Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (118)

Search Parameters:
Keywords = porous starch

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3986 KB  
Article
Critical Melting–Freezing Pretreatment Enhances Enzymatic Hydrolysis for Porous Starch Preparation: Role of Partial Structural Weakening and Surface Modification
by Chen Zhang, Chu-Yun Wu, Shi-Qi Qian, Yu-Yan Zhang, Ya-Li Liu, Xin-Yu Li, Shi-Yi Wang and Jian-Ya Qian
Foods 2025, 14(17), 2984; https://doi.org/10.3390/foods14172984 - 26 Aug 2025
Viewed by 318
Abstract
In this study, critical melting followed by freeze–thaw (CMFT) pretreatment was employed as an effective strategy to partially weaken and modify the surface structure of starch, enhancing enzymatic hydrolysis (EH) for porous starch preparation. Compared with EH alone, the CMFT + EH treatment [...] Read more.
In this study, critical melting followed by freeze–thaw (CMFT) pretreatment was employed as an effective strategy to partially weaken and modify the surface structure of starch, enhancing enzymatic hydrolysis (EH) for porous starch preparation. Compared with EH alone, the CMFT + EH treatment synergistically facilitated porous structure formation while preserving structural integrity. Partial structural weakening and surface modifications induced by CMFT promoted enzyme diffusion into amorphous starch domains, enabling efficient hydrolysis and pore development without excessive granule degradation. CMFT + EH treatment reduced enzyme requirements and hydrolysis time by 33% compared to single enzymatic hydrolysis while markedly increasing water and oil absorption capacities. Porous starch prepared by CMFT + EH exhibited enhanced ordering of double-helical structures, with RC% increasing from 25.48% (native) and 24.74% (enzymatic hydrolysis alone) to approximately 28%. Furthermore, CMFT + EH significantly improved curcumin encapsulation efficiency from 40% (native) to ~88% and increased curcumin stability under various storage conditions. This study provided an effective strategy to enhance enzymatic hydrolysis efficiency for porous starch preparation with reduced enzyme addition and hydrolysis time. Full article
Show Figures

Graphical abstract

16 pages, 2047 KB  
Article
Germination-Induced Biofortification: Improving Nutritional Efficacy, Physicochemical Properties, and In Vitro Digestibility of Black Rice Flour
by Lingfeng Zhu, Qiutao Xie, Dandan Qin, Yi He, Hongyan Yuan, Yingchao Mao, Zhaoping Pan, Gaoyang Li and Xinxin Xia
Foods 2025, 14(16), 2912; https://doi.org/10.3390/foods14162912 - 21 Aug 2025
Viewed by 360
Abstract
Germination is an effective strategy for enhancing functional and processing characteristics of whole grains. This research aimed to explore the changes of nutritional components, physicochemical properties, in vitro digestibility, and microstructural characteristics of black rice flour (BRF) during 0–48 h germination. The results [...] Read more.
Germination is an effective strategy for enhancing functional and processing characteristics of whole grains. This research aimed to explore the changes of nutritional components, physicochemical properties, in vitro digestibility, and microstructural characteristics of black rice flour (BRF) during 0–48 h germination. The results showed that germination significantly induced α-amylase activation of BRF, from 1.02 U/g to 4.46 U/g, leading to a 3.2-fold increase in reducing sugar content through starch hydrolysis. The content of apparent amylose was down-regulated during germination. The contents of free amino acids and minerals were markedly augmented in BRF. Specially, the GABA content was remarkedly enhanced, from 40.73 mg/kg to 258.35 mg/kg. Compared with BRF, the ratio of rapidly digestible starch (RDS) and resistant starch (RS) of germinated black rice flour (GBRF) increased by 12.04% and 0.43%, respectively, while the ratio of slowly digestible starch (SDS) decreased by 12.47% at 48 h. Scanning electron microscopy (SEM) analysis observed a more porous and loose surface structure in GBRF. X-ray diffraction (XRD) analysis illustrated that the relative crystallinity of GBRF was reduced with the prolonging of germination time. The dissociation of starch granules in GBRF ultimately led to a decrease in characteristic viscosity parameters, including peak, trough, final, and setback viscosity. In conclusion, germination improved the nutritional value and digestive characteristics of BRF, and altered its structure and physicochemical properties, which provides a reference for the development of whole grain-based products. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

27 pages, 6633 KB  
Article
Effect of Lactic Acid Bacteria Fermentation Agent on the Structure, Physicochemical Properties, and Digestive Characteristics of Corn, Oat, Barley, and Buckwheat Starch
by Ziyi You, Jinpeng Wang, Wendi Teng, Ying Wang, Yuemei Zhang and Jinxuan Cao
Foods 2025, 14(16), 2904; https://doi.org/10.3390/foods14162904 - 21 Aug 2025
Viewed by 358
Abstract
This study modified corn, oat, barley, and buckwheat starches using a Henan-specific sourdough starter, revealing that the initial starch architecture governs differentiated functional transformations. Pore-dominant starches (corn/buckwheat) underwent “inside-out” enzymatic pathways—corn starch exhibited a 38.21% reduced particle size through pore expansion, with long [...] Read more.
This study modified corn, oat, barley, and buckwheat starches using a Henan-specific sourdough starter, revealing that the initial starch architecture governs differentiated functional transformations. Pore-dominant starches (corn/buckwheat) underwent “inside-out” enzymatic pathways—corn starch exhibited a 38.21% reduced particle size through pore expansion, with long amylopectin chain degradation forming thermally stable gels, establishing it as an ideal base for anti-staling sauces and frozen dough. Buckwheat starch demonstrated a 44% increased amylose content facilitated by porous structures, where post digestion double helix formation elevated the resistant starch (RS) content by 7%, achieving a significant 28.19% GI (Glycemic Index) reduction. Conversely, fissure-dominant starches (oat/barley) experienced “surface-inward” limited erosion—oat starch, constrained by surface cracks, showed amorphous region degradation and short-chain proliferation, accelerating glucose release and adapting it for rapid digestion products like energy bars. Barley starch primarily underwent amorphous zone modification, enhancing the pasting efficiency to provide raw materials for instant meal replacement powders. Full article
Show Figures

Figure 1

12 pages, 2311 KB  
Communication
Dual-Responsive Starch Hydrogels via Physicochemical Crosslinking for Wearable Pressure and Ultra-Sensitive Humidity Sensing
by Zi Li, Jinhui Zhu, Zixuan Wang, Hao Hu and Tian Zhang
Sensors 2025, 25(16), 5006; https://doi.org/10.3390/s25165006 - 13 Aug 2025
Viewed by 276
Abstract
Flexible hydrogel sensors demonstrate emerging applications, such as wearable electronics, soft robots, and humidity smart devices, but their further application is limited due to their single-responsive behavior and unstable, low-sensitivity signal output. This study develops a dual-responsive starch-based conductive hydrogel via a facile [...] Read more.
Flexible hydrogel sensors demonstrate emerging applications, such as wearable electronics, soft robots, and humidity smart devices, but their further application is limited due to their single-responsive behavior and unstable, low-sensitivity signal output. This study develops a dual-responsive starch-based conductive hydrogel via a facile “one-pot” strategy, achieving mechanically robust pressure sensing and ultra-sensitive humidity detection. The starch-Poly (2,3-dihydrothieno-1,4-dioxin)-poly (styrenesulfonate) (PEDOT:PSS)-glutaraldehyde (SPG) hydrogel integrates physical entanglement and covalent crosslinking to form a porous dual-network architecture, exhibiting high compressive fracture stress (266 kPa), and stable electromechanical sensitivity (ΔI/I0, ~2.3) with rapid response (0.1 s). In its dried state (D-SPG), the film leverages the starch’s hygroscopicity for humidity sensing, detecting minute moisture changes (ΔRH = 6.6%) within 120 ms and outputting 0.4~0.5 (ΔI/I0) signal amplitudes. The distinct state-dependent responsiveness enables tailored applications: SPG monitors physiological motions (e.g., pulse waves and joint movements) via conformal skin attachment, while D-SPG integrated into masks quantifies respiratory intensity with 3× signal enhancement during exercise. This work pioneers a sustainable candidate for biodegradable flexible electronics, overcoming trade-off limitations between mechanical integrity, signal stability, and dual responsiveness in starch hydrogels through synergistic network design. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

16 pages, 2531 KB  
Article
Starch-Regolith Aerogel Bricks as a Sustainable Building Material for In Situ Extraterrestrial Constructions
by Christophe Bliard, Chadi Maalouf, Mohammed Lachi, Virginie Bogard, Sébastien Murer, Fabien Beaumont, Guillaume Polidori and Fabien Bogard
Sustainability 2025, 17(16), 7260; https://doi.org/10.3390/su17167260 - 11 Aug 2025
Viewed by 610
Abstract
Space exploration and the prospect of developing permanent lunar settlements in the near future will require the need for innovative building construction techniques using locally sourced materials, without the need for excessive input of simple, reusable energy. The Moon’s surface is covered by [...] Read more.
Space exploration and the prospect of developing permanent lunar settlements in the near future will require the need for innovative building construction techniques using locally sourced materials, without the need for excessive input of simple, reusable energy. The Moon’s surface is covered by regolith, a superficial layer of unconsolidated heterogeneous dusty aggregate that covers solid bedrock. This material needs to be agglomerated to create a cohesive composite that can be used as building blocks or bricks. In this study, the OPRH2N’s Lunar Regolith Simulant (LRS) was used and agglomerated with Potato (Solanum tuberosum) Starch (PS) polymer aerogel. Starch was chosen because of its excellent binding properties at very low concentrations. The resulting low-starch-containing LRS/PS aerogel composite bricks (2 and 4 wt%) were tested for their mechanical and thermal insulation performance to evaluate their potential application in lunar building structures. The composite resistance to intense beta-radiation and very large thermal amplitude was investigated to test the bricks’ resistance. This new lightweight and porous material shows promising mechanical and thermal performance, making it a potential candidate for the construction of larger structures, especially in low gravity. Full article
Show Figures

Figure 1

33 pages, 4464 KB  
Article
Physicochemical and Structural Characteristics of Date Seed and Starch Composite Powder as Prepared by Heating at Different Temperatures
by Muna Al-Mawali, Maha Al-Khalili, Mohammed Al-Khusaibi, Myo Tay Zar Myint, Htet Htet Kyaw, Mohammad Shafiur Rahman, Abdullahi Idris Muhammad and Nasser Al-Habsi
Polymers 2025, 17(14), 1993; https://doi.org/10.3390/polym17141993 - 21 Jul 2025
Viewed by 700
Abstract
Date seeds, a by-product of the pitted-date industry, are often discarded as waste. This study investigated the interaction between date seed powder and starch at different concentrations (0, 1, 5, 10, and 20 g/25 g composite) and temperatures (40 °C and 70 °C). [...] Read more.
Date seeds, a by-product of the pitted-date industry, are often discarded as waste. This study investigated the interaction between date seed powder and starch at different concentrations (0, 1, 5, 10, and 20 g/25 g composite) and temperatures (40 °C and 70 °C). The results revealed that the hygroscopicity of date seed powder (9.94 g/100 g) was lower than starch (13.39 g/100 g), and its water absorption (75.8%) was also lower than starch (88.3%), leading to a reduced absorbance capacity in composites. However, the solubility increased with a higher date seed content due to its greater solubility (17.8 g/L) compared to starch (1.6 g/L). A morphological analysis showed rough, agglomerated particles in date seed powder, while starch had smooth, spherical shapes. This study also found that the composites formed larger particles at 40 °C and porous structures at 70 °C. Crystallinity decreased from 41.6% to 12.8% (40 °C) and from 24.0% to 11.3% (70 °C). A thermal analysis revealed three endothermic peaks (glass transitions and solid melting), with an additional oil-melting peak in high-seed samples. FTIR spectra showed changes in peak intensities and locations upon seed incorporation. Overall, these findings revealed that, the incorporation of date seed powder–starch composites into bakery formulations offers a promising strategy for developing fiber-enriched products, positioning them as functional ingredients with added nutritional value. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

13 pages, 1222 KB  
Article
Starch Digestion Characteristics of Different Starch Sources and Their Effects on Goslings’ Apparent Nutrient Utilization
by Zhi Yang, Jun Lin, Chen Xu, Xiyuan Xing, Haiming Yang and Zhiyue Wang
Vet. Sci. 2025, 12(7), 630; https://doi.org/10.3390/vetsci12070630 - 1 Jul 2025
Viewed by 737
Abstract
This study used integrated in vitro and in vivo approaches to investigate how the starch source (glutinous rice, indica rice, maize, or high-amylose rice) influences starch digestion kinetics and, consequently, the apparent nutrient utilization and amino acid metabolism in goslings. Four diets were [...] Read more.
This study used integrated in vitro and in vivo approaches to investigate how the starch source (glutinous rice, indica rice, maize, or high-amylose rice) influences starch digestion kinetics and, consequently, the apparent nutrient utilization and amino acid metabolism in goslings. Four diets were formulated using glutinous rice, indica rice, maize, and high-amylose rice, and in vitro digestion and animal experiments were carried out. The data showed the particle sizes of the four starches: glutinous rice ≈ indica rice < corn < amylose. The glutinous rice starch grain is a porous polyhedron with an angular surface, the corn starch grain is an ellipsoid with a smooth surface, the indica rice starch grain is a polyhedron with a smooth and compact surface, and the high-amylose starch grain is an irregular polyhedron with a smooth surface. Starch digestibility was relatively stable for the indica and corn-based diets, and starch digestibility was higher for the indica rice diet compared to the corn- and high-amylose starch-based diets. The utilization of Asp, Ser, Glu, Gly, and Phe was higher for the glutinous rice diet compared to the maize and high-amylose diets. Furthermore, with this diet, the availability of Thr and Ala was observed to be higher than with the indica rice and high-amylose diets. In conclusion, the particle size and structure of starch from different sources (glutinous rice, indica rice, corn, and high-amylose rice) were different, significantly affecting the starch digestion rate. The glutinous rice diet enables a fast digestion rate for starch, which is rapidly digested in the proximal intestine. The inadequate supply of glucose in the distal intestine enhances the oxidative energy supply from dietary amino acids in that region, thereby improving the apparent digestibility of both starch and crude protein. Full article
(This article belongs to the Section Veterinary Physiology, Pharmacology, and Toxicology)
Show Figures

Figure 1

23 pages, 3984 KB  
Article
Stem Heating Enhances Growth but Reduces Earlywood Lumen Size in Two Pine Species and a Ring-Porous Oak
by J. Julio Camarero, Filipe Campelo, Jesús Revilla de Lucas, Michele Colangelo and Álvaro Rubio-Cuadrado
Forests 2025, 16(7), 1080; https://doi.org/10.3390/f16071080 - 28 Jun 2025
Viewed by 353
Abstract
Climate models forecast warmer winter conditions, which could lead to an earlier spring xylem phenology in trees. Localized stem heat experiments mimic this situation and have shown that stem warming leads to an earlier cambial resumption in evergreen conifers. However, there are still [...] Read more.
Climate models forecast warmer winter conditions, which could lead to an earlier spring xylem phenology in trees. Localized stem heat experiments mimic this situation and have shown that stem warming leads to an earlier cambial resumption in evergreen conifers. However, there are still few comprehensive studies comparing the responses to stem heating in coexisting conifers and hardwoods, particularly in drought-prone regions where temperatures are rising. We addressed this issue by comparing the responses (xylem phenology, wood anatomy, growth, and sapwood concentrations of non-structural carbohydrates—NSCs) of two pines (the Eurosiberian Pinus sylvestris L., and the Mediterranean Pinus pinaster Ait.) and a ring-porous oak (Quercus pyrenaica Willd.) to stem heating. We used the Vaganov-Shashkin growth model (VS model) to simulate growth phenology considering several emission scenarios and warming rates. Stem heating in winter advanced cambial phenology in P. pinaster and Q. pyrenaica and enhanced radial growth of the three species 1–2 years after the treatment, but reduced the transversal lumen area of earlywood conduits. P. sylvestris showed a rapid and high growth enhancement, whereas the oak responded with a 1-year delay. Heated P. pinaster and Q. pyrenaica trees showed lower sapwood starch concentrations than non-heated trees. These results partially agree with projections of the VS model, which forecasts earlier growth onset, particularly in P. pinaster, as climate warms. Climate-growth correlations show that growth may be enhanced by warm conditions in late winter but also reduced if this is followed by dry-warm growing seasons. Therefore, forecasted advancements of xylem onset in spring in response to warmer winters may not necessarily translate into enhanced growth if warming reduces the hydraulic conductivity and growing seasons become drier. Full article
(This article belongs to the Special Issue Drought Tolerance in ​Trees: Growth and Physiology)
Show Figures

Figure 1

16 pages, 1441 KB  
Article
Effects of Tricholoma Matsutake-Derived Insoluble Fiber on the Pasting Properties, Structural Characteristics, and In Vitro Digestibility of Rice Flour
by Qin Qiu, Jing Chen, Dafeng Sun, Yongshuai Ma, Yujie Zhong, Junjie Yi, Ming Du, Man Zhou and Tao Wang
Foods 2025, 14(12), 2143; https://doi.org/10.3390/foods14122143 - 19 Jun 2025
Viewed by 666
Abstract
This study explores the effects of Tricholoma matsutake-derived insoluble dietary fiber (TMIDF) on the pasting behavior, structural properties, and in vitro digestibility of rice flour. The incorporation of 5% TMIDF significantly increased the peak viscosity (from 2573.21 to 2814.52 mPa·s) by competitively [...] Read more.
This study explores the effects of Tricholoma matsutake-derived insoluble dietary fiber (TMIDF) on the pasting behavior, structural properties, and in vitro digestibility of rice flour. The incorporation of 5% TMIDF significantly increased the peak viscosity (from 2573.21 to 2814.52 mPa·s) by competitively adsorbing water and forming a dense transient network, while simultaneously reducing the final viscosity (from 1998.27 to 1886.18 mPa·s) by inhibiting amylose recrystallization. Multi-scale structural analyses revealed that TMIDF enhanced V-type crystallinity and limited enzyme access via a porous fibrous matrix. Fourier-transform infrared spectroscopy and low-field nuclear magnetic resonance analyses confirmed that hydrogen bonding and water redistribution were key interaction mechanisms. TMIDF significantly lowered in vitro starch digestibility and increased resistant starch content by 16% (from 14.36% to 30.94%) through synergistic effects, including physical encapsulation of starch granules, formation of enzyme-resistant amylose-lipid complexes, and α-amylase inhibition (31.08%). These results demonstrate that TMIDF possesses a unique multi-tiered modulation mechanism, involving structural optimization, enzyme suppression, and diffusion control, which collectively surpasses the functional performance of conventional plant-derived insoluble dietary fibers. This research establishes a theoretical basis for applying fungal insoluble dietary fibers to develop low glycemic index functional foods, highlighting their dual role in improving processing performance and nutritional quality. Full article
Show Figures

Graphical abstract

13 pages, 1748 KB  
Article
In Situ Cross-Linked Porous Starch Microencapsulation Enhances the Colonization of Lactobacillus In Vivo
by Xiaojun Zhang, Ying Liang, Hao Bai, Quanhua Huang, Dongming Liu, Guanglei Ma and Xiangrui Liu
Foods 2025, 14(12), 2031; https://doi.org/10.3390/foods14122031 - 9 Jun 2025
Cited by 1 | Viewed by 596
Abstract
In this study, we developed novel porous starch (PS)/Lactobacillus (LS) microcapsules via in situ cross-linking with sodium trimetaphosphate (STMP), using Lactobacillus johnsonii (LJ), Lactobacillus acidophilus (LA), and Lactobacillus rhamnosus GG (LGG) as representative strains. Scanning electron microscopy (SEM) revealed that the cross-linked [...] Read more.
In this study, we developed novel porous starch (PS)/Lactobacillus (LS) microcapsules via in situ cross-linking with sodium trimetaphosphate (STMP), using Lactobacillus johnsonii (LJ), Lactobacillus acidophilus (LA), and Lactobacillus rhamnosus GG (LGG) as representative strains. Scanning electron microscopy (SEM) revealed that the cross-linked microcapsules (designated as PS/LS-CL: PS/LJ-CL, PS/LA-CL, PS/LGG-CL) formed aggregated structures with denser microarchitecture compared to uncross-linked porous starch/Lactobacillus microcapsules (designated as PS/LS: PS/LJ, PS/LA, PS/LGG). The encapsulation efficiencies of PS/LJ-CL, PS/LA-CL, and PS/LGG-CL (79.56%, 78.49%, and 55.96%, respectively) significantly surpassed those of their uncross-linked counterparts (67.92%, 58.68%, and 47.71%, p < 0.05). In addition, the cross-linked porous starch microcapsules improved the survival rate of Lactobacillus during simulated gastrointestinal digestion and long-time storage. Importantly, the oral gavage of PS/LS-CL, PS/LA-CL, and PS/LGG-CL significantly increased the amount of Lactobacillus. The colonization efficiency of all the tested Lactobacillus in mice was detected by both gradient dilution plate counting and quantitative real-time PCR (qRT-PCR). These findings indicate the potential function of the in situ cross-linked porous starch microcapsules as a robust delivery system to enhance the colonization of probiotics in vivo. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

22 pages, 6198 KB  
Article
Engineering a Dual-Function Starch–Cellulose Composite for Colon-Targeted Probiotic Delivery and Synergistic Gut Microbiota Regulation in Type 2 Diabetes Therapeutics
by Ruixiang Liu, Yikang Ding, Yujing Xu, Qifeng Wu, Yanan Chen, Guiming Yan, Dengke Yin and Ye Yang
Pharmaceutics 2025, 17(5), 663; https://doi.org/10.3390/pharmaceutics17050663 - 17 May 2025
Viewed by 941
Abstract
Objectives: This study engineered a colon-targeted drug delivery system (CTDS) using the dual pharmaceutical and edible properties of Pueraria lobata to encapsulate Lactobacillus paracasei for Type 2 diabetes mellitus (T2DM) therapy. Methods: The CTDS was designed as a core–shell composite through microwave–hydrothermal engineering, [...] Read more.
Objectives: This study engineered a colon-targeted drug delivery system (CTDS) using the dual pharmaceutical and edible properties of Pueraria lobata to encapsulate Lactobacillus paracasei for Type 2 diabetes mellitus (T2DM) therapy. Methods: The CTDS was designed as a core–shell composite through microwave–hydrothermal engineering, comprising the following: (1) a retrograded starch shell with acid/enzyme-resistant crystallinity to protect probiotics from gastric degradation; (2) a porous cellulose core derived from Pueraria lobata’s natural microstructure, serving as a colonization scaffold for probiotics. Results: Structural characterization confirmed the shell’s resistance to acidic/pancreatic conditions and the core’s hierarchical porosity for bacterial encapsulation. pH/enzyme-responsive release kinetics were validated via fluorescence imaging, demonstrating targeted probiotic delivery to the colon with minimal gastric leakage. In diabetic models, the CTDS significantly reduced fasting blood glucose and improved dyslipidemia, while histopathological analysis revealed restored hepatic and pancreatic tissue architecture. Pharmacologically, the system acted as both a probiotic delivery vehicle and a microbiota modulator, selectively enriching Allobaculum and other short-chain fatty acid (SCFA)-producing bacteria to enhance SCFA biosynthesis and metabolic homeostasis. The CTDS further exhibited direct compression compatibility, enabling its translation into scalable oral dosage forms (e.g., tablets). Conclusions: By integrating natural material engineering, microbiota-targeted delivery, and tissue repair, this platform bridges the gap between pharmaceutical-grade probiotic protection and metabolic intervention in T2DM. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

27 pages, 10665 KB  
Article
Influence of Electrohydrodynamics on Drying Characteristics, Physicochemical Properties, and Texture Characteristics of Potato
by Liye Zhang, Changjiang Ding, Huina Xiong, Tian Tian, Lifeng Zhu and Yufan Dou
Foods 2025, 14(10), 1752; https://doi.org/10.3390/foods14101752 - 15 May 2025
Viewed by 538
Abstract
In order to systematically study the drying characteristics, microstructure, and mechanical properties of potato in an electrohydrodynamic (EHD) system, this paper uses different discharge voltages for drying experiments. The results show that the discharge produces reactive nitrogen–oxygen particles, the intensity of which increases [...] Read more.
In order to systematically study the drying characteristics, microstructure, and mechanical properties of potato in an electrohydrodynamic (EHD) system, this paper uses different discharge voltages for drying experiments. The results show that the discharge produces reactive nitrogen–oxygen particles, the intensity of which increases with increasing voltage. Under 0–30 kV, the higher the electric field, the faster the drying speed of the samples. The 30 kV group dried 40.5% faster than the control group. The EHD drying group had better color, shrinkage, rehydration capacity, and effective water diffusion coefficient. Rehydration capacity was positively correlated with electric field strength. EHD-treated potato flakes form a porous network structure and expose starch granules, as shown by scanning electron microscopy and infrared spectroscopy. Higher voltage results in a greater proportion of ordered protein structure. EHD drying retains more water than the control, with the best results at 30 kV, as shown by low-field nuclear magnetic resonance (NMR). Texture analysis showed that adhesion peaked in the 25 kV group, and the 15 kV group had the best Young’s modulus and the lowest fracture rate. This study provides a theoretical basis and experimental foundation for the application of EHD drying technology in potato drying and deep processing. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

29 pages, 8105 KB  
Article
UV-C and UV-C/H₂O-Induced Abiotic Degradation of Films of Commercial PBAT/TPS Blends
by K. Gutiérrez-Silva, Antonio J. Capezza, O. Gil-Castell and J. D. Badia-Valiente
Polymers 2025, 17(9), 1173; https://doi.org/10.3390/polym17091173 - 25 Apr 2025
Viewed by 646
Abstract
The environmental impact of conventional plastics has spurred interest in biopolymers as sustainable alternatives, yet their performance under abiotic degradation conditions still remain unclear. This study investigated the effects of ultraviolet C (UV-C) irradiation and its combination with water immersion (UV-C/H2O) [...] Read more.
The environmental impact of conventional plastics has spurred interest in biopolymers as sustainable alternatives, yet their performance under abiotic degradation conditions still remain unclear. This study investigated the effects of ultraviolet C (UV-C) irradiation and its combination with water immersion (UV-C/H2O) on films of commercial poly(butylene adipate-co-terephthalate)-thermoplastic starch (PBAT/TPS) blends. Changes in structural, chemical, morphological, and thermal properties, as well as molar mass, were analyzed. The results showed distinct degradation mechanisms during exposure to UV-C irradiation either in dry or during water-immersion conditions. UV-C irradiation disrupted PBAT ester linkages, inducing photodegradation and chain scission, leading to a more pronounced molar mass decrease compared to that under water immersion, where a more restrained impact on the molar mass was ascribed to diffuse attenuation coefficient of irradiation. Nevertheless, under UV-C/H2O conditions, erosion and disintegration were enhanced by dissolving and leaching of mainly the TPS fraction, creating a porous structure that facilitated the degradation of the film. Blends with higher TPS content exhibited greater susceptibility, with pronounced reductions in PBAT molar mass. In conclusion, exposure of films of PBAT/TPS blends to ultraviolet/water-assisted environments effectively initiated abiotic degradation, in which fragmentation was accentuated by the contribution of water immersion. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

14 pages, 5441 KB  
Article
Mechanical Milling and Cold Pressing for the Fabrication of Porous SiC Ceramics via Starch Consolidation
by B. F. Flores-Morales, E. Rocha-Rangel, C. A. Calles-Arriaga, W. J. Pech-Rodríguez, I. Estrada-Guel, A. Jiménez-Rosales, J. López-Hernández, J. A. Rodriguez-Garcia and J. A. Castillo-Robles
Ceramics 2025, 8(2), 43; https://doi.org/10.3390/ceramics8020043 - 24 Apr 2025
Viewed by 651
Abstract
Silicon carbide (SiC) is a highly valued material in structural ceramics due to its exceptional properties, including low thermal expansion, high mechanical strength, thermal conductivity, hardness, and corrosion resistance. These attributes make SiC suitable for a wide range of applications, from filters and [...] Read more.
Silicon carbide (SiC) is a highly valued material in structural ceramics due to its exceptional properties, including low thermal expansion, high mechanical strength, thermal conductivity, hardness, and corrosion resistance. These attributes make SiC suitable for a wide range of applications, from filters and electrodes to refractory and structural materials. In this study, SiC samples were produced under various conditions and characterized through techniques such as diffraction, SEM, TGA, and optical microscopy. The results indicated a band gap of 3.195 eV, an apparent density of 1.317 g/cm3, and Vickers hardness ranging from 1193 to 536 HV. Additionally, the Young’s modulus of the sample was found to be 0.4 GPa. These findings demonstrate the potential of starch consolidation for the cost-effective production of SiC ceramics with promising mechanical properties. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Figure 1

17 pages, 2035 KB  
Article
Physical and Functional Properties of Sweet Potato Flour: Influence of Variety and Drying Method
by Nelson Pereira, Ana Cristina Ramos, Marco Alves, Vítor D. Alves, Margarida Moldão and Marta Abreu
Molecules 2025, 30(8), 1846; https://doi.org/10.3390/molecules30081846 - 20 Apr 2025
Viewed by 1677
Abstract
Sweet potato (Ipomoea batatas (L.) Lam.; SP) flour enhances food nutrition and bioactivity while functioning as a thickening/gelling agent. This study investigated the impact of two drying methods [hot-air (75 °C/20 h) and freeze-drying (−41–30 °C/70 h)] on the physical–functional properties of [...] Read more.
Sweet potato (Ipomoea batatas (L.) Lam.; SP) flour enhances food nutrition and bioactivity while functioning as a thickening/gelling agent. This study investigated the impact of two drying methods [hot-air (75 °C/20 h) and freeze-drying (−41–30 °C/70 h)] on the physical–functional properties of flours from three SP varieties: Bonita (white-fleshed), Bellevue (orange-fleshed), and NP1648 (purple-fleshed). Particle size, morphology, water/oil absorption capacities (WAC/OAC), bulk density, swelling power (SwP), water solubility (WS), foaming/emulsifying properties, least gelation concentration (LGC), and gelatinisation temperature (GT) were analysed. Both the drying method and variety significantly influenced these properties. Hot-air-dried flours exhibited bimodal particle distribution, compact microstructure, and aggregated starch granules, yielding higher WAC (≈3.2 g/g) and SwP (≈3.6 g/g). Freeze-dried flours displayed smaller particles, porous microstructure, and fragmented granules, enhancing OAC (≈3.0 g/g) and foaming capacity (≈17.6%). GT was mainly variety-dependent, increasing as Bellevue (74.3 °C) < NP1648 (78.5 °C) < Bonita (82.8 °C), all exceeding commercial potato starch (68.7 °C). NP1648 required lower LGC (10% vs. 16% for others). All flours exhibited high WS (24–39.5%) and emulsifying capacity (≈44%). These results underscore the importance of selecting the appropriate drying method and variety to optimise SP flour functionality for targeted food applications. Freeze-dried flours might suit aerated/oil-retentive products, while hot-air-dried flours could be ideal for moisture-sensitive formulations. Full article
Show Figures

Figure 1

Back to TopTop