Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (122)

Search Parameters:
Keywords = predatory responses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2637 KB  
Article
Identification of a Chitin Synthase Gene from Arma chinensis (Hemiptera: Pentatomidae) Under Temperature Stress
by Dianyu Liu, Zhihan Su, Changjin Lin, Wenyan Xu, Xiaoyu Yan, Yu Chen, Yichen Wang, Xiaolin Dong and Chenxi Liu
Agronomy 2025, 15(9), 2157; https://doi.org/10.3390/agronomy15092157 - 9 Sep 2025
Viewed by 248
Abstract
Chitin synthase (CHS) is essential for maintaining exoskeletal integrity and environmental adaptability in insects. CHS genes are categorized into two types, CHS1 and CHS2. Hemipteran insects possess only the CHS1 gene due to the absence of a peritrophic matrix (PM) [...] Read more.
Chitin synthase (CHS) is essential for maintaining exoskeletal integrity and environmental adaptability in insects. CHS genes are categorized into two types, CHS1 and CHS2. Hemipteran insects possess only the CHS1 gene due to the absence of a peritrophic matrix (PM) in their midgut. However, the identification and functional characterization of the CHS1 gene in Pentatomidae species have not been reported. This study reports the first identification of a CHS gene, ArmaCHS1, from the predatory stink bug, Arma chinensis, and investigates its role in response to temperature stress. The ArmaCHS1 open reading frame spans 4407 bp, encoding a protein of 1468 amino acids, with 14 transmembrane helices and seven N-glycosylation sites. Phylogenetic analysis confirmed its classification within the CHS1 clade, closely related to CHS1 from Halyomorpha halys. qRT-PCR analysis revealed that ArmaCHS1 is predominantly expressed in the exoskeleton and displays developmentally regulated expression (lowest in eggs, highest in adults). Temperature stress experiments demonstrated that ArmaCHS1 expression was significantly upregulated at low temperatures (12 °C, 19 °C) and markedly downregulated at high temperatures (33 °C, 40 °C). These findings indicate that ArmaCHS1 likely contributes to thermal adaptation in A. chinensis by modulating chitin biosynthesis, providing new insights into the environmental stress responses of beneficial predatory insects. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

19 pages, 1137 KB  
Article
Biomarker-Based Assessment of Four Native Fish Species in the Danube River Under Untreated Wastewater Exposure
by Karolina Sunjog, Srđan Subotić, Jovana Kostić, Nebojša Jasnić, Branka Vuković-Gačić, Mirjana Lenhardt and Željka Višnjić-Jeftić
Fishes 2025, 10(9), 445; https://doi.org/10.3390/fishes10090445 - 3 Sep 2025
Viewed by 529
Abstract
This study assessed the impact of untreated wastewater discharge in the Danube River on four native fish species: barbel (Barbus barbus), vimba bream (Vimba vimba), perch (Perca fluviatilis), and white bream (Blicca bjoerkna). Biomarkers of [...] Read more.
This study assessed the impact of untreated wastewater discharge in the Danube River on four native fish species: barbel (Barbus barbus), vimba bream (Vimba vimba), perch (Perca fluviatilis), and white bream (Blicca bjoerkna). Biomarkers of exposure and effect were evaluated, including metal and metalloid bioaccumulation in gills, liver, and gonads, DNA damage (comet assay), chromosomal abnormalities (micronucleus assay), liver enzyme activities (ALT, AST), and erythrocyte maturation. White bream showed the highest genotoxic damage (TI% = 22.57), particularly in liver tissue, indicating high sensitivity to pollution. Perch had elevated DNA damage in blood (TI% = 22.69) and strong biomarker responses, likely due to its predatory behavior. Barbel displayed notable DNA damage in gills (TI% = 30.67) and liver (TI% = 20.35), aligning with sediment exposure due to its benthic habits. Vimba bream had the lowest responses, possibly reflecting reduced exposure or resilience. Element accumulation varied across tissues and species, with perch showing the highest overall levels. Hepatic enzyme activities (highest values: ALT = 105.69 in barbel; AST = 91.25 in white bream) and changes in erythrocyte profiles supported evidence of physiological stress. Integrated Biomarker Response (IBR) analysis identified white bream as the most sensitive species, followed by perch and barbel. These results emphasize the value of multi-species biomonitoring and the importance of species-specific traits in freshwater ecotoxicology. Full article
(This article belongs to the Special Issue Toxicology of Anthropogenic Pollutants on Fish)
Show Figures

Figure 1

21 pages, 4382 KB  
Article
Screening of Predatory Natural Enemies of Lygus pratensis in Cotton Fields and Evaluation of Their Predatory Effects
by Pengfei Li, Kunyan Wang, Tailong Li, Liqiang Ma, Changqing Gou and Hongzu Feng
Insects 2025, 16(9), 903; https://doi.org/10.3390/insects16090903 - 28 Aug 2025
Viewed by 722
Abstract
Lygus pratensis is a major pest of cotton, causing serious damage to cotton production. This study designed species-specific PCR detection primers for L. pratensis, established a detection system to identify L. pratensis DNA in the intestinal contents of predatory natural enemies, and [...] Read more.
Lygus pratensis is a major pest of cotton, causing serious damage to cotton production. This study designed species-specific PCR detection primers for L. pratensis, established a detection system to identify L. pratensis DNA in the intestinal contents of predatory natural enemies, and investigated the control potential of four species’ predatory natural enemies against L. pratensis. The results indicated that 826 predatory natural enemies were collected from cotton fields belonging to two classes, five orders, and twelve families. Among these, 9 species of insecta natural enemies accounted for 54.12% of the total number of predatory natural enemies collected, while 14 species of arachnida predatory natural enemies comprised 45.88%. Of the 806 natural enemies tested, 5.58% were found to be positive for L. pratensis, all of which were arachnid predators, specifically Ebrechtella tricuspidata, Xysticus ephippiatus, Hylyphantes graminicola, and Oxyopes sertatus. The predation response of these four spider species to the fourth to fifth instar nymphs and adults of L. pratensis adhered to the Holling II model. The theoretical predation (a′/Th), daily maximum predation rate (T/Th), and searching effect for the fourth to fifth instar nymphs and adults of L. pratensis of the four spider species were assessed. According to the results, the species can be ranked in terms of their predatory and searching efficiency as follows: O. sertatus > E. tricuspidata > X. ephippiatus > H. graminicola. Four species of spiders had the highest theoretical predation against L. pratensis nymphs, ranging from 23.71 to 60.86, and adults, ranging from 22.14 to 50.25. Therefore, these four spider species could be utilized for L. pratensis management. This study identified the main predatory natural enemies of L. pratensis and their pest control capabilities, providing a scientific basis for selecting and utilizing natural enemies in integrated pest management (IPM) strategies. This will help promote ecological and green pest control of L. pratensis in cotton-growing areas. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Graphical abstract

14 pages, 2165 KB  
Article
Evaluation on Biocontrol Efficacy of Episyrphus balteatus De Geer (Diptera: Syrphidae) Against Aphis craccivora, Myzus persicae, and Megoura crassicauda
by Shanshan Jiang, Hui Li and Kongming Wu
Insects 2025, 16(8), 774; https://doi.org/10.3390/insects16080774 - 28 Jul 2025
Viewed by 514
Abstract
Larvae of Episyrphus balteatus De Geer (Diptera: Syrphidae) are important natural enemies of common agricultural pests such as aphids (Hemiptera: Aphididae). This well-known aphidophagous flower fly is used as a biological control agent. The predatory functional responses, control efficacy, and oviposition and predatory [...] Read more.
Larvae of Episyrphus balteatus De Geer (Diptera: Syrphidae) are important natural enemies of common agricultural pests such as aphids (Hemiptera: Aphididae). This well-known aphidophagous flower fly is used as a biological control agent. The predatory functional responses, control efficacy, and oviposition and predatory preferences of E. balteatus against Aphis craccivora Koch, Myzus persicae Sulzer, and Megoura crassicauda Mordvilko were systematically determined through controlled laboratory experiments. The best functional response model of both second- and third-instar E. balteatus larvae to these three aphid species was the Holling type III model, except for the third-instar larvae to A. craccivora, for which the Holling type II model was superior. The A. craccivora population decline rates for ratios of 1:500 and 1:1000 were 94.67% and 100.00% on day 12 after inoculation; the M. persicae population decline rates for ratios of 1:2000 and 1:4000 reached 96.67% and 95.42% by day 12, and the M. crassicauda population at a ratio of 1:250 was completely eliminated by day 9, achieving a 100.00% population decline rate. The oviposition and predatory preferences of E. balteatus were consistent, in that it preferred M. crassicauda for oviposition and had a positive predatory preference for this aphid species. These results provide scientific evidence for the biological control strategy of E. balteatus against these aphids. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

16 pages, 1276 KB  
Article
Behavioral Responses of Galaxias platei to Salmo trutta: Experimental Evidence of Competition and Predation Risk
by Catterina Sobenes, Evelyn Habit, Konrad Górski and Oscar Link
Water 2025, 17(12), 1774; https://doi.org/10.3390/w17121774 - 13 Jun 2025
Viewed by 755
Abstract
The adverse impacts of invasive salmonids on native galaxiids are well documented at the population level in the freshwater ecosystems of the Southern Hemisphere. However, the mechanism underlying these interactions and sub-lethal effects of salmonids on native galaxiids at the individual level remain [...] Read more.
The adverse impacts of invasive salmonids on native galaxiids are well documented at the population level in the freshwater ecosystems of the Southern Hemisphere. However, the mechanism underlying these interactions and sub-lethal effects of salmonids on native galaxiids at the individual level remain poorly understood. In this study, a series of controlled experiments was conducted to assess sub-lethal interactions between invasive brown trout (Salmo trutta) and the native Galaxias platei at an individual level. The microhabitat preferences of G. platei were evaluated in response to potential competition with juvenile brown trout and predation risk from piscivorous adults. In addition, the swimming capacity of G. platei was assessed to determine their ability to escape predation. The results show that at increasing densities of juvenile brown trout, G. platei fails to increase refuge use and are more frequently observed in open habitats. Furthermore, G. platei juveniles exhibit significantly lower swimming capacity compared to brown trout. In the presence of predatory trout, G. platei does not display a heightened preference for refuge habitats. These findings suggest that the behavioral response of G. platei could be insufficient to reduce competition and predation risks posed by brown trout and potentially other salmonids. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

15 pages, 1996 KB  
Article
Characteristics of Soil Nematode Communities in Pure Populus hopeiensis Forests in the Loess Hilly Region and Their Responses to Precipitation
by Yani Hu, Jiahao Shi, Fangfang Qiang, Changhai Liu and Ning Ai
Agronomy 2025, 15(6), 1341; https://doi.org/10.3390/agronomy15061341 - 30 May 2025
Viewed by 593
Abstract
To clarify the response mechanisms of soil nematodes as bioindicators of ecosystem health to precipitation variations in loess hilly forests, this study investigated soil nematodes in pure Populus hopeiensis forests across different precipitation gradients in Wuqi County. Through soil physicochemical analysis and high-throughput [...] Read more.
To clarify the response mechanisms of soil nematodes as bioindicators of ecosystem health to precipitation variations in loess hilly forests, this study investigated soil nematodes in pure Populus hopeiensis forests across different precipitation gradients in Wuqi County. Through soil physicochemical analysis and high-throughput sequencing of soil nematodes, we analyzed the characteristics of soil nematode communities and their responses to precipitation variation. The results demonstrated the following: (1) Dominant genera and trophic groups of soil nematodes were significantly influenced by precipitation, with Acrobeloides prevailing across all gradients while Paratylenchus reached maximum abundance (26.8%) in moderate precipitation zones. (2) Bacterivorous nematodes prevailed in both low- and high-precipitation zones, while herbivorous nematodes constituted the highest proportion in moderate precipitation zones. The abundances of herbivorous and fungivorous nematodes exhibited an initial increase followed by a decrease with rising precipitation, whereas predatory–omnivorous nematodes displayed the opposite trend. (3) The Chao1 and Shannon indices of soil nematodes initially increased and then decreased with increasing precipitation, reaching a peak in the Jinfoping site. Moreover, there were significant differences in nematode community structure among different precipitation gradients. (4) Redundancy analysis and PLS-PM modeling identified soil water content (SWC), total nitrogen (TN), and capillary water holding capacity (CWHC) as key drivers of nematode communities. Precipitation indirectly regulated nematode functionality by modifying soil physicochemical properties and microbial activity. (5) Ecological function analysis revealed bacterial-dominated organic matter decomposition (Nematode Channel Ratio, NCR > 0.75) in the Changcheng and Baibao sites, contrasting with fungal channel predominance (NCR < 0.75) in Jinfoping. This research elucidates the mechanism whereby precipitation drives nematode community divergence through regulating soil physicochemical properties and microbial activity. The findings provide scientific basis for soil biodiversity conservation and ecological restoration benefit assessment in regional ecological restoration projects, and soil health management and sustainable land use in agricultural ecosystems. Full article
(This article belongs to the Special Issue Soil Health and Properties in a Changing Environment)
Show Figures

Figure 1

28 pages, 4208 KB  
Article
Key Habitat and Predatory Influences on the Community- and Species-Level Population Dynamics of Spring-Breeding Amphibian Larvae Within a Remnant Tupelo-Cypress Wetland
by Jacob M. Hutton and Robin W. Warne
Hydrobiology 2025, 4(2), 15; https://doi.org/10.3390/hydrobiology4020015 - 30 May 2025
Cited by 1 | Viewed by 1407
Abstract
Understanding the factors influencing amphibian populations is essential for effective freshwater conservation, particularly for species with biphasic life histories. This study examined how pond- and landscape-level characteristics shape larval amphibian occupancy, abundance, and detection in a remnant Tupelo-Cypress wetland in southeastern Illinois. Given [...] Read more.
Understanding the factors influencing amphibian populations is essential for effective freshwater conservation, particularly for species with biphasic life histories. This study examined how pond- and landscape-level characteristics shape larval amphibian occupancy, abundance, and detection in a remnant Tupelo-Cypress wetland in southeastern Illinois. Given the small number of available ponds (n = 4), we standardized survey effort across sites and incorporated robust hierarchical Bayesian models to evaluate environmental effects at both community and species levels. Occupancy probabilities were generally high across species, with canopy cover significantly increasing both community and species occupancy, particularly for salamanders (up to 6.4-fold). Predatory backswimmers and fish substantially reduced occupancy (by 21.7-fold and 6.0-fold, respectively). Anurans, especially Pseudacris spp., were more abundant than salamanders, with abundance positively associated with canopy cover, leaf litter, and pond perimeter. Detection probabilities were generally low and varied by species, with predatory invertebrates reducing detection up to 83.3-fold. These findings underscore the importance of maintaining canopy cover while mitigating predation risks to support amphibian populations. The application of multi-species hierarchical models provides a nuanced understanding of species-specific responses, offering valuable insights for conservation strategies in regions affected by habitat loss and climate change. However, given the limited spatial replication, these findings should be interpreted cautiously and validated through additional studies across broader temporal and spatial scales. Full article
Show Figures

Figure 1

15 pages, 1915 KB  
Article
Preliminary Evaluation of the Biocontrol Potential of Stethorus punctillum, a Key Natural Enemy of Spider Mites in Northwest China
by Haoyu Wang, Dawei Zhang, Huan Guo, Xiaoling He, Bing Liu, Senshan Wang and Yanhui Lu
Agronomy 2025, 15(5), 1092; https://doi.org/10.3390/agronomy15051092 - 29 Apr 2025
Viewed by 632
Abstract
Spider mites are globally distributed pests that cause significant damage to a wide range of crops. The use of predators for the control of pest mites is an effective and environmentally sustainable strategy. Stethorus punctillum Weise (Coleoptera: Coccinellidae), a well-known predator of spider [...] Read more.
Spider mites are globally distributed pests that cause significant damage to a wide range of crops. The use of predators for the control of pest mites is an effective and environmentally sustainable strategy. Stethorus punctillum Weise (Coleoptera: Coccinellidae), a well-known predator of spider mites, has been widely recognized as the primary natural enemy of pest mites in China. However, its pest control efficacy, particularly under field conditions, is not well known. In this study, we evaluated the biocontrol impact of S. punctillum on a key spider mite pest, Tetranychus urticae Koch (Acarina: Tetranychidae), through a combination of laboratory and field experiments. Laboratory assays showed that the predation rates in relation to the prey numbers were consistent with the Holling-II functional response model. The actually maximum predatory numbers of third-instars of S. punctillum, 3-day-old female adults, and male adults on the pest were 116.67, 181.67, and 166.67 mites per day, respectively, corresponding to the theoretically maximum values of 391.26, 498.07, and 413.95 mites per day individually. Field exclusion experiments demonstrated that both larval and adult stages of S. punctillum significantly suppressed spider mite populations’ growth across three different initial prey densities (80, 110, and 140 individuals for larvae; 100, 150, and 200 individuals for adults) on three economically important crops: maize, cotton, and apples. Within 96 h of their introduction, the pest population growth rate was reduced by 13.2–43.2% by larvae and 25.3–51.5% by adults of S. punctillum compared to predator-free control groups. These findings demonstrate that S. punctillum has a significant control efficacy on spider mite populations under both laboratory and field conditions, highlighting its potential as a promising biocontrol agent for integrated spider mite management in Northwest China. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

38 pages, 1247 KB  
Article
AI Moderation and Legal Frameworks in Child-Centric Social Media: A Case Study of Roblox
by Mohamed Chawki
Laws 2025, 14(3), 29; https://doi.org/10.3390/laws14030029 - 25 Apr 2025
Cited by 3 | Viewed by 11105
Abstract
This study focuses on Roblox as a case study to explore the legal and technical challenges of content moderation on child-focused social media platforms. As a leading Metaverse platform with millions of young users, Roblox provides immersive and interactive virtual experiences but also [...] Read more.
This study focuses on Roblox as a case study to explore the legal and technical challenges of content moderation on child-focused social media platforms. As a leading Metaverse platform with millions of young users, Roblox provides immersive and interactive virtual experiences but also introduces significant risks, including exposure to inappropriate content, cyberbullying, and predatory behavior. The research examines the shortcomings of current automated and human moderation systems, highlighting the difficulties of managing real-time user interactions and the sheer volume of user-generated content. It investigates cases of moderation failures on Roblox, exposing gaps in existing safeguards and raising concerns about user safety. The study also explores the balance between leveraging artificial intelligence (AI) for efficient content moderation and incorporating human oversight to ensure nuanced decision-making. Comparative analysis of moderation practices on platforms like TikTok and YouTube provides additional insights to inform improvements in Roblox’s approach. From a legal standpoint, the study critically assesses regulatory frameworks such as the GDPR, the EU Digital Services Act, and the UK’s Online Safety Act, analyzing their relevance to virtual platforms like Roblox. It emphasizes the pressing need for comprehensive international cooperation to address jurisdictional challenges and establish robust legal standards for the Metaverse. The study concludes with recommendations for improved moderation strategies, including hybrid AI-human models, stricter content verification processes, and tools to empower users. It also calls for legal reforms to redefine virtual harm and enhance regulatory mechanisms. This research aims to advance safe and respectful interactions in digital environments, stressing the shared responsibility of platforms, policymakers, and users in tackling these emerging challenges. Full article
Show Figures

Figure 1

13 pages, 982 KB  
Article
Cathemerality and Insensitivity to Predatory Fish Cues in Pond Isopods (Caecidotea communis)
by Elizabeth C. Long and Erika V. Iyengar
Hydrobiology 2025, 4(2), 11; https://doi.org/10.3390/hydrobiology4020011 - 16 Apr 2025
Viewed by 552
Abstract
Because animals threatened by visually oriented predators may respond in sun-lit daytime but not at night, invertebrate responses to predatory challenges may yield varying results based on the time period within the 24 h daily cycle. We predicted that in laboratory experiments aquatic [...] Read more.
Because animals threatened by visually oriented predators may respond in sun-lit daytime but not at night, invertebrate responses to predatory challenges may yield varying results based on the time period within the 24 h daily cycle. We predicted that in laboratory experiments aquatic isopods exposed to kairomones from predatory fish would spend more time immobilized in daylight to avoid detection than those not exposed to kairomones but that this difference would disappear under the cover of nighttime darkness. We further predicted that isopods in the absence of kairomones would move at elevated rates in the daytime compared with night, seeking a precautionary proximity to shelters. However, contrary to our predictions, Caecidotea communis isopods exhibited consistent activity (movement rate and proportion of time spent moving) when exposed to kairomones or in the absence of such cues, at all of the three diurnal cycle periods examined. Thus, Caecidotea communis displayed cathemerality (sometimes called metaturnality), the first documented case of this behavior in crustaceans. Full article
Show Figures

Figure 1

16 pages, 1963 KB  
Article
Functional and Numerical Responses of Tytthus chinensis (Hemiptera: Miridae) to Sogatella furcifera (Hemiptera: Delphacidae)
by Qian Huang, Liping Long, Suosheng Huang, Biqiu Wu, Cheng Li and Yan Ling
Insects 2025, 16(4), 339; https://doi.org/10.3390/insects16040339 - 24 Mar 2025
Viewed by 604
Abstract
The predatory function and numerical responses of natural enemy insects are critical for evaluating their biological control potential, particularly in understanding pest suppression mechanisms and ecological adaptability. Here, we examined the predation capacity of Tytthus chinensis Stål (Hemiptera: Miridae) on Sogatella furcifera eggs [...] Read more.
The predatory function and numerical responses of natural enemy insects are critical for evaluating their biological control potential, particularly in understanding pest suppression mechanisms and ecological adaptability. Here, we examined the predation capacity of Tytthus chinensis Stål (Hemiptera: Miridae) on Sogatella furcifera eggs under laboratory conditions (24 ± 1 °C, 12:12 h light:dark photoperiod, 75% humidity). Functional response experiments were conducted at different prey densities (3, 4, 10, 20, and 30 eggs/day), and life table parameters were established to evaluate the effects of prey density on the development, reproduction, and population dynamics of T. chinensis. The daily average predation of nymphs significantly increased with age, and their functional responses fitted the Holling Type II response. In the adult stage, the daily average predation of females was significantly higher than that of males, and males had a higher a/Th ratio, which reflected sex-specific predation strategies. Prey density significantly influenced survival, reproduction, and population dynamics. The minimum prey density required for population stability was 4 eggs/day, and survival and reproduction rates markedly increased at 10 eggs/day. At 30 eggs/day, females reproduced earlier, and the lifespan of males was shortened. These findings confirm the strong pest control ability of T. chinensis and highlight the critical role of S. furcifera egg density in regulating the population dynamics of T. chinensis. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

14 pages, 1919 KB  
Article
Temperature Effects on the Survival and Oviposition of an Invasive Blow Fly Chrysomya rufifacies Macquart (Diptera: Calliphoridae)
by Travis W. Rusch, Samantha J. Sawyer, Abigail E. Orr, Nicholas Richter, David Sohn, Lauren Gagner, Alexandria Smith, Jeffery K. Tomberlin and Aaron M. Tarone
Insects 2025, 16(3), 310; https://doi.org/10.3390/insects16030310 - 17 Mar 2025
Viewed by 963
Abstract
The globally increased severity and frequency of elevated temperatures are altering native species’ geographic distributions and local abundances while also increasing the invasion of new areas by exotic species. These distributional shifts have affected native species. Through two experiments, we investigated the effects [...] Read more.
The globally increased severity and frequency of elevated temperatures are altering native species’ geographic distributions and local abundances while also increasing the invasion of new areas by exotic species. These distributional shifts have affected native species. Through two experiments, we investigated the effects of temperature on the survival and oviposition of the hairy maggot blow fly Chrysomya rufifacies (Macquart), a highly competitive and predatory invasive blow fly of ecological, economic, and forensic importance. In our first experiment, we exposed mixed-sex colonies of C. rufifacies to a given temperature (10–45.0 °C) for 24 h. High survival (≥90%) was observed from 10 to 40 °C, with moderate mortality at 42.5 °C (29.2%) and high mortality at 43.5 °C (75.4%). All flies died when exposed to 44.5 or 45.0 °C for 24 h. Oviposition occurred from 22.5 to 42.5 °C, with the greatest occurrences (100%) at 30 and 35 °C and the greatest number of eggs (2035) occurring at 30 °C. Although oviposition occurred from 22.5 to 42.5 °C, egg viability was only observed from 22.5 to 37.5 °C. Thus, C. rufifacies has distinct thermal limits for survival, and oviposition may exhibit a bet-hedging strategy in response to temperature exposure. In our second experiment, we assessed the effects of an acute heat shock on C. rufifacies oviposition performance. Adult virgins (males and females) were exposed to 25.0 °C, 42.0 °C, or 44.0 °C for 1 h, and then maintained at ~25 °C in mixed-sex colonies for 14 d. Pre-breeding heat exposure had no effect on male or female reproductive success, except for females exposed to 44.0 °C. Females exposed to this temperature before breeding oviposited sooner (2.5 ± 0.0 d, 37.5% decrease), more frequently (0.5 ± 0.4, 33.3% increase), and produced more eggs (10,772.9 ± 2258.6 eggs, 73.3% increase) than female flies exposed to 25 °C. The combined results show that C. rufifacies survives exposures up to 43.5 °C, successfully oviposits up to 37.5 °C, and accelerates both oviposition timing and intensity following brief exposure to near upper lethal temperatures (44.0 °C), potentially provides C. rufifacies a competitive advantage over native calliphorids in warming environments. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

15 pages, 1408 KB  
Article
Predatory Behavior of Coccinella septempunctata on Two Different Aphid Species via Functional Response at Two Different Temperatures
by Muhammad Usama Altaf, Adeel Mukhtar, Muazzama Batool, Syed Muhammad Zaka, Rashid Azad, Yasir Hameed, Alia Tajdar, Asad Ali and Waqar Jaleel
Biology 2025, 14(3), 245; https://doi.org/10.3390/biology14030245 - 28 Feb 2025
Cited by 1 | Viewed by 1487
Abstract
Coccinella septempunctata (Linnaeus, 1758) is a voracious predator all over the world where aphids have found a niche. Behavioral studies of C. septempunctata are very important to make them effective bio-controllers. Therefore, this study explains the functional response of C. septempunctata praying on [...] Read more.
Coccinella septempunctata (Linnaeus, 1758) is a voracious predator all over the world where aphids have found a niche. Behavioral studies of C. septempunctata are very important to make them effective bio-controllers. Therefore, this study explains the functional response of C. septempunctata praying on two distinct aphid species, examined in this work at two different temperatures. Six different prey densities (4, 8, 16, 32, 64, and 128 aphids) and two different temperatures (15 and 25 °C) were used in the experiment. All of the development stages of the predator were used to perform the experiment. Every experiment was replicated five times. The type and parameters of functional response were ascertained by the application of Roger’s random predator models and logistic regression. Results showed that C. septempunctata adults and larvae both had a type II functional reaction against the tested aphids in both temperatures. When comparing the fourth instar to other predatory stages, the attack rate against both aphids was shown to be greater. As the temperature rose, so did the attack rate. Fourth instar larvae exhibited attack rates of 1.314 h−1 on Aphis nerii Fonscolombe, 1758 (Hemiptera: Aphididae) and 1.959 h−1 on Lipaphis erysimi Kaltenbach, 1843 (Hemiptera: Aphididae) at 15 °C, while at 25 °C, the rates were 1.747 h−1 and 1.321 h−1, respectively. Handling time was influenced by both temperature and predator stage. As the temperature increased, the handling time of the later predatory stages decreased. This study suggests that later predatory stages of C. septempunctatas actively hunt aphids at higher temperatures. Full article
(This article belongs to the Topic Environmental Bioengineering and Geomicrobiology)
Show Figures

Graphical abstract

19 pages, 2451 KB  
Article
Zebrafish (Danio rerio) Prefer Undisturbed Shoals over Shoals Exposed to the Synthetic Alarm Substance Hypoxanthine-3N-oxide (C5H4N4O2)
by Andrew Velkey, Kaitlyn Kinslow, Megan Bowers, Ethan Hoffman, Jamie Martin and Bandhavi Surisetty
Biology 2025, 14(3), 233; https://doi.org/10.3390/biology14030233 - 25 Feb 2025
Viewed by 1472
Abstract
As an anti-predation behavior, shoaling enhances survival among prey species by reducing individual predation risk through mechanisms like the dilution effect and collective vigilance. Zebrafish—a highly social and genetically tractable species—are valuable for studying these behaviors. The present study examined zebrafish’s social preferences [...] Read more.
As an anti-predation behavior, shoaling enhances survival among prey species by reducing individual predation risk through mechanisms like the dilution effect and collective vigilance. Zebrafish—a highly social and genetically tractable species—are valuable for studying these behaviors. The present study examined zebrafish’s social preferences in a 3-chamber open-tank free-swim task, assessing whether visual cues alone could distinguish between an intact and an alarmed shoal exposed to the synthetic alarm substance H3NO. Subjects were allowed to freely associate with either shoal while their behaviors were recorded and analyzed. The results reveal a significant preference for proximity to the intact shoal, indicating zebrafish’s ability to visually discern threat levels. Subjects spent nearly twice as much time in the zone near the intact shoal, with reduced freezing and faster movement velocities compared to the alarmed shoal zone. Males exhibited more freezing behavior than females, consistent with sex-specific strategies in threat response. These findings underscore zebrafish’s reliance on visual cues for social responding under predatory threat and highlight sex-based differences in threat perception. This research expands the understanding of zebrafish’s social dynamics and provides a robust framework for future exploration of the neural mechanisms underlying social behavior and threat assessment in zebrafish. Full article
(This article belongs to the Special Issue Social Behavior in Zebrafish)
Show Figures

Graphical abstract

16 pages, 2260 KB  
Article
An Extensive Gap Junction Neural Network Modulates Caenorhabditis elegans Aversive Behavior
by Savannah E. Sojka, Meredith J. Ezak, Emily A. Polk, Andrew P. Bischer, Katherine E. Neyland, Andrew P. Wojtovich and Denise M. Ferkey
Genes 2025, 16(3), 260; https://doi.org/10.3390/genes16030260 - 23 Feb 2025
Viewed by 1810
Abstract
Background/Objectives: Caenorhabditis elegans rely on sensory perception of environmental cues for survival in their native soil and compost habitats. These cues provide information about nutrient availability, mating partners, or predatory and hazardous beacons. In C. elegans, the two bilaterally-symmetric head sensory neurons [...] Read more.
Background/Objectives: Caenorhabditis elegans rely on sensory perception of environmental cues for survival in their native soil and compost habitats. These cues provide information about nutrient availability, mating partners, or predatory and hazardous beacons. In C. elegans, the two bilaterally-symmetric head sensory neurons termed ASH are the main detectors of aversive nociceptive signals. Through their downstream connections in the nervous system, ASH activation causes the animal to initiate backward locomotion to escape and avoid the harmful stimulus. Modulation of avoidance behavior allows for situation-appropriate sensitivity and response to stimuli. We previously reported a role for gap junctions in the transport of regulatory cGMP to the ASHs where it functions to dampen avoidance responses. Methods: Here, we used genetic mutants and a combination of cell-selective rescue and knockdown experiments to identify gap junction proteins (innexins) involved in modulating ASH-mediated nociceptive behavioral responses. Results: We have characterized six additional C. elegans innexins that have overlapping and distinct roles within this regulatory network: INX-7, INX-15, INX-16, INX-17, UNC-7, and UNC-9. Conclusions: This work expands our understanding of the extent to which ASH sensitivity can be tuned in a non-cell-autonomous manner. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop