrid structures employing polymer–carbon composite materials demonstrated excellent heat dissipation characteristics, attributed to the remarkable conductive properties of carbon fibers. These technologies have the potential to effectively address the device heat problem by facilitating the development of lightweight hybrid structures applicable across various fields, including automotive, mobile electronics, medical devices, and military applications. Full article
(This article belongs to the Special Issue Micro/Nano Manufacturing of Electronic Devices)
Show Figures

Figure 1

14 pages, 9188 KB  
Article
Filament Type Recognition for Additive Manufacturing Using a Spectroscopy Sensor and Machine Learning
by Gorkem Anil Al and Uriel Martinez-Hernandez
Sensors 2025, 25(5), 1543; https://doi.org/10.3390/s25051543 - 2 Mar 2025
Cited by 1 | Viewed by 1512
Abstract
This study presents a novel approach for filament recognition in fused filament fabrication (FFF) processes using a multi-spectral spectroscopy sensor module combined with machine learning techniques. The sensor module measures 18 wavelengths spanning the visible to near-infrared spectra, with a custom-designed shroud to [...] Read more.
This study presents a novel approach for filament recognition in fused filament fabrication (FFF) processes using a multi-spectral spectroscopy sensor module combined with machine learning techniques. The sensor module measures 18 wavelengths spanning the visible to near-infrared spectra, with a custom-designed shroud to ensure systematic data collection. Filament samples include polylactic acid (PLA), thermoplastic polyurethane (TPU), thermoplastic copolyester (TPC), carbon fibre, acrylonitrile butadiene styrene (ABS), and ABS blended with Carbon fibre. Data are collected using the Triad Spectroscopy module AS7265x (composed of AS72651, AS72652, AS72653 sensor units) positioned at three measurement distances (12 mm, 16 mm, 20 mm) to evaluate recognition performance under varying configurations. Machine learning models, including k-Nearest Neighbors (kNN), Logistic Regression, Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP), are employed with hyperparameter tuning applied to optimise classification accuracy. Results show that the data collected on the AS72651 sensor, paired with the SVM model, achieves the highest accuracy of 98.95% at a 20 mm measurement distance. This work introduces a compact, high-accuracy filament recognition module that can enhance the autonomy of multi-material 3D printing by dynamically identifying and switching between different filaments, optimising printing parameters for each material, and expanding the versatility of additive manufacturing applications. Full article
(This article belongs to the Special Issue Advanced Optical Sensors Based on Machine Learning: 2nd Edition)
Show Figures

Figure 1

15 pages, 8399 KB  
Proceeding Paper
An Investigation of the Monotonic and Cyclic Behavior of Additively Manufactured TPU
by Sara Ricci, Alberto Pagano, Andrea Ceccacci, Gianluca Iannitti and Nicola Bonora
Eng. Proc. 2025, 85(1), 18; https://doi.org/10.3390/engproc2025085018 - 18 Feb 2025
Cited by 2 | Viewed by 2189
Abstract
The mechanical properties of rubber-like materials, such as their high flexibility and durability, make them widely applicable across different industrial fields, from aerospace to healthcare and, most notably, the automotive sector. In operative conditions, these materials experience large deformations and repeated loadings, which [...] Read more.
The mechanical properties of rubber-like materials, such as their high flexibility and durability, make them widely applicable across different industrial fields, from aerospace to healthcare and, most notably, the automotive sector. In operative conditions, these materials experience large deformations and repeated loadings, which may result in inelastic and dissipative phenomena. The aim of this study is to investigate the mechanical properties of two thermoplastic elastomeric materials manufactured with the Fused Filament Fabrication (FFF) technique: unfilled thermoplastic polyurethane (TPU) and TPU reinforced with carbon nanotubes (CNTs). Several experimental tests were performed to assess the response of both materials under monotonic and cyclic loadings. The addition of CNTs led to improved stiffness and strength without compromising elasticity. Under repeated loadings, both materials were characterized by the Mullins and viscous effects. However, the presence of CNTs was found to slightly amplify these inelastic phenomena. The integration of additive manufacturing technologies, combined with the use of innovative fillers, can offer design and performance optimization to all those components that strongly rely on elastomers. Full article
Show Figures

Figure 1

15 pages, 8817 KB  
Article
Effects of Process Parameters on the Mechanical Properties and Microstructure of Additively Manufactured Carbon Black Particles-Reinforced Thermoplastic Polyurethane Composite Samples
by Fatima Hira, Muhammad Asif, Hammad Ullah, Imran Khan, Ghulam Hussain, Muhammad Amir and Mohammed Alkahtani
Polymers 2025, 17(3), 426; https://doi.org/10.3390/polym17030426 - 6 Feb 2025
Cited by 3 | Viewed by 1202
Abstract
Additive manufacturing (AM) techniques make fabricating complex designs, prototypes, and end-user products possible. Conductive polymer composites find applications in flexible electronics, sensor fabrication, and electrical circuits. In this study, thermoplastic polyurethane (TPU)-based conductive polymer composite samples were fabricated via fused filament fabrication (FFF). [...] Read more.
Additive manufacturing (AM) techniques make fabricating complex designs, prototypes, and end-user products possible. Conductive polymer composites find applications in flexible electronics, sensor fabrication, and electrical circuits. In this study, thermoplastic polyurethane (TPU)-based conductive polymer composite samples were fabricated via fused filament fabrication (FFF). The effects of three important process parameters, including infill density (ID), layer thickness (LT), and fan speed (FS), on various mechanical properties (tensile and compressive properties) were investigated. It was observed that all the considered process parameters affect the mechanical properties, and they are significant parameters, as per the analysis of variance (ANOVA). From scanning electron microscopy (SEM) and optical microscopy, various combinations of parameters such as low ID, high LT, and high FS resulted in the formation of defects such as voids, cracks, and warping, which resulted in low mechanical properties. Finally, process parameter optimization was performed, resulting in a conductive polymer composite with the best possible combination of mechanical properties at high ID, low LT, and medium FS. Full article
Show Figures

Figure 1

21 pages, 2586 KB  
Article
Changes in the Antibacterial Performance of Polymer-Based Nanocomposites Induced by Additive Manufacturing Processing
by Ana C. Pinho, Paula V. Morais, Manuel F. Pereira and Ana P. Piedade
Polymers 2025, 17(2), 171; https://doi.org/10.3390/polym17020171 - 11 Jan 2025
Cited by 1 | Viewed by 1362
Abstract
The idea supporting the investigation of the current manuscript was to develop customized filters for air conditioners with different pore percentages and geometry with the additional advantage of presenting antibacterial performance. This property was expected due to the reinforcement of Cu nanoparticles in [...] Read more.
The idea supporting the investigation of the current manuscript was to develop customized filters for air conditioners with different pore percentages and geometry with the additional advantage of presenting antibacterial performance. This property was expected due to the reinforcement of Cu nanoparticles in the polymeric matrix of poly(lactic acid) (PLA) and polyurethane (TPU). The filaments were characterized by their chemical composition, thermal and mechanical properties, and antibacterial behavior before and after processing by fused filament fabrication. An X-ray photoelectron spectroscopy showed that the nanocomposite filaments presented Cu particles at their surface in different valence states, including Cu0, Cu+, and Cu2+. After processing, the metallic particles are almost absent from the surface, a result confirmed by micro-computer tomography (μ-CT) characterization. Antibacterial tests were made using solid-state diffusion tests to mimic the dry environment in air conditioner filters. The tests with the nanocomposite filaments showed that bacteria proliferation was hindered. However, no antibacterial performance could be observed after processing due to the absence of the metallic element on the surface. Nevertheless, antimicrobial performance was observed when evaluated in liquid tests. Therefore, the obtained results provide valuable indications for developing new nanocomposites that must maintain their antimicrobial activity after being processed and tested in the dry conditions of solid-state diffusion. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

24 pages, 7039 KB  
Article
Microbial Biodegradation of Synthetic Polyethylene and Polyurethane Polymers by Pedospheric Microbes: Towards Sustainable Environmental Management
by Maryam Najam, Sana Javaid, Shazia Iram, Kingkham Pasertsakoun, Marianna Oláh, András Székács and László Aleksza
Polymers 2025, 17(2), 169; https://doi.org/10.3390/polym17020169 - 11 Jan 2025
Cited by 6 | Viewed by 4546
Abstract
This study attempted to isolate and identify pedospheric microbes originating in dumpsites and utilized them for the degradation of selected synthetic polymers for the first time in a cost-effective, ecologically favorable and sustainable manner. Specifically, low-density polyethylene (LDPE) and polyurethane (PUR) were converted [...] Read more.
This study attempted to isolate and identify pedospheric microbes originating in dumpsites and utilized them for the degradation of selected synthetic polymers for the first time in a cost-effective, ecologically favorable and sustainable manner. Specifically, low-density polyethylene (LDPE) and polyurethane (PUR) were converted by the isolated fungi, i.e., Aspergillus flavus, A terreus, A. clavatus, A. nigers and bacterial coccus and filamentous microbes and assessed in a biotransformative assay under simulated conditions. Commendable biodegradative potentials were exhibited by the isolated microbes against polymers that were analyzed over a span of 30 days. Among the selected fungal microbes, the highest activity was achieved by A. niger, expressing 55% and 40% conversion of LDPE and PUR, respectively. In the case of bacterial strains, 50% and 40% conversion of LDPE and PUR degradation was achieved by coccus. Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA) were utilized to analyze the degradative patterns in terms of vibrational and thermal characteristics, and stereomicroscopic analysis was performed for the visual assessment of morphological variations. Profound structural transformations were detected in FT-IR spectra and TGA thermograms for the selected microbes. Stereomicroscopic analysis was also indicative of the remarkable transformation of the surface morphology of these polymers after degradation by microbes in comparison to the reference samples not treated with any pedospheric microbes. The results are supportive of the utilization of the selected pedospheric microbes as environmental remediators for the cleanup of persistent polymeric toxins. This current work can be further extended for the successful optimization of further augmented percentages by using other pedospheric microbes for the successful adoption of these biotechnological tools at a practical level. Full article
(This article belongs to the Special Issue Degradation and Recycling of Polymer Materials)
Show Figures

Figure 1

16 pages, 13181 KB  
Article
An Open-Source 3D Printed Three-Fingered Robotic Gripper for Adaptable and Effective Grasping
by Francisco Yumbla, Emiliano Quinones Yumbla, Erick Mendoza, Cristobal Lara, Javier Pagalo, Efraín Terán, Redhwan Algabri, Myeongyun Doh, Tuan Luong and Hyungpil Moon
Biomimetics 2025, 10(1), 26; https://doi.org/10.3390/biomimetics10010026 - 4 Jan 2025
Cited by 2 | Viewed by 4390
Abstract
This research focuses on the design of a three-finger adaptive gripper using additive manufacturing and electromechanical actuators, with the purpose of providing a low-cost, efficient, and reliable solution for easy integration with any robot arm for industrial and research purposes. During the development [...] Read more.
This research focuses on the design of a three-finger adaptive gripper using additive manufacturing and electromechanical actuators, with the purpose of providing a low-cost, efficient, and reliable solution for easy integration with any robot arm for industrial and research purposes. During the development phase, 3D printing materials were employed in the gripper’s design, with Polylactic Acid (PLA) filament used for the rigid mechanical components and Thermoplastic Polyurethane (TPU) for the flexible membranes that distribute pressure to the resistive force sensors. Stress analysis and simulations were conducted to evaluate the performance of the components under load and to gradually refine the design of the adaptive gripper. It was ensured that the mechanism could integrate effectively with the robotic arm and be precisely controlled through a PID controller. Furthermore, the availability of spare parts in the local market was considered essential to guarantee easy and cost-effective maintenance. Tests were conducted on an actual robotic arm, and the designed gripper was able to effectively grasp objects such as a soda can and a pencil. The results demonstrated that the adaptive gripper successfully achieved various types of grasping, offering a scalable and economical solution that represents a significant contribution to the field of robotic manipulation in industrial applications. Full article
Show Figures

Figure 1

14 pages, 4086 KB  
Article
3D-Printed Poly(ester urethane)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Bioglass Scaffolds for Tissue Engineering Applications
by Nayla J. Lores, Beatriz Aráoz, Xavier Hung, Mariano H. Talou, Aldo R. Boccaccini, Gustavo A. Abraham, Élida B. Hermida and Pablo C. Caracciolo
Polymers 2024, 16(23), 3355; https://doi.org/10.3390/polym16233355 - 29 Nov 2024
Cited by 1 | Viewed by 1260
Abstract
Biodegradable polymers and bioceramics give rise to composite structures that serve as scaffolds to promote tissue regeneration. The current research explores the preparation of biodegradable filaments for additive manufacturing. Bioresorbable segmented poly(ester urethanes) (SPEUs) are easily printable elastomers but lack bioactivity and present [...] Read more.
Biodegradable polymers and bioceramics give rise to composite structures that serve as scaffolds to promote tissue regeneration. The current research explores the preparation of biodegradable filaments for additive manufacturing. Bioresorbable segmented poly(ester urethanes) (SPEUs) are easily printable elastomers but lack bioactivity and present low elastic modulus, making them unsuitable for applications such as bone tissue engineering. Strategies such as blending and composite filament production still constitute an important challenge in addressing SPEU limitations. In this work, SPEU-poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) blends and SPEU-PHBV-Bioglass 45S5® (BG) composite materials were processed into filaments and 3D structures. A comprehensive characterization of their morphology and thermal and mechanical properties is presented. The production of 3D structures based on SPEU-PHBV with excellent dimensional precision was achieved. Although SPEU-PHBV-BG printed structures showed some defects associated with the printing process, the physicochemical, thermal, and mechanical properties of these materials hold promise. The blend composition, BG content and particle size, processing parameters, and blending techniques were carefully managed to ensure that the mechanical behavior of the material remained under control. The incorporation of PHBV in SPEU-PHBV at 70:30 w/w and BG (5 wt%) acted as reinforcement, enhancing both the elastic modulus of the filaments and the compressive mechanical behavior of the 3D matrices. The compressive stress of the printed scaffold was found to be 1.48 ± 0.13 MPa, which is optimal for tissues such as human proximal tibial trabecular bone. Therefore, these materials show potential for use in the design and manufacture of customized structures for bone tissue engineering. Full article
Show Figures

Graphical abstract

15 pages, 4925 KB  
Article
The Evaluation of Sandwich Composite Materials with Vegetable Fibers in a Castor Oil Polyurethane Matrix with Their Faces and Honeycomb Core Made in a 3D Printer
by Gilberto Garcia del Pino, Abderrezak Bezazi, Antonio Claudio Kieling, José Costa de Macedo Neto, Sofia Dehaini Garcia, José Luis Valin Rivera, Meylí Valin Fernández, Aristides Rivera Torres and Francisco Rolando Valenzuela Diaz
Polymers 2024, 16(21), 2980; https://doi.org/10.3390/polym16212980 - 24 Oct 2024
Cited by 2 | Viewed by 1167
Abstract
Sandwich panels are widely used in the naval and aerospace industries to withstand the normal tensile, compressive, and shear stresses associated with bending. The faces of sandwich composites are usually made of metals such as aluminum and, in some studies with composites, using [...] Read more.
Sandwich panels are widely used in the naval and aerospace industries to withstand the normal tensile, compressive, and shear stresses associated with bending. The faces of sandwich composites are usually made of metals such as aluminum and, in some studies with composites, using a polymeric matrix, but there are no studies in the literature using a castor oil polyurethane matrix. The core of the panel must keep the faces apart and be rigid perpendicular to them. To begin the work, a study was carried out on the influence of alkaline treatment on sisal fibers to increase the fibers’ adhesion to castor oil polyurethane. There are no relevant studies worldwide on the use of this resin and the adhesion of vegetable fibers to this polyurethane. In this work, a study was carried out through a three-point bending test of sandwich panels using faces of composite material with sisal fibers subjected to an alkaline treatment of 10% by weight of sodium hydroxide and an immersion time of 4 h in the dissolution, which was the best chemical treatment obtained initially in a castor oil polyurethane matrix. The honeycomb cores were made by 3D printer and in this study two different printing filament materials, PETG and PLA, and two different core heights were compared. As a result of a traction test, it was observed that sisal fibers with chemical treatment in a castor oil polyurethane matrix can be used in composites, although the stress levels obtained are 50% lower than the stresses obtained in other matrixes such as epoxy resin. The combination of sisal faces in a castor oil polyurethane matrix and honeycomb cores made in a 3D printer showed good properties, which allows the use of renewable, sustainable and less aggressive materials for the environment. In all tests, PETG was 21% to 32% stronger than PLA. Although there was no rupture in the test specimens, the PETG cores deformed 0.5% to 3.6% less than PLA. The composites with PLA were lighter, because the core density was 13.8% lower than the PETG cores. Increasing the height of the honeycomb increased its strength. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

Back to TopTop