Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = radial misalignment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 878 KB  
Article
Data-Driven Prediction of Kinematic Transmission Error and Tonal Noise Risk in EV Gearboxes Based on Manufacturing Tolerances
by Krisztian Horvath and Martin Kaszab
Appl. Sci. 2025, 15(19), 10460; https://doi.org/10.3390/app151910460 - 26 Sep 2025
Abstract
Although numerous studies have used ML to predict gear transmission error, few have provided a normalized, interpretable risk metric for early tolerance assessment. This work fills that gap by proposing the Tonal Risk Index (TRI). Kinematic Transmission Error (KTE) is a well-established primary [...] Read more.
Although numerous studies have used ML to predict gear transmission error, few have provided a normalized, interpretable risk metric for early tolerance assessment. This work fills that gap by proposing the Tonal Risk Index (TRI). Kinematic Transmission Error (KTE) is a well-established primary excitation source of tonal gear noise in electric vehicle drivetrains. This study introduces the TRI, a novel, dimensionless indicator that quantifies relative tonal noise risk directly from predicted KTE values. We employ a large-scale dataset of 39,984 Monte Carlo simulations comprising 15 manufacturing tolerance and process-shift variables, with KTE values as the target. Baseline linear regression failed to capture the strongly non-linear relationships between tolerances and KTE (R2 ≈ 0), whereas non-linear models—Random Forest and XGBoost—achieved high predictive accuracy (R2 ≈ 0.82). Feature importance analysis revealed that pitch error, radial run-out, and misalignment are consistently the most influential parameters, with notable interaction effects such as pitch error × run-out and misalignment × form-defect shift. The TRI normalises predicted KTE values to a 0–1 scale, enabling rapid comparison of tolerance configurations in terms of tonal excitation risk. This approach supports early-stage design decision-making, reduces reliance on high-fidelity simulations and physical prototypes, and aligns with sustainability objectives by lowering material usage and energy consumption. The results demonstrate that data-driven surrogate models, combined with the TRI metric, can effectively bridge the gap between manufacturing tolerances and NVH performance assessment. Full article
18 pages, 7432 KB  
Article
Design and Optimization of a Pneumatic Microvalve with Symmetric Magnetic Yoke and Permanent Magnet Assistance
by Zeqin Peng, Zongbo Zheng, Shaochen Yang, Xiaotao Zhao, Xingxiao Yu and Dong Han
Actuators 2025, 14(8), 388; https://doi.org/10.3390/act14080388 - 4 Aug 2025
Viewed by 461
Abstract
Electromagnetic pneumatic microvalves, widely used in knitting machines, typically operate based on a spring-return mechanism. When the coil is energized, the electromagnetic force overcomes the spring force to attract the armature, opening the valve. Upon de-energization, the armature returns to its original position [...] Read more.
Electromagnetic pneumatic microvalves, widely used in knitting machines, typically operate based on a spring-return mechanism. When the coil is energized, the electromagnetic force overcomes the spring force to attract the armature, opening the valve. Upon de-energization, the armature returns to its original position under the restoring force of the spring, closing the valve. However, most existing electromagnetic microvalves adopt a radially asymmetric magnetic yoke design, which generates additional radial forces during operation, leading to armature misalignment or even sticking. Additionally, the inductance effect of the coil causes a significant delay in the armature release response, making it difficult to meet the knitting machine’s requirements for rapid response and high reliability. To address these issues, this paper proposes an improved electromagnetic microvalve design. First, the magnetic yoke structure is modified to be radially symmetric, eliminating unnecessary radial forces and preventing armature sticking during operation. Second, a permanent magnet assist mechanism is introduced at the armature release end to enhance release speed and reduce delays caused by the inductance effect. The effectiveness of the proposed design is validated through electromagnetic numerical simulations, and a multi-objective genetic algorithm is further employed to optimize the geometric dimensions of the electromagnet. The optimization results indicate that, while maintaining the fundamental power supply principle of conventional designs, the new microvalve structure achieves a pull-in time comparable to traditional designs during engagement but significantly reduces the release response time by approximately 80.2%, effectively preventing armature sticking due to radial forces. The findings of this study provide a feasible and efficient technical solution for the design of electromagnetic microvalves in textile machinery applications. Full article
(This article belongs to the Section Miniaturized and Micro Actuators)
Show Figures

Figure 1

24 pages, 6641 KB  
Article
Separation Method for Installation Eccentricity Error of Workpiece
by Guanyao Qiao, Chunyu Zhao, Huihui Miao and Ye Chen
Appl. Sci. 2025, 15(12), 6788; https://doi.org/10.3390/app15126788 - 17 Jun 2025
Viewed by 470
Abstract
This work solves the challenge of separating the eccentricity error of a workpiece installation from the first harmonic of radial runout error of the spindle, which has a crucial impact on improving the machining quality of the workpiece. Firstly, a mathematical model for [...] Read more.
This work solves the challenge of separating the eccentricity error of a workpiece installation from the first harmonic of radial runout error of the spindle, which has a crucial impact on improving the machining quality of the workpiece. Firstly, a mathematical model for the synthesized elliptical motion for spindle vibration and eccentricity error is established. Subsequently, a novel separation method combining Particle swarm optimization (PSO) and the least squares method (LSM) is proposed. PSO is applied to determine phase angles, and the least squares method is applied to determine amplitudes, achieving precise error separation. Then, numerical simulations were used to verify the effectiveness and reliability of the proposed method, producing a calculation error of less than 0.07% and high consistency (R2 > 0.97). Finally, experimental tests at different spindle speeds, axial distances, and workpieces confirmed the robustness of the method, with a variation in eccentricity error calculation result of less than 0.6%. The results indicate that the installation eccentricity error of the experimental machine tool is independent of the spindle angular velocity and stems from the misalignment of the chuck. This method provides a reliable solution for accurately separating installation eccentricity errors in precision manufacturing. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

29 pages, 3690 KB  
Article
Application of the Adaptive Mixed-Order Cubature Particle Filter Algorithm Based on Matrix Lie Group Representation for the Initial Alignment of SINS
by Ning Wang and Fanming Liu
Information 2025, 16(5), 416; https://doi.org/10.3390/info16050416 - 20 May 2025
Viewed by 481
Abstract
Under large azimuth misalignment conditions, the initial alignment of strapdown inertial navigation systems (SINS) is challenged by the nonlinear characteristics of the error model. Traditional particle filter (PF) algorithms suffer from the inappropriate selection of importance density functions and severe particle degeneration, which [...] Read more.
Under large azimuth misalignment conditions, the initial alignment of strapdown inertial navigation systems (SINS) is challenged by the nonlinear characteristics of the error model. Traditional particle filter (PF) algorithms suffer from the inappropriate selection of importance density functions and severe particle degeneration, which limit their applicability in high-precision navigation. To address these limitations, this paper proposes an adaptive mixed-order spherical simplex-radial cubature particle filter (MLG-AMSSRCPF) algorithm based on matrix Lie group representation. In this approach, attitude errors are represented on the matrix Lie group SO(3), while velocity errors and inertial sensor biases are retained in Euclidean space. Efficient bidirectional conversion between Euclidean and manifold spaces is achieved through exponential and logarithmic maps, enabling accurate attitude estimation without the need for Jacobian matrices. A hybrid-order cubature transformation is introduced to reduce model linearization errors, thereby enhancing the estimation accuracy. To improve the algorithm’s adaptability in dynamic noise environments, an adaptive noise covariance update mechanism is integrated. Meanwhile, the particle similarity is evaluated using Euclidean distance, allowing the dynamic adjustment of particle numbers to balance the filtering accuracy and computational load. Furthermore, a multivariate Huber loss function is employed to adaptively adjust particle weights, effectively suppressing the influence of outliers and significantly improving the robustness of the filter. Simulation and the experimental results validate the superior performance of the proposed algorithm under moving-base alignment conditions. Compared with the conventional cubature particle filter (CPF), the heading accuracy of the MLG-AMSSRCPF algorithm was improved by 31.29% under measurement outlier interference and by 39.79% under system noise mutation scenarios. In comparison with the unscented Kalman filter (UKF), it yields improvements of 58.51% and 58.82%, respectively. These results demonstrate that the proposed method substantially enhances the filtering accuracy, robustness, and computational efficiency of SINS, confirming its practical value for initial alignment in high-noise, complex dynamic, and nonlinear navigation systems. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

33 pages, 23758 KB  
Article
Symmetry-Driven Gaussian Representation and Adaptive Assignment for Oriented Object Detection
by Jiangang Zhu, Qianjin Lin, Donglin Jing, Qiang Fu, Ting Ma and Jianming Li
Symmetry 2025, 17(4), 594; https://doi.org/10.3390/sym17040594 - 14 Apr 2025
Viewed by 679
Abstract
Object Detection (OD) in Remote Sensing Imagery (RSI) encounters significant challenges such as multi-scale variation, high aspect ratios, and densely distributed objects. These challenges often result in misalignments among Bounding Box (BBox) representation, Label Assignment (LA) strategies, and regression loss functions. To address [...] Read more.
Object Detection (OD) in Remote Sensing Imagery (RSI) encounters significant challenges such as multi-scale variation, high aspect ratios, and densely distributed objects. These challenges often result in misalignments among Bounding Box (BBox) representation, Label Assignment (LA) strategies, and regression loss functions. To address these limitations, this study proposes a novel detection framework, the Gaussian Detection (GaussianDet) Framework, that integrates probabilistic modeling with dynamic sample assignment to achieve more precise OD. The core design of this framework is inspired by the theory of geometric symmetry. Specifically, the radial symmetry of a two-dimensional Gaussian distribution is employed to capture the rotational and scale-invariant properties of Remote Sensing (RS) objects. By leveraging the axial symmetry of elliptical geometry, the proposed Gaussian Elliptical Intersection over Union (GEIoU) enables rotation-aligned matching, while Omni-dimensional Adaptive Assignment (ODAA) introduces dynamic symmetric constraints to optimize the spatial distribution of training samples. Specifically, a Flexible Bounding Box (FBBox) representation based on a 2D Gaussian distribution is introduced to more accurately characterize the shape, aspect ratio, and orientation of objects. In addition, the GEIoU is designed as a scale-invariant similarity metric to align regression loss with detection accuracy. To further enhance sample quality and feature learning, the ODAA strategy adaptively selects positive samples based on object scale and geometric constraints. Experimental results on the High-Resolution Ship Collection 2016 (HRSC2016) and University of Chinese Academy of Sciences–Aerial Object Detection (UCAS-AOD) datasets demonstrate that GaussianDet achieves mean Average Precision (mAP) scores of 90.53% and 96.24%, respectively. These results significantly outperform existing Oriented Object Detection (OOD) methods, thereby validating the effectiveness of the proposed approach and providing a solid theoretical foundation for future research in Remote Sensing Object Detection (RSOD). Full article
(This article belongs to the Special Issue Symmetry and Asymmetry Study in Object Detection)
Show Figures

Figure 1

18 pages, 3752 KB  
Article
Magnetic Gear Wireless Power Transfer System: Prototype and Electric Vehicle Charging
by Caleb Dunlap and Charles W. Van Neste
Energies 2025, 18(3), 532; https://doi.org/10.3390/en18030532 - 24 Jan 2025
Viewed by 1442
Abstract
This paper investigates the potential of a magnetic gear wireless power transfer (WPT) system for electric vehicle (EV) charging, with the advantages of low-frequency operation, low foreign object interference, low electromagnetic emissions, and high misalignment tolerance. The study explores the novel impact of [...] Read more.
This paper investigates the potential of a magnetic gear wireless power transfer (WPT) system for electric vehicle (EV) charging, with the advantages of low-frequency operation, low foreign object interference, low electromagnetic emissions, and high misalignment tolerance. The study explores the novel impact of Halbach arrays that enhance the flux density in desirable locations while decreasing the flux in undesirable locations, which provides the benefit of decreased foreign object attraction. The initial prototype results demonstrate that the Halbach system can transmit approximately 34.65 W with a transfer efficiency of 64% across a gap of 104 mm. The Halbach system is experimentally compared to a conventional magnet arrangement, which achieved a maximum power transfer of 88 W over 104 mm. The Halbach system is applied to a personal mobility EV to enable wireless charging at low frequency. The axial design of this WPT system has the unique benefit of a 360° radial coupling angle that maintains constant, near-maximum levels of power transfer and efficiency. This full circle coupling angle allows the personal EV to park in any direct vicinity of the charger and achieve the same level of charging given a certain distance. This study delivers important contributions to advancing a low-frequency wireless EV charging technology based on magnetic gears, that sets the stage for future innovations focused on optimizing efficiency, increasing safety, and simplifying the charging process. Full article
(This article belongs to the Special Issue Advanced Technologies for Electrified Transportation and Robotics)
Show Figures

Figure 1

17 pages, 7856 KB  
Article
Torque Characteristics Analysis of Slotted-Type Axial-Flux Magnetic Coupler in the Misalignment State
by Yutang Qi, Chaojun Yang, Yiwen Zhang, Chao Guo and Amberbir Wondimu Tadesse
Machines 2024, 12(11), 751; https://doi.org/10.3390/machines12110751 - 24 Oct 2024
Cited by 2 | Viewed by 1225
Abstract
In this article, a simple and practical magnetic equivalent charge model is proposed to predict the torque of a slotted-type axial-flux magnetic coupler (SAMC) under conditions of radial misalignment, angle misalignment, and synthetic misalignment. The magnetic field generated by the permanent magnet (PM) [...] Read more.
In this article, a simple and practical magnetic equivalent charge model is proposed to predict the torque of a slotted-type axial-flux magnetic coupler (SAMC) under conditions of radial misalignment, angle misalignment, and synthetic misalignment. The magnetic field generated by the permanent magnet (PM) disk and the induced magnetic field generated by the slotted conductor sheet (CS) are equivalent to the surface magnetic charge, respectively. Particularly, the induced magnetic field produced by eddy current considering skin depth in the conductor sheet is introduced into the magnetic equivalent charge model. Combined with Coulomb’s law of magnetic field, the formulas of torque and axial force are both derived. Using this method, the torques in three cases of misalignment are calculated. Finally, the effectiveness of the model is verified by the finite element method (FEM) and experiment; the results calculated by the magnetic equivalent charge model are basically consistent with those from the finite element method and experiment. The derived formula is suitable for small air gaps, small slip rates, and small radial deflection distances. Additionally, the limitations of the method proposed are discussed, which is of great help for understanding the torque transmission of the magnetic coupler in the misalignment state. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

38 pages, 16115 KB  
Article
Neural Approach to Coordinate Transformation for LiDAR–Camera Data Fusion in Coastal Observation
by Ilona Garczyńska-Cyprysiak, Witold Kazimierski and Marta Włodarczyk-Sielicka
Sensors 2024, 24(20), 6766; https://doi.org/10.3390/s24206766 - 21 Oct 2024
Viewed by 3291
Abstract
The paper presents research related to coastal observation using a camera and LiDAR (Light Detection and Ranging) mounted on an unmanned surface vehicle (USV). Fusion of data from these two sensors can provide wider and more accurate information about shore features, utilizing the [...] Read more.
The paper presents research related to coastal observation using a camera and LiDAR (Light Detection and Ranging) mounted on an unmanned surface vehicle (USV). Fusion of data from these two sensors can provide wider and more accurate information about shore features, utilizing the synergy effect and combining the advantages of both systems. Fusion is used in autonomous cars and robots, despite many challenges related to spatiotemporal alignment or sensor calibration. Measurements from various sensors with different timestamps have to be aligned, and the measurement systems need to be calibrated to avoid errors related to offsets. When using data from unstable, moving platforms, such as surface vehicles, it is more difficult to match sensors in time and space, and thus, data acquired from different devices will be subject to some misalignment. In this article, we try to overcome these problems by proposing the use of a point matching algorithm for coordinate transformation for data from both systems. The essence of the paper is to verify algorithms based on selected basic neural networks, namely the multilayer perceptron (MLP), the radial basis function network (RBF), and the general regression neural network (GRNN) for the alignment process. They are tested with real recorded data from the USV and verified against numerical methods commonly used for coordinate transformation. The results show that the proposed approach can be an effective solution as an alternative to numerical calculations, due to process improvement. The image data can provide information for identifying characteristic objects, and the obtained accuracies for platform dynamics in the water environment are satisfactory (root mean square error—RMSE—smaller than 1 m in many cases). The networks provided outstanding results for the training set; however, they did not perform as well as expected, in terms of the generalization capability of the model. This leads to the conclusion that processing algorithms cannot overcome the limitations of matching point accuracy. Further research will extend the approach to include information on the position and direction of the vessel. Full article
(This article belongs to the Special Issue Multi-Sensor Data Fusion)
Show Figures

Figure 1

11 pages, 2495 KB  
Article
Vibration and Fault Analysis of a Rotor System of a Twin-Spool Turbo-Jet Engine in Ground Test
by Jingjing Huang, Yirong Yang, Bilian Peng and Suobin Li
Aerospace 2024, 11(9), 724; https://doi.org/10.3390/aerospace11090724 - 4 Sep 2024
Cited by 1 | Viewed by 1652
Abstract
According to the characteristics of the rotor system in an aero-engine and the vibrational test requirements of the aero-engine ground test, suitable vibration measurement sensors and test positions were selected. The vibration signals at the casings for the compressor and turbine of a [...] Read more.
According to the characteristics of the rotor system in an aero-engine and the vibrational test requirements of the aero-engine ground test, suitable vibration measurement sensors and test positions were selected. The vibration signals at the casings for the compressor and turbine of a twin-spool turbo-jet engine were collected under the states of maximum power and afterburning respectively, and the power spectrum analysis was carried out to determine the positions and causes of vibration. Furthermore, methods and preventive measures for eliminating vibration have been proposed. The results indicated that the main rotor vibration excited by mass imbalance in the twin-spool turbo-jet engine was significant. Rotor spindle misalignment or rotor radial stiffness unevenness also induced the vibration. The aerodynamic pulse vibration formed by the rotor blades of the first stage of the low pressure compressor was large, and rub induced vibration fault may occur at the turbine rotor seals. Based on the power spectrum analysis technology, the rotor system faults information including the type, position, and the degree can be quickly identified, and useful attempts and explorations have been made to reduce the vibration faults of the twin-spool turbo-jet engine. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

18 pages, 6785 KB  
Article
Impact of Installation Deviations on the Dynamic Characteristics of the Shaft System for 1 Gigawatt Hydro-Generator Unit
by Gangyun Song, Xingxing Huang, Haijun Li, Zhengwei Wang and Dong Wang
Machines 2024, 12(7), 473; https://doi.org/10.3390/machines12070473 - 12 Jul 2024
Cited by 1 | Viewed by 1173
Abstract
The shaft system, transferring the kinetic energy of water flow into electrical energy, is the most critical component in hydropower plants. Installation deviations of the shaft system for a giant hydro-generator unit can have significant impacts on its dynamic characteristics and overall performance. [...] Read more.
The shaft system, transferring the kinetic energy of water flow into electrical energy, is the most critical component in hydropower plants. Installation deviations of the shaft system for a giant hydro-generator unit can have significant impacts on its dynamic characteristics and overall performance. In this investigation, a three-dimensional geometry of the shaft system of an operating hydro-generator unit prototype with a rated power of 1 GW is established. Then, the calculation model of the shaft system is generated accordingly with tetrahedral and hexahedral elements. By applying different boundary conditions, the finite-element method is used to analyze the influences of installation deviations, including shaft radial misalignment and angular misalignment, on the dynamic characteristics of the shaft system. The calculation results reveal that the installation deviations change the natural frequencies, critical speeds, and mode shapes of the shaft system to a certain degree. The natural frequencies of the backward precession motion with installation deviations are reduced by 23% and 38% for the rated speed and the maximum runaway speed. Furthermore, for the forward precession motion, they increased by 30% and 48%, respectively. The critical speeds for the shaft system with radial and angular deviations are 3.2% and 3% larger than the critical speed of the shaft system without any mounting deviations. The radial and angular installation deviations below the maximum permissible values will not result in the structural performance degradation of the 1 GW hydro-generator shaft system. The conclusion drawn in this research can be used as a valuable reference for installing other rotating machinery. Full article
Show Figures

Figure 1

14 pages, 1349 KB  
Article
Analysis of Vibration Characteristics and Influencing Factors of Complex Tread Pattern Tires Based on Finite Element Method
by Mengdi Xu, Yunfei Ge, Xianbin Du and Zhaohong Meng
Machines 2024, 12(6), 386; https://doi.org/10.3390/machines12060386 - 4 Jun 2024
Cited by 2 | Viewed by 2226
Abstract
The vibration of the tires significantly impacts a vehicle’s ride comfort and noise level; however, the current analysis of tire vibration characteristics often involves excessive simplification in their models, leading to a reduction in model accuracy. To analyze the tire vibrational properties and [...] Read more.
The vibration of the tires significantly impacts a vehicle’s ride comfort and noise level; however, the current analysis of tire vibration characteristics often involves excessive simplification in their models, leading to a reduction in model accuracy. To analyze the tire vibrational properties and the influence of its design and service conditions, a combined modeling technology was developed to construct a three-dimensional (3D) finite element model of a 205/55R16 specification radial tire with intricate tread patterns. The accuracy and reliability of the simulation model was verified through vibration modal tests. Based on the vibration mode theory, the Lanczos method provided by ABAQUS was adopted to analyze the modal characteristics of the tire under free inflation and grounded conditions, and the effects of different inflation pressures, loads, operating conditions, and belt cord angles on the tire vibration characteristics were analyzed. The results indicate that grounding constraints will suppress the low order radial modal frequency of the tire and enhance the lateral modal frequency. The higher the order of the tire vibration mode, the greater the impact of inflation pressure. As the operating conditions change, the modal frequencies of all directions have the same trend of change, and as the ground load increases, the tire is prone to misalignment at lower lateral frequencies. The radial and lateral grounding modes of the tire are slightly affected by the change of the cord angle in the belt layer, but the circumferential grounding frequency decreases as the belt layer angle increases. These research findings offer a crucial foundation for the structural design of complex tread pattern tires, and also serve as a reference for addressing vibration and comfort issues encountered in the tire matching process. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

17 pages, 7777 KB  
Article
Effects of Unbalanced Incentives on Threshing Drum Stability during Rice Threshing
by Kexin Que, Zhong Tang, Ting Wang, Zhan Su and Zhao Ding
Agriculture 2024, 14(5), 777; https://doi.org/10.3390/agriculture14050777 - 17 May 2024
Cited by 9 | Viewed by 1848
Abstract
As a result of the uneven growth of rice, unbalanced vibration of threshing drum caused by stalk entanglement in combine harvester is more and more severe. In order to reveal the influence of unbalanced excitation on the roller axis locus during rice threshing, [...] Read more.
As a result of the uneven growth of rice, unbalanced vibration of threshing drum caused by stalk entanglement in combine harvester is more and more severe. In order to reveal the influence of unbalanced excitation on the roller axis locus during rice threshing, the stability of threshing drum was studied. The dynamic signal test and analysis system are used to test the axial trajectory of threshing drum. At the same time, the influence of the unbalanced excitation caused by the axis winding on the axis trajectory is analyzed by the experimental results. Axis locus rules under no-load and threshing conditions are obtained. In order to simulate the axial and radial distribution of unbalanced excitation along the threshing drum, the counterweight was distributed on the threshing drum instead of the entangled stalk. Then, the definite effect of unbalanced excitation on the rotating stability of threshing drum is analyzed. Results show that the amplitude of stem winding along the grain drum is larger in the vertical direction and smaller in the horizontal direction when compared with the unloaded state under 200 g weight. It was found that the amplitude in both horizontal and vertical directions decreased after 400 g and 600 g counterweights were added, respectively, to simulate the radial distribution of stalk winding along the grain barrel. Finally, it can be seen that with the increase in the weight of the counterweight, the characteristics of the trajectory misalignment of the threshing cylinder axis become more and more obvious. This study can provide reference for reducing the unbalanced excitation signal of threshing drum and improving driving comfort. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

20 pages, 7930 KB  
Article
An Improved One-Line Evolution Formulation for the Dynamic Shoreline Planforms of Embayed Beaches
by Hung-Cheng Tao, Tai-Wen Hsu and Chia-Ming Fan
Water 2024, 16(5), 774; https://doi.org/10.3390/w16050774 - 5 Mar 2024
Cited by 1 | Viewed by 1673
Abstract
In this paper, an improved one-line evolution formulation is proposed and derived for the dynamic shoreline planforms of embayed beaches. Although embayed sandy beaches can perform several functions, serving as leisure spots and areas of coastal protection, shoreline advances and retreats occur continuously [...] Read more.
In this paper, an improved one-line evolution formulation is proposed and derived for the dynamic shoreline planforms of embayed beaches. Although embayed sandy beaches can perform several functions, serving as leisure spots and areas of coastal protection, shoreline advances and retreats occur continuously as a result of many natural forces, such as winds, waves, currents, tides, etc. The one-line evolution formulation for dynamic shoreline planforms based on the polar coordinate can be adopted to simulate high-planform-curvature shorelines and achieve better stability and simplicity in comparison with other description coordinates. While the polar coordinate and rectangular control volume are adopted to derive the one-line evolution formulation for dynamic shoreline planforms, the difference between the radial direction of the polar coordinate and the normal direction of the shoreline segment may result in inaccurate predictions of shoreline movements. In this study, a correction coefficient, which can adjust the influence of these two misaligned directions, is derived and included in the one-line evolution formulation, which is based on the polar coordinate. Thus, by considering the correction coefficient, an improved one-line evolution formulation for dynamic shoreline planforms of crenulate-shaped bays is proposed in this paper. Some numerical examples are provided to verify the merits of the proposed improved one-line evolution formulation. Moreover, the proposed numerical approach is applied to simulate the dynamic movements of the shoreline in Taitung—the southeastern part of Taiwan—and the effectiveness of the proposed formulation in solving realistic engineering applications is evidently verified. Full article
(This article belongs to the Special Issue Advanced Research in Civil, Hydraulic, and Ocean Engineering)
Show Figures

Figure 1

7 pages, 2567 KB  
Proceeding Paper
A Study of the Dynamic Stiffness of Flexible Couplings with a Rubber–Metal Element Type SEGME
by Hristo Hristov, Stefan Tenev and Ismail Mehmedov
Eng. Proc. 2024, 60(1), 26; https://doi.org/10.3390/engproc2024060026 - 24 Jan 2024
Cited by 1 | Viewed by 1583
Abstract
The dynamic characteristics of flexible couplings with a rubber–metal element type SEGME have been studied. The hardness of the rubber element of the SEGME 25 coupling is 53 Shore A, and that the SEGME 63 coupling is 73 Shore A, respectively. The experimental [...] Read more.
The dynamic characteristics of flexible couplings with a rubber–metal element type SEGME have been studied. The hardness of the rubber element of the SEGME 25 coupling is 53 Shore A, and that the SEGME 63 coupling is 73 Shore A, respectively. The experimental study was carried out in conditions of alignment of the connected shafts, and also at different levels of radial misalignment. The influence of an additional angular misalignment was investigated. The results show that, for this coupling type, the radial misalignments induce a downward nonlinear dependence on the dynamic stiffness. The presence of a small angular displacement in the shafts causes significant radial deformations. The sensitivity of the coupling decreases with the high hardness of the rubber element. Full article
Show Figures

Figure 1

11 pages, 4938 KB  
Article
Model and Algorithm for a Rotor-Bearing System Considering Journal Misalignment
by Zhiming Zhao, Junjie Ma, Qi Liu and Peiji Yang
Coatings 2024, 14(1), 48; https://doi.org/10.3390/coatings14010048 - 28 Dec 2023
Cited by 2 | Viewed by 1598
Abstract
Disturbances caused as a result of the misalignment and axial motion of the journal affect the characteristics of the rotor-bearing system. This paper aims to propose an algorithm for the theoretical analysis of a rotor-bearing system that considers these disturbances. A theoretical model [...] Read more.
Disturbances caused as a result of the misalignment and axial motion of the journal affect the characteristics of the rotor-bearing system. This paper aims to propose an algorithm for the theoretical analysis of a rotor-bearing system that considers these disturbances. A theoretical model for a journal bearing considering disturbances is given. The dynamic equations for a rigid rotor-bearing system are introduced. A detailed algorithm that can simultaneously solve the rotor-dynamic equations and the Reynolds equation is proposed. The static performance, such as the bearing attitude angle and the fluid film pressure, are given, and dynamic characteristics such as the nonlinear dynamic responses and the axial orbits of a rigid rotor-bearing system are presented. The hydrodynamic effect of the bearing is enhanced by the axial disturbance. Disturbances in the circumferential and radial directions lead to variations in the fluid film thickness distribution in the axial direction and the offset of the fluid film pressure distribution in the axial direction. When these disturbances work together, the variation trend is more obvious and affects the capacity and dynamic characteristics of the bearing. When the L/D value of the bearing increases, the clearance between the journal and the bearing decreases rapidly. When the value reaches a certain limit, contact and collision might occur. The theoretical analysis method and the algorithm proposed for a rotor-bearing system considering several disturbances could enhance the design level for a bearing and rotor-bearing system. Full article
(This article belongs to the Special Issue Trends and Advances in Anti-wear Materials)
Show Figures

Figure 1

Back to TopTop