Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,212)

Search Parameters:
Keywords = quantum photonics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2147 KB  
Article
Use of Factorial Design for Calculation of Second Hyperpolarizabilities
by Igors Mihailovs, Ekaterina Belobrovko, Arturs Bundulis, Dmitry V. Bocharov, Eugene A. Kotomin and Martins Rutkis
Nanomaterials 2025, 15(17), 1302; https://doi.org/10.3390/nano15171302 - 23 Aug 2025
Viewed by 188
Abstract
There has been considerable scientific interest in third-order nonlinear optical materials for photonic applications. In particular, materials exhibiting a strong electronic optical Kerr effect serve as essential components in the ultrafast nonlinear photonic devices and are instrumental in the development of all-optical signal [...] Read more.
There has been considerable scientific interest in third-order nonlinear optical materials for photonic applications. In particular, materials exhibiting a strong electronic optical Kerr effect serve as essential components in the ultrafast nonlinear photonic devices and are instrumental in the development of all-optical signal processing technologies. Therefore, the accurate prediction of material-relevant properties, such as second hyperpolarizabilities, remains a key topic in the search for efficient photonic materials. However, the field standards in quantum chemical computation are still inconsistent, as studies often lack a firm statistical foundation. This work presents a comprehensive in silico investigation based on multiple full-factorial experiments, aiming to clarify the strengths and limitations of various computational approaches. Our results indicate that the coupled-cluster approach at the CCSD level in its current response-equation implementations is not yet able to outperform the range-separated hybrid density functionals, such as LC-BLYP(0.33). The exceptional performance of the specifically tailored basis set Sadlej-pVTZ is also described. Not only was the presence of diffuse functions found to be mandatory, but also adding ample polarization functions is shown to be inefficient resource-wise. HF/Sadlej-pVTZ is proven to be reliable enough to use in molecular screening. Meta functionals are confirmed to produce poorly consistent results, and specific guidelines for constructing range-separated functionals for polarizability calculations are drawn out. Additionally, it was shown that many of the contemporary solvation models exhibit significant limitations in accurately capturing nonlinear optical properties. Therefore, further refinement in the current methods is pending. This extends to the statistical description as well: the mean absolute deviation descriptor is found to be deficient in rating various computational methods and should rather be replaced with the parameters of the linear correlation (the slope, the intercept, and the R2). Full article
Show Figures

Figure 1

12 pages, 1108 KB  
Article
Aqueous Singlet Oxygen Sensitization of Porphyrin-Embedded Silica Particles with Long-Term Stability
by Pengcheng Zhu, Zilong Guo, Yulin Sha, Yonghang Li, Xiaoyu Zhang, Yandong Han, Wensheng Yang and Xiaonan Ma
Inorganics 2025, 13(9), 279; https://doi.org/10.3390/inorganics13090279 - 22 Aug 2025
Viewed by 89
Abstract
Aqueous singlet oxygen (1O2) sensitization is of high interest due to its wide application in bio-imaging and photodynamic therapy. For organic photosensitizers like porphyrin derivatives, surfactant-assisted micelles have been intensively explored for dispersing hydrophobic sensitizers in aqueous phase; however, [...] Read more.
Aqueous singlet oxygen (1O2) sensitization is of high interest due to its wide application in bio-imaging and photodynamic therapy. For organic photosensitizers like porphyrin derivatives, surfactant-assisted micelles have been intensively explored for dispersing hydrophobic sensitizers in aqueous phase; however, they can suffer from poor long-term stability. In this work, palladium octaethylporphyrin (PdOEP)-embedded silica particles were prepared with assistance from Tween micelles, and their corresponding application in aqueous 1O2 sensitization was explored. With assistance from Tween 80 at a >3 mg/mL concentration, superior (>95%) solubilization of PdOEP was observed in aqueous solution, leading to a high 1O2 quantum yield (ΦΔ ≈ 93%). By optimizing the synthesis conditions, >95% of micellar PdOEP was embedded into silica particles, exhibiting comparable ΦΔ (up to 70%) to micellar systems by effectively suppressing PdOEP aggregation in particles. The PdOEP-embedded silica particles exhibited dramatically enhanced long-term stability (more than one year) compared to corresponding micelles with a half-life of ~38 days. In addition, aqueous 1O2 sensitization by PdOEP-embedded silica particles was demonstrated upon two-photon excitation in a near-infrared regime (λex = 1030 nm), highlighting the great potential of this method for future biological applications. Full article
Show Figures

Graphical abstract

9 pages, 882 KB  
Article
Sensitivity and Contrast Characterization of PMMA 950K Resist Under 30 keV Focused Ga+ Ion Beam Exposure
by Mukhit Muratov, Yana Shabelnikova, Sergey Zaitsev, Renata Nemkayeva and Nazim Guseinov
Micromachines 2025, 16(8), 958; https://doi.org/10.3390/mi16080958 - 20 Aug 2025
Viewed by 163
Abstract
In this study, the key lithographic performance of PMMA 950K resist was evaluated by exposure to a 30 keV focused gallium (Ga+) ion beam. The sensitivity and contrast of PMMA 950K were directly compared with those of electron exposure under identical [...] Read more.
In this study, the key lithographic performance of PMMA 950K resist was evaluated by exposure to a 30 keV focused gallium (Ga+) ion beam. The sensitivity and contrast of PMMA 950K were directly compared with those of electron exposure under identical development conditions. It was found that the sensitivity of PMMA 950K to Ga+ ions for 50 nm films reaches a value of about 0.4 μC/cm2, which is more than 250 times higher than its sensitivity to electron exposure. A method for evaluating the resist contrast during ion exposure is proposed in this work, taking into account the highly non-uniform dose distribution across the resist depth; it yielded a contrast value of γ = 2.6, which is consistent with the result obtained with electron exposure (γ = 2.8). In addition, a pronounced dependence of the resist sensitivity on the resist thickness was found: with an increase in thickness from 10 nm to 60 nm the sensitivity decreases by an order of magnitude. The obtained results form a reliable methodological basis for characterizing the behavior of polymer resists under ion irradiation and provide valuable recommendations for optimizing lithography with a focused beam of Ga+ ions when creating nanostructures for microelectronics, photonics, and quantum technologies. Full article
Show Figures

Figure 1

19 pages, 1299 KB  
Article
Structured Emission and Entanglement Dynamics of a Giant Atom in a Photonic Creutz Ladder
by Vassilios Yannopapas
Photonics 2025, 12(8), 827; https://doi.org/10.3390/photonics12080827 - 20 Aug 2025
Viewed by 254
Abstract
We explore the spontaneous emission dynamics of a giant atom coupled to a photonic Creutz ladder, focusing on how flat-band frustration and synthetic gauge fields shape atom–photon interactions. The Creutz ladder exhibits perfectly flat bands, Aharonov–Bohm caging, and topological features arising from its [...] Read more.
We explore the spontaneous emission dynamics of a giant atom coupled to a photonic Creutz ladder, focusing on how flat-band frustration and synthetic gauge fields shape atom–photon interactions. The Creutz ladder exhibits perfectly flat bands, Aharonov–Bohm caging, and topological features arising from its nontrivial hopping structure. By embedding the giant atom at multiple spatially separated sites, we reveal interference-driven emission control and the formation of nonradiative bound states. Using both spectral and time-domain analyses, we uncover strong non-Markovian dynamics characterized by persistent oscillations, long-lived entanglement, and recoherence cycles. The emergence of bound-state poles in the spectral function is accompanied by spatially localized photonic profiles and directionally asymmetric emission, even in the absence of band dispersion. Calculations of von Neumann entropy and atomic purity confirm the formation of coherence-preserving dressed states in the flat-band regime. Furthermore, the spacetime structure of the emitted field displays robust zig-zag interference patterns and synthetic chirality, underscoring the role of geometry and topology in photon transport. Our results demonstrate how flat-band photonic lattices can be leveraged to engineer tunable atom–photon entanglement, suppress radiative losses, and create structured decoherence-free subspaces for quantum information applications. Full article
(This article belongs to the Special Issue Recent Progress in Optical Quantum Information and Communication)
Show Figures

Figure 1

22 pages, 20046 KB  
Article
Towards Understanding the Promotion of Plant Growth Under an Experimental Red-Fluorescent Plastic Film
by Eric J. Stallknecht and Erik S. Runkle
Horticulturae 2025, 11(8), 980; https://doi.org/10.3390/horticulturae11080980 - 19 Aug 2025
Viewed by 335
Abstract
Semitransparent plastic films containing red-fluorescent pigments can increase the growth of some greenhouse crops despite a lower transmitted photosynthetic photon flux density (PPFD), but the underlying mechanism by which this occurs is not fully understood. We postulated it can be attributed to a [...] Read more.
Semitransparent plastic films containing red-fluorescent pigments can increase the growth of some greenhouse crops despite a lower transmitted photosynthetic photon flux density (PPFD), but the underlying mechanism by which this occurs is not fully understood. We postulated it can be attributed to a lower blue-light environment that increases leaf expansion and thus photon capture. We examined the growth response and photosynthetic capacity of vegetable and ornamental greenhouse crops under a red-fluorescent plastic, plastics with varying transmission percentages of blue light (from 6% to 20%), and an uncovered greenhouse control with a 40% greater PPFD. When the transmitted PPFD was similar, decreasing the percentage of blue light increased the extension growth for some but not all species tested. Transmitted PPFD had a more pronounced effect on extension growth than the percentage of blue light. Lettuce shoot dry mass was greater under the red-fluorescent film than the other covered treatments and similar to the uncovered control with 40% more light. Regardless of the transmission spectrum, decreasing the transmitted PPFD reduced tomato fruit fresh mass and generally decreased the number of flowers ornamental on the species. Maximum photosynthetic rate (Amax), stomatal conductance (gsw), and quantum yield of photosystem II (PhiPSII) consistently decreased as the percentage of blue light transmission decreased, but this did not correlate to biomass accumulation. An experimental red-fluorescent film had cultivar and species-specific effects on growth, highlighting both its potential for leafy greens and potential challenges for greenhouse crops with a greater quantum requirement. Full article
(This article belongs to the Special Issue Optimized Light Management in Controlled-Environment Horticulture)
Show Figures

Figure 1

13 pages, 292 KB  
Article
Philosophy of Polarization-Path Entanglement in Quantum Optics
by Artur Czerwinski
Optics 2025, 6(3), 39; https://doi.org/10.3390/opt6030039 - 18 Aug 2025
Viewed by 274
Abstract
This paper explores the formal structure and philosophical implications of polarization-path entanglement in quantum optics, where different degrees of freedom of a single photon become entangled. We examine the mathematical conditions under which coherence is preserved or lost, emphasizing the role of distinguishability [...] Read more.
This paper explores the formal structure and philosophical implications of polarization-path entanglement in quantum optics, where different degrees of freedom of a single photon become entangled. We examine the mathematical conditions under which coherence is preserved or lost, emphasizing the role of distinguishability and information flow. The analysis is situated within major interpretational frameworks (including Copenhagen, Many-Worlds, QBism, and Bohmian mechanics) to evaluate whether such entanglement reflects physical reality or epistemic constraints. Finally, we discuss experimental realizations, relevance to quantum information processing, and open conceptual questions regarding the ontological status of single-particle entanglement. Full article
(This article belongs to the Section Photonics and Optical Communications)
Show Figures

Figure 1

41 pages, 882 KB  
Article
D-Branes, AdS/CFT, Dynamical Uhlmann Gauge, and Stabilisation of a Closed Causal Loop Geometry
by Andrei T. Patrascu
Universe 2025, 11(8), 274; https://doi.org/10.3390/universe11080274 - 17 Aug 2025
Viewed by 292
Abstract
I show here that if we construct D-branes not in the form of infinite superpositions of string modes, in order to satisfy the technical condition of coherence by means of eigenstates of annihilation operators, but instead insist on an approximate but much more [...] Read more.
I show here that if we construct D-branes not in the form of infinite superpositions of string modes, in order to satisfy the technical condition of coherence by means of eigenstates of annihilation operators, but instead insist on an approximate but much more physical and practical definition based on phase coherence, we obtain finite (and hence realistic) superpositions of string modes that would form realistic D-branes that would encode (at least as a semiclassical approximation) various quantum properties. Re-deriving the AdS/CFT duality by starting in the pre-Maldacena limit from such realistic D-branes would lead to quantum properties on the AdS side of the duality. Causal structures can be modified in various many-particle systems, including strings, D-branes, photons, or spins; however, there is a distinction between the emergence of an effective causal structure in the inner degrees of freedom of a material, in the form of a correlation-generated effective metric, for example, in a spin liquid system, and the emergence of a causal structure in an open propagating system by using classical light. I will show how an Uhlmann gauge construction would add stability to a modified causal structure that would retain the shape of a closed causal loop. Various other ideas related to the quantum origin of the string length are also discussed and an analogy of the emergence of string length from quantum correlations with the emergence of wavelength of an electromagnetic wave from coherence conditions of photon modes is presented. Full article
Show Figures

Figure 1

45 pages, 5794 KB  
Review
Nanophotonic Materials and Devices: Recent Advances and Emerging Applications
by Yuan-Fong Chou Chau
Micromachines 2025, 16(8), 933; https://doi.org/10.3390/mi16080933 - 13 Aug 2025
Viewed by 567
Abstract
Nanophotonics, the study of light–matter interactions at the nanometer scale, has emerged as a transformative field that bridges photonics and nanotechnology. Using engineered nanomaterials—including plasmonic metals, high-index dielectrics, two-dimensional (2D) materials, and hybrid systems—nanophotonics enables light manipulation beyond the diffraction limit, unlocking novel [...] Read more.
Nanophotonics, the study of light–matter interactions at the nanometer scale, has emerged as a transformative field that bridges photonics and nanotechnology. Using engineered nanomaterials—including plasmonic metals, high-index dielectrics, two-dimensional (2D) materials, and hybrid systems—nanophotonics enables light manipulation beyond the diffraction limit, unlocking novel applications in sensing, imaging, and quantum technologies. This review provides a comprehensive overview of recent advances (post-2020) in nanophotonic materials, fabrication methods, and their cutting-edge applications. We first discuss the fundamental principles governing nanophotonic phenomena, such as localized surface plasmon resonances (LSPRs), Mie resonances, and exciton–polariton coupling, highlighting their roles in enhancing light–matter interactions. Next, we examine state-of-the-art fabrication techniques, including top-down (e.g., electron beam lithography and nanoimprinting) and bottom-up (e.g., chemical vapor deposition and colloidal synthesis) approaches, as well as hybrid strategies that combine scalability with nanoscale precision. We then explore emerging applications across diverse domains: quantum photonics (single-photon sources, entangled light generation), biosensing (ultrasensitive detection of viruses and biomarkers), nonlinear optics (high-harmonic generation and wave mixing), and integrated photonic circuits. Special attention is given to active and tunable nanophotonic systems, such as reconfigurable metasurfaces and hybrid graphene–dielectric devices. Despite rapid progress, challenges remain, including optical losses, thermal management, and scalable integration. We conclude by outlining future directions, such as machine learning-assisted design, programmable photonics, and quantum-enhanced sensing, and offering insights into the next generation of nanophotonic technologies. This review serves as a timely resource for researchers in photonics, materials science, and nanotechnology. Full article
Show Figures

Figure 1

11 pages, 1243 KB  
Article
Fast and Robust Optical Cooling via Shortcut to Adiabaticity
by Zhiyu Wang and Jie Lu
Entropy 2025, 27(8), 851; https://doi.org/10.3390/e27080851 - 11 Aug 2025
Viewed by 265
Abstract
Optical cooling is a key technique for preparing ultracold atoms in quantum technologies and precision experiments. We employ shortcut-to-adiabaticity (STA) techniques to accelerate and stabilize laser-based atomic cooling protocols. This approach improves the performance of conventional adiabatic momentum transfer schemes by addressing key [...] Read more.
Optical cooling is a key technique for preparing ultracold atoms in quantum technologies and precision experiments. We employ shortcut-to-adiabaticity (STA) techniques to accelerate and stabilize laser-based atomic cooling protocols. This approach improves the performance of conventional adiabatic momentum transfer schemes by addressing key limitations such as Doppler shifts, laser intensity fluctuations, and spontaneous emission. We first examine two- and three-level atomic systems subjected to counter-propagating laser pulses that induce momentum reduction through photon recoil. STA methods are then employed to construct pulse sequences that are robust against detuning errors and amplitude noise, outperforming standard π-pulse schemes in resilience. Meanwhile, we analyze the dissipative dynamics during the momentum transfer and demonstrate the superiority of the STA protocol in enhancing momentum transfer efficiency via accelerated control. The results demonstrate that STA can significantly improve both the efficiency and robustness of cooling. These findings have implications for applications in atomic physics, quantum information processing, and precision metrology. Full article
(This article belongs to the Special Issue Shortcut to Adiabaticity in Classical and Quantum Systems)
Show Figures

Figure 1

13 pages, 14213 KB  
Article
All-Weather Drone Vision: Passive SWIR Imaging in Fog and Rain
by Alexander Bessonov, Aleksei Rozanov, Richard White, Galih Suwito, Ivonne Medina-Salazar, Marat Lutfullin, Dmitrii Gusev and Ilya Shikov
Drones 2025, 9(8), 553; https://doi.org/10.3390/drones9080553 - 7 Aug 2025
Viewed by 513
Abstract
Short-wave-infrared (SWIR) imaging can extend drone operations into fog and rain, yet the optimum spectral strategy remains unclear. We evaluated a drone-borne quantum-dot SWIR camera inside a climate-controlled tunnel that generated calibrated advection fog, radiation fog, and rain. Images were captured with a [...] Read more.
Short-wave-infrared (SWIR) imaging can extend drone operations into fog and rain, yet the optimum spectral strategy remains unclear. We evaluated a drone-borne quantum-dot SWIR camera inside a climate-controlled tunnel that generated calibrated advection fog, radiation fog, and rain. Images were captured with a broadband 400–1700 nm setting and three sub-band filters, each at four lens apertures (f/1.8–5.6). Entropy, structural-similarity index (SSIM), and peak signal-to-noise ratio (PSNR) were computed for every weather–aperture–filter combination. Broadband SWIR consistently outperformed all filtered configurations. The gain stems from higher photon throughput, which outweighs the modest scattering reduction offered by narrowband selection. Under passive illumination, broadband SWIR therefore represents the most robust single-camera choice for unmanned aerial vehicles (UAVs), enhancing situational awareness and flight safety in fog and rain. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

16 pages, 2036 KB  
Article
Scalable Chemical Vapor Deposition of Silicon Carbide Thin Films for Photonic Integrated Circuit Applications
by Souryaya Dutta, Alex Kaloyeros, Animesh Nanaware and Spyros Gallis
Appl. Sci. 2025, 15(15), 8603; https://doi.org/10.3390/app15158603 - 2 Aug 2025
Viewed by 545
Abstract
Highly integrable silicon carbide (SiC) has emerged as a promising platform for photonic integrated circuits (PICs), offering a comprehensive set of material and optical properties that are ideal for the integration of nonlinear devices and solid-state quantum defects. However, despite significant progress in [...] Read more.
Highly integrable silicon carbide (SiC) has emerged as a promising platform for photonic integrated circuits (PICs), offering a comprehensive set of material and optical properties that are ideal for the integration of nonlinear devices and solid-state quantum defects. However, despite significant progress in nanofabrication technology, the development of SiC on an insulator (SiCOI)-based photonics faces challenges due to fabrication-induced material optical losses and complex processing steps. An alternative approach to mitigate these fabrication challenges is the direct deposition of amorphous SiC on an insulator (a-SiCOI). However, there is a lack of systematic studies aimed at producing high optical quality a-SiC thin films, and correspondingly, on evaluating and determining their optical properties in the telecom range. To this end, we have studied a single-source precursor, 1,3,5-trisilacyclohexane (TSCH, C3H12Si3), and chemical vapor deposition (CVD) processes for the deposition of SiC thin films in a low-temperature range (650–800 °C) on a multitude of different substrates. We have successfully demonstrated the fabrication of smooth, uniform, and stoichiometric a-SiCOI thin films of 20 nm to 600 nm with a highly controlled growth rate of ~0.5 Å/s and minimal surface roughness of ~5 Å. Spectroscopic ellipsometry and resonant micro-photoluminescence excitation spectroscopy and mapping reveal a high index of refraction (~2.7) and a minimal absorption coefficient (<200 cm−1) in the telecom C-band, demonstrating the high optical quality of the films. These findings establish a strong foundation for scalable production of high-quality a-SiCOI thin films, enabling their application in advanced chip-scale telecom PIC technologies. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

22 pages, 6376 KB  
Article
Components for an Inexpensive CW-ODMR NV-Based Magnetometer
by André Bülau, Daniela Walter and Karl-Peter Fritz
Magnetism 2025, 5(3), 18; https://doi.org/10.3390/magnetism5030018 - 1 Aug 2025
Viewed by 812
Abstract
Quantum sensing based on NV-centers in diamonds has been demonstrated many times in multiple publications. The majority of publications use lasers in free space or lasers with fiber optics, expensive optical components such as dichroic mirrors, or beam splitters with dichroic filters and [...] Read more.
Quantum sensing based on NV-centers in diamonds has been demonstrated many times in multiple publications. The majority of publications use lasers in free space or lasers with fiber optics, expensive optical components such as dichroic mirrors, or beam splitters with dichroic filters and expensive detectors, such as Avalanche photodiodes or single photon detectors, overall, leading to custom and expensive setups. In order to provide an inexpensive NV-based magnetometer setup for educational use in schools, to teach the three topics, fluorescence, optically detected magnetic resonance, and Zeeman splitting, inexpensive, miniaturized, off-the-shelf components with high reliability have to be used. The cheaper such a setup, the more setups a school can afford. Hence, in this work, we investigated LEDs as light sources, considered different diamonds for our setup, tested different color filters, proposed an inexpensive microwave resonator, and used a cheap photodiode with an appropriate transimpedance amplifier as the basis for our quantum magnetometer. As a result, we identified cheap and functional components and present a setup and show that it can demonstrate the three topics mentioned at a hardware cost <EUR 100. Full article
Show Figures

Figure 1

10 pages, 2570 KB  
Article
Demonstration of Monolithic Integration of InAs Quantum Dot Microdisk Light Emitters and Photodetectors Directly Grown on On-Axis Silicon (001)
by Shuaicheng Liu, Hao Liu, Jihong Ye, Hao Zhai, Weihong Xiong, Yisu Yang, Jun Wang, Qi Wang, Yongqing Huang and Xiaomin Ren
Micromachines 2025, 16(8), 897; https://doi.org/10.3390/mi16080897 - 31 Jul 2025
Viewed by 592
Abstract
Silicon-based microcavity quantum dot lasers are attractive candidates for on-chip light sources in photonic integrated circuits due to their small size, low power consumption, and compatibility with silicon photonic platforms. However, integrating components like quantum dot lasers and photodetectors on a single chip [...] Read more.
Silicon-based microcavity quantum dot lasers are attractive candidates for on-chip light sources in photonic integrated circuits due to their small size, low power consumption, and compatibility with silicon photonic platforms. However, integrating components like quantum dot lasers and photodetectors on a single chip remains challenging due to material compatibility issues and mode field mismatch problems. In this work, we have demonstrated monolithic integration of an InAs quantum dot microdisk light emitter, waveguide, and photodetector on a silicon platform using a shared epitaxial structure. The photodetector successfully monitored variations in light emitter output power, experimentally proving the feasibility of this integrated scheme. This work represents a key step toward multifunctional integrated photonic systems. Future efforts will focus on enhancing the light emitter output power, improving waveguide efficiency, and scaling up the integration density for advanced applications in optical communication. Full article
(This article belongs to the Special Issue Silicon-Based Photonic Technology and Devices)
Show Figures

Figure 1

13 pages, 5624 KB  
Article
Identification of Hexagonal Boron Nitride Thickness on SiO2/Si Substrates by Colorimetry and Contrast
by Elena Blundo, Niklas H. T. Schmidt, Andreas V. Stier and Jonathan J. Finley
Appl. Sci. 2025, 15(15), 8400; https://doi.org/10.3390/app15158400 - 29 Jul 2025
Viewed by 407
Abstract
Hexagonal boron nitride (hBN) is a layered material with a wide variety of excellent properties for emergent applications in quantum photonics using atomically thin materials. For example, it hosts single-photon emitters that operate up to room-temperature, it can be exploited for atomically flat [...] Read more.
Hexagonal boron nitride (hBN) is a layered material with a wide variety of excellent properties for emergent applications in quantum photonics using atomically thin materials. For example, it hosts single-photon emitters that operate up to room-temperature, it can be exploited for atomically flat tunnel barriers, and it can be used to form high finesse photonic nanocavities. Moreover, it is an ideal encapsulating dielectric for two-dimensional (2D) materials and heterostructures, with highly beneficial effects on their electronic and optical properties. Depending on the use case, the thickness of hBN is a critical parameter and needs to be carefully controlled from the monolayer to hundreds of layers. This calls for quick and non-invasive methods to unambiguously identify the thickness of exfoliated flakes. Here, we show that the apparent color of hBN flakes on different SiO2/Si substrates can be made to be highly indicative of the flake thickness, providing a simple method to infer the hBN thickness. Using experimental determination of the colour of hBN flakes and calculating the optical contrast, we derived the optimal substrates for the most reliable hBN thickness identification for flakes with thickness ranging from a few layers towards bulk-like hBN. Our results offer a practical guide for the determination of hBN flake thickness for widespread applications using 2D materials and heterostructures. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Graphical abstract

15 pages, 4409 KB  
Article
Performance of Dual-Layer Flat-Panel Detectors
by Dong Sik Kim and Dayeon Lee
Diagnostics 2025, 15(15), 1889; https://doi.org/10.3390/diagnostics15151889 - 28 Jul 2025
Viewed by 364
Abstract
Background/Objectives: In digital radiography imaging, dual-layer flat-panel detectors (DFDs), in which two flat-panel detector layers are stacked with a minimal distance between the layers and appropriate alignment, are commonly used in material decompositions as dual-energy applications with a single x-ray exposure. DFDs also [...] Read more.
Background/Objectives: In digital radiography imaging, dual-layer flat-panel detectors (DFDs), in which two flat-panel detector layers are stacked with a minimal distance between the layers and appropriate alignment, are commonly used in material decompositions as dual-energy applications with a single x-ray exposure. DFDs also enable more efficient use of incident photons, resulting in x-ray images with improved noise power spectrum (NPS) and detection quantum efficiency (DQE) performances as single-energy applications. Purpose: Although the development of DFD systems for material decomposition applications is actively underway, there is a lack of research on whether single-energy applications of DFD can achieve better performance than the single-layer case. In this paper, we experimentally observe the DFD performance in terms of the modulation transfer function (MTF), NPS, and DQE with discussions. Methods: Using prototypes of DFD, we experimentally measure the MTF, NPS, and DQE of the convex combination of the images acquired from the upper and lower detector layers of DFD. To optimize DFD performance, a two-step image registration is performed, where subpixel registration based on the maximum amplitude response to the transform based on the Fourier shift theorem and an affine transformation using cubic interpolation are adopted. The DFD performance is analyzed and discussed through extensive experiments for various scintillator thicknesses, x-ray beam conditions, and incident doses. Results: Under the RQA 9 beam conditions of 2.7 μGy dose, the DFD with the upper and lower scintillator thicknesses of 0.5 mm could achieve a zero-frequency DQE of 75%, compared to 56% when using a single-layer detector. This implies that the DFD using 75 % of the incident dose of a single-layer detector can provide the same signal-to-noise ratio as a single-layer detector. Conclusions: In single-energy radiography imaging, DFD can provide better NPS and DQE performances than the case of the single-layer detector, especially at relatively high x-ray energies, which enables low-dose imaging. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

Back to TopTop