Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (419)

Search Parameters:
Keywords = radio-frequency sputtering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 8373 KB  
Article
Development of Amorphous AlN Thin Films on ITO-Glass and ITO-PET at Low Temperatures by RF Sputtering
by Miriam Cadenas, Michael Sun, Susana Fernández, Sirona Valdueza-Felip, Ana M. Diez-Pascual and Fernando B. Naranjo
Micromachines 2025, 16(9), 993; https://doi.org/10.3390/mi16090993 (registering DOI) - 29 Aug 2025
Viewed by 181
Abstract
Aluminum nitride (AlN) is a material of wide interest in the optoelectronics and high-power electronics industry. The deposition of AlN thin films at elevated temperatures is a well-established process, but its implementation on flexible substrates with conductive oxides, such as ITO-glass or ITO-PET, [...] Read more.
Aluminum nitride (AlN) is a material of wide interest in the optoelectronics and high-power electronics industry. The deposition of AlN thin films at elevated temperatures is a well-established process, but its implementation on flexible substrates with conductive oxides, such as ITO-glass or ITO-PET, poses challenges due to the thermal degradation of these materials. In this work, the deposition and characterization of AlN thin films by reactive sputtering at a low temperature (RT and 100 °C) on ITO-glass and ITO-PET substrates are presented. The structural, optical, and electrical properties of the samples have been analysed as a function of the sputtering power and the deposition temperature. XRD analysis revealed the absence of peaks of crystalline AlN, indicative of the formation of an amorphous phase. EDX measurements performed on the ITO-glass substrate with a radiofrequency power applied to the Al target of 175 W confirmed the presence of Al and N, corroborating the deposition of AlN. SEM analyses showed the formation of homogeneous and compact layers, and transmission optical measurements revealed a bandgap of around 5.82 eV, depending on the deposition conditions. Electrical resistivity measurements indicated an insulating character. Overall, these findings confirm the potential of amorphous AlN for applications in flexible optoelectronic devices. Full article
Show Figures

Figure 1

25 pages, 5569 KB  
Article
Effect of Indium Doping on the Photoelectric Properties of SnS Thin Films and SnS/TiO2 Heterojunctions
by Jiahao Leng, Yaoxin Ding, Mingyang Zhang and Jie Shen
Coatings 2025, 15(8), 972; https://doi.org/10.3390/coatings15080972 - 20 Aug 2025
Viewed by 387
Abstract
This study addresses the need for efficient photoelectric materials by fabricating Indium-doped tin sulfide (SnS-In)/titanium dioxide (TiO2) heterostructure thin films via radio frequency (RF) magnetron sputtering. We systematically investigated the synergistic enhancement of photoelectric properties from both In-doping and the heterostructure [...] Read more.
This study addresses the need for efficient photoelectric materials by fabricating Indium-doped tin sulfide (SnS-In)/titanium dioxide (TiO2) heterostructure thin films via radio frequency (RF) magnetron sputtering. We systematically investigated the synergistic enhancement of photoelectric properties from both In-doping and the heterostructure design. SnS-In films with controlled In concentrations were prepared by embedding varying numbers of indium pellets into the SnS sputtering target. Our findings reveal that an optimal In doping of 4.93 at% significantly improves the crystalline quality and light absorption of SnS, reducing its band gap from 1.27 eV to 1.13 eV and enhancing carrier concentration and mobility. Subsequently, the optimized SnS-In film combined with TiO2 formed a heterojunction, achieving a peak photocurrent density of 6.36 µA/cm2 under visible light. This is 2.2 and 53.0 times higher than standalone SnS-In and TiO2 films, respectively. This superior performance is attributed to the optimal In3+ doping effectively modulating the SnS band structure and the type-II heterojunction promoting efficient charge separation. This work demonstrates a promising strategy for optoelectronic conversion and photocatalysis by combining In-doping for SnS band structure engineering with TiO2 heterostructure construction. Full article
(This article belongs to the Special Issue Electrochemical Properties and Applications of Thin Films)
Show Figures

Graphical abstract

18 pages, 6030 KB  
Article
Impact of Rapid Thermal Annealing and Oxygen Concentration on Symmetry Bipolar Switching Characteristics of Tin Oxide-Based Memory Devices
by Kai-Huang Chen, Chien-Min Cheng, Ming-Cheng Kao, Hsin-Chin Chen, Yao-Chin Wang and Yu-Han Tsai
Micromachines 2025, 16(8), 956; https://doi.org/10.3390/mi16080956 - 19 Aug 2025
Viewed by 360
Abstract
In this study, tin oxide (SnO2) resistive random-access memory (RRAM) thin films were fabricated using the thermal evaporation and radiofrequency and dc frequency sputtering techniques for metal–insulator–metal (MIM) structures. The fabrication process began with the deposition of a silicon dioxide (SiO [...] Read more.
In this study, tin oxide (SnO2) resistive random-access memory (RRAM) thin films were fabricated using the thermal evaporation and radiofrequency and dc frequency sputtering techniques for metal–insulator–metal (MIM) structures. The fabrication process began with the deposition of a silicon dioxide (SiO2) layer onto a silicon (Si) substrate, followed by the deposition of a titanium nitride (TiN) layer to serve as the bottom electrode. Subsequently, the tin oxide (SnO2) layer was deposited as the resistive switching insulator. Two types of top electrodes were developed to investigate the influence of different oxygen concentrations on the bipolar switching, electrical characteristics, and performance of memory devices. An aluminum (Al) top electrode was deposited using thermal evaporation, while a platinum (Pt) top electrode was deposited via dc sputtering. As a result, two distinct metal–insulator–metal (MIM) memory RRAM device structures were formed, i.e., Al/SnO2/TiN/SiO2/Si and Pt/SnO2/TiN/SiO2/Si. In addition, the symmetry bipolar switching characteristics, electrical conduction mechanism, and oxygen concentration factor of the tin oxide-based memory devices using rapid thermal annealing and different top electrodes were determined and investigated by ohmic, space-charge-limit-current, Schottky, and Poole–Frenkel conduction equations in this study. Full article
Show Figures

Figure 1

27 pages, 13926 KB  
Article
The Comprehensive Study of TiO2 Blocking Layer with Complementary Electrochemical and SPM Methods for the Application in Photovoltaics
by Evgenija Milinković, Katarina Cvetanović, Marko V. Bošković, Nastasija Conić, Vladislav Jovanov, Dragomir Stanisavljev and Dana Vasiljević-Radović
Inorganics 2025, 13(8), 270; https://doi.org/10.3390/inorganics13080270 - 17 Aug 2025
Viewed by 425
Abstract
The blocking layer is crucial for inhibiting recombination processes in photovoltaics that utilize oxide semiconductors, such as dye-sensitized solar cells (DSSCs), quantum-dot-sensitized solar cells (QDSSCs), and perovskite solar cells. However, its effectiveness strongly depends on the chosen deposition method. This study systematically evaluates [...] Read more.
The blocking layer is crucial for inhibiting recombination processes in photovoltaics that utilize oxide semiconductors, such as dye-sensitized solar cells (DSSCs), quantum-dot-sensitized solar cells (QDSSCs), and perovskite solar cells. However, its effectiveness strongly depends on the chosen deposition method. This study systematically evaluates the most suitable approach for obtaining a uniform, pinhole-free titanium dioxide (TiO2) blocking layer by using three deposition methods: radio-frequency sputtering, spin-coating, and chemical bath deposition. The electrochemical, optical, and morphological properties of blocking layers were characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), UV-VIS spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and Kelvin probe force microscopy (KPFM). KPFM analysis, together with CV and EIS, revealed that the lower Rct values and higher CV currents observed in spin-coated (SC_11-33) and vertically deposited CBD films (CB_5, CB_6) resulted from incomplete FTO coverage. In contrast, sputtered (SP_21-24) and horizontally deposited CBD films (CB_1, CB_2) demonstrated significantly higher Rct values and improved surface coverage. Full DSSCs fabricated with SP_23, SC_33, and CB_2 confirmed the correlation between interfacial properties and photovoltaic performance. This combined approach offers a fast, material-efficient, and environmentally conscious screening method for optimizing blocking layers in solar cell technologies. Full article
Show Figures

Graphical abstract

55 pages, 16837 KB  
Review
A Comprehensive Review of Plasma Cleaning Processes Used in Semiconductor Packaging
by Stephen Sammut
Appl. Sci. 2025, 15(13), 7361; https://doi.org/10.3390/app15137361 - 30 Jun 2025
Viewed by 1620
Abstract
Semiconductor device fabrication is conducted through highly precise manufacturing processes. An essential component of the semiconductor package is the lead frame on which the silicon dies are assembled. Impurities such as oxides or organic matter on the surfaces have an impact on the [...] Read more.
Semiconductor device fabrication is conducted through highly precise manufacturing processes. An essential component of the semiconductor package is the lead frame on which the silicon dies are assembled. Impurities such as oxides or organic matter on the surfaces have an impact on the process yield. Plasma cleaning is a vital process in semiconductor manufacturing, employed to enhance production yield through precise and efficient surface preparation essential for device fabrication. This paper explores the various facets of plasma cleaning, with a particular emphasis on its application in the cleaning of lead frames used in semiconductor packaging. To provide comprehensive context, this paper also reviews the critical role of plasma in advanced and emerging packaging technologies. This study investigates the fundamental physics governing plasma generation, the design of plasma systems, and the composition of the plasma medium. A central focus of this work is the comparative analysis of different plasma systems in terms of their effectiveness in removing organic contaminants and oxide residues from substrate surfaces. By utilizing reactive species generated within the plasma—such as oxygen radicals, hydrogen ions, and other chemically active constituents—these systems enable a non-contact, damage-free cleaning method that offers significant advantages over conventional wet chemical processes. Additionally, the role of non-reactive species, such as argon, in sputtering processes for surface preparation is examined. Sputtering is the ejection of individual atoms from a target surface due to momentum transfer from an energetic particle (usually an ion). Sputtering is therefore a physical process driven by momentum transfer. Energetic ions, such as argon (Ar+), are accelerated from the plasma to bombard a target surface. Upon impact, these ions transfer sufficient kinetic energy to atoms within the material’s lattice to overcome their surface binding energy, resulting in their physical ejection. This paper also provides a comparative assessment of various plasma sources, including direct current, dielectric barrier discharge, radio frequency, and microwave-based systems, evaluating their suitability and efficiency for lead frame cleaning applications. Furthermore, it addresses critical parameters affecting plasma cleaning performance, such as gas chemistry, power input, pressure regulation, and substrate handling techniques. The ultimate aim of this paper is to provide a concise yet comprehensive resource that equips technical personnel with the essential knowledge required to make informed decisions regarding plasma cleaning technologies and their implementation in semiconductor manufacturing. This paper provides various tables which provide the reader with comparative assessments of the various plasma sources and gases used. Scoring mechanisms are also introduced and utilized in this paper. The scores achieved by both the sources and the plasma gases are then summarized in this paper’s conclusions. Full article
Show Figures

Figure 1

11 pages, 2536 KB  
Article
Electrical Performance of ZTO Thin-Film Transistors and Inverters
by Jieyang Wang, Liang Guo, Xuefeng Chu, Fan Yang, Hansong Gao, Chao Wang, Yaodan Chi and Xiaotian Yang
Micromachines 2025, 16(7), 751; https://doi.org/10.3390/mi16070751 - 25 Jun 2025
Viewed by 403
Abstract
In this study, zinc–tin oxide (ZTO) thin films were prepared via radio-frequency magnetron sputtering to examine the influence of annealing temperature on the performance of thin-film transistors (TFTs) and their resistive-load inverters. The findings reveal that annealing modulates the concentration and spatial distribution [...] Read more.
In this study, zinc–tin oxide (ZTO) thin films were prepared via radio-frequency magnetron sputtering to examine the influence of annealing temperature on the performance of thin-film transistors (TFTs) and their resistive-load inverters. The findings reveal that annealing modulates the concentration and spatial distribution of oxygen vacancies (VO), which directly affect carrier density and interface trap density, ultimately determining the electrical behavior of inverters. At the optimal annealing temperature of 600 °C, the VO concentration was effectively moderated, resulting in a TFT with a mobility of 12.39 cm2 V−1 s−1, a threshold voltage of 6.13 V, an on/off current ratio of 1.09 × 108, and a voltage gain of 11.77 in the corresponding inverter. However, when the VO concentration deviated from this optimal range, whether in excess or deficiency, the gain was reduced and power consumption increased. This VO engineering strategy enables the simultaneous optimization of both TFT and inverter performance without relying on rare elements, offering a promising pathway toward the development of low-cost, large-area, flexible, and transparent electronic devices. Full article
Show Figures

Figure 1

15 pages, 7651 KB  
Article
Induction of Strong Magneto-Optical Effect and High Compatibility with Si of BiFeO3 Thin Film by Sr and Ti Co-Doping
by Nanxi Lin, Hong Zhang, Yunye Shi, Chenjun Xu, Zhuoqian Xie and Yunjin Chen
Materials 2025, 18(13), 2953; https://doi.org/10.3390/ma18132953 - 22 Jun 2025
Viewed by 350
Abstract
The poor magnetic and magneto-optical properties of BiFeO3, along with its significant lattice mismatch with silicon, have limited its application in silicon-based integrated magneto-optical devices. In this study, co-doping with Sr2+ and Ti4+ ions effectively transformed the trigonal structure [...] Read more.
The poor magnetic and magneto-optical properties of BiFeO3, along with its significant lattice mismatch with silicon, have limited its application in silicon-based integrated magneto-optical devices. In this study, co-doping with Sr2+ and Ti4+ ions effectively transformed the trigonal structure of BiFeO3 into a cubic phase, thereby reducing the lattice mismatch with silicon to 2.8%. High-quality, highly oriented, silicon-based cubic Sr,Ti:BiFeO3 thin films were successfully fabricated using radio frequency magnetron sputtering. Due to the induced lattice distortion, the characteristic periodic spiral spin antiferromagnetic structure of BiFeO3 was suppressed, resulting in a significant enhancement of the saturation magnetization of cubic Bi0.5Sr0.5Fe0.5Ti0.5O3 (48.0 emu/cm3), compared to that of pristine BiFeO3 (5.0 emu/cm3). Furthermore, the incorporation of Sr2+ and Ti4+ ions eliminated the birefringence effect inherent in trigonal BiFeO3, thereby inducing a pronounced magneto-optical effect in the cubic Sr,Ti:BiFeO3 thin film. The magnetic circular dichroic ellipticity (ψF) of Bi0.5Sr0.5Fe0.5Ti0.5O3 reached an impressive 2300 degrees/cm. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

18 pages, 2436 KB  
Article
Photoelectrochemical and Photocatalytic Properties of SnS/TiO2 Heterostructure Thin Films Prepared by Magnetron Sputtering Method
by Yaoxin Ding, Jiahao Leng, Mingyang Zhang and Jie Shen
Inorganics 2025, 13(7), 208; https://doi.org/10.3390/inorganics13070208 - 20 Jun 2025
Cited by 1 | Viewed by 488
Abstract
Tin(II) sulfide(SnS)/titanium(IV) oxide (TiO2) heterostructure thin films were prepared by radio-frequency magnetron sputtering to investigate the enhancement effect of the formed heterojunction on the photocatalytic performance. By adjusting the sputtering time to vary the thickness of the SnS layer, the crystallinity [...] Read more.
Tin(II) sulfide(SnS)/titanium(IV) oxide (TiO2) heterostructure thin films were prepared by radio-frequency magnetron sputtering to investigate the enhancement effect of the formed heterojunction on the photocatalytic performance. By adjusting the sputtering time to vary the thickness of the SnS layer, the crystallinity and light-absorption properties of the light-absorbing layer and the quality of the heterojunction interface were effectively controlled, thereby optimizing the fabrication process of the heterojunction. It was found that when the SnS layer thickness was 244 nm and the TiO2 layer thickness was 225 nm, the heterostructure film exhibited optimal photoelectrochemical performance, generating the highest photocurrent of 3.03 µA/cm2 under visible light, which was 13.8 times that of a pure TiO2 film and 2.4 times that of a pure SnS film of the same thickness. Additionally, it demonstrated the highest degradation efficiency for methylene blue dye. The improved photoelectrochemical performance of the SnS/TiO2 heterostructure film can be primarily attributed to the following: (1) the incorporation of narrow-bandgap SnS effectively broadens the light-absorption range, improving visible-light harvesting; (2) the staggered band alignment between SnS and TiO2 forms a type-II heterojunction, significantly enhancing the charge carrier separation and transport efficiency. The present work demonstrated the feasibility of magnetron sputtering for constructing high-quality SnS/TiO2 heterostructures, providing insights into the design and fabrication of photocatalytic heterojunctions. Full article
(This article belongs to the Special Issue Advanced Inorganic Semiconductor Materials, 3rd Edition)
Show Figures

Figure 1

12 pages, 1849 KB  
Article
Study on Photoelectric Properties of Graphene/Molybdenum Disulfide Heterojunction
by Hui Ren, Xing Wei and Jibin Fan
Nanomaterials 2025, 15(11), 787; https://doi.org/10.3390/nano15110787 - 23 May 2025
Viewed by 454
Abstract
The zero-bandgap of graphene means that it can achieve a full spectral range response for graphene-based photodetectors. But the zero bandgap of graphene also brings relatively large dark current. To improve this issue and achieve low-cost graphene-based photodetectors, radio frequency (RF) magnetron-sputtered molybdenum [...] Read more.
The zero-bandgap of graphene means that it can achieve a full spectral range response for graphene-based photodetectors. But the zero bandgap of graphene also brings relatively large dark current. To improve this issue and achieve low-cost graphene-based photodetectors, radio frequency (RF) magnetron-sputtered molybdenum disulfide constructed with graphene to form heterojunction was investigated. The results indicated that graphene/molybdenum disulfide heterojunction could provide a Schottky barrier height value of 0.739 eV, which was higher than that of the graphene/Si photodetector. It is beneficial to suppress the generation of the dark current. Different sputtering conditions were also studied. Testing results indicated that for the optimized process, the responsivity, detectivity, and quantum efficiency of graphene/molybdenum disulfide heterojunction photodetectors could reach up to 126 mA/W, 1.21 × 1011 Jones, and 34%, respectively. In addition, graphene/molybdenum disulfide heterojunction on flexible PET substrate showed good stability, indicating that graphene/molybdenum disulfide heterojunction also has a good potential application in the field of flexible electronics. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

13 pages, 2943 KB  
Article
Magnetron-Sputtered and Rapid-Thermally Annealed NiO:Cu Thin Films on 3D Porous Substrates for Supercapacitor Electrodes
by Seongha Oh, Young-Kil Jun and Nam-Hoon Kim
Energies 2025, 18(11), 2704; https://doi.org/10.3390/en18112704 - 23 May 2025
Viewed by 572
Abstract
The performance of NiO-based supercapacitor electrodes for energy storage systems was enhanced by doping Cu into NiO thin films (200 nm) using radio-frequency magnetron co-sputtering on 3D porous Ni foam substrates, followed by rapid thermal annealing. The Hall effect measurements demonstrated enhanced electrical [...] Read more.
The performance of NiO-based supercapacitor electrodes for energy storage systems was enhanced by doping Cu into NiO thin films (200 nm) using radio-frequency magnetron co-sputtering on 3D porous Ni foam substrates, followed by rapid thermal annealing. The Hall effect measurements demonstrated enhanced electrical conductivity, with resistivity values of 1.244 × 10−4 Ω·cm. The 3D porous NiO:Cu electrodes significantly increased the specific capacitance and achieved a value of 1809.2 Fg−1, with the NiO:Cu (10 at% Cu) thin films at a scan rate of 5 mVs−1, which is a 2.67-fold increase compared with the undoped NiO films on a glass substrate. The 3D porous NiO:Cu electrodes significantly improved the electrochemical properties of the NiO-based electrode, which resulted in a higher specific capacitance for enhancing the energy storage performance during grid stabilization. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

12 pages, 6811 KB  
Article
The Fabrication and Characterization of Surface-Acoustic-Wave and Resistive Types of Ozone Sensors Based on Zinc Oxide: A Comparative Study
by Sheng-Hua Yan and Chia-Yen Lee
Sensors 2025, 25(9), 2723; https://doi.org/10.3390/s25092723 - 25 Apr 2025
Viewed by 2564
Abstract
Micro-Electro-Mechanical System (MEMS) technology is employed to fabricate surface acoustic wave (SAW)-type and resistive-type ozone sensors on quartz glass (SiO2) substrates. The fabrication process commences by using a photolithography technique to define interdigitated electrodes (IDEs) on the substrates. Electron-beam evaporation (EBE) [...] Read more.
Micro-Electro-Mechanical System (MEMS) technology is employed to fabricate surface acoustic wave (SAW)-type and resistive-type ozone sensors on quartz glass (SiO2) substrates. The fabrication process commences by using a photolithography technique to define interdigitated electrodes (IDEs) on the substrates. Electron-beam evaporation (EBE) followed by radio frequency (RF) magnetron sputtering is then used to deposit platinum (Pt) and chromium (Cr) electrode layers as well as a zinc oxide (ZnO) sensing layer, respectively. Finally, annealing is performed to improve the crystallinity and sensing performance of the ZnO films. The experimental results reveal that the ZnO thin films provide an excellent ozone-concentration sensing capability in both sensors. The SAW-type sensor demonstrates a peak sensitivity at a frequency of 200 kHz, with a rapid response time of just 35 s. Thus, it is suitable for applications requiring a quick response and high sensitivity, such as real-time monitoring and high-precision environmental detection. The resistive-type sensor shows optimal sensitivity at a relatively low operating temperature of 180 °C, but has a longer response time of approximately 103 s. Therefore, it is better suited for low-cost and large-scale applications such as industrial-gas-concentration monitoring. Full article
(This article belongs to the Special Issue Advanced Sensors for Gas Monitoring)
Show Figures

Figure 1

14 pages, 2440 KB  
Article
Assistance to Determine the Stability State of a Reactive Sputtering Process Based on the Analytical Solution of the Classical Berg Model
by Marcell Gajdics, Nikolett Hegedűs, Dániel Olasz and Miklós Serényi
Coatings 2025, 15(5), 499; https://doi.org/10.3390/coatings15050499 - 22 Apr 2025
Viewed by 540
Abstract
In this study, we propose simple analytical formulas for reactive sputtering technology, which can be used to assist in the selection of appropriate sputtering parameters during the deposition of thin films. Radio frequency (RF) sputtered alumina (Al2O3) was used [...] Read more.
In this study, we propose simple analytical formulas for reactive sputtering technology, which can be used to assist in the selection of appropriate sputtering parameters during the deposition of thin films. Radio frequency (RF) sputtered alumina (Al2O3) was used to evaluate the results. Layers with O/Al ratios ranging from 24/76 to 54/73 were deposited. Following effective deposition, the equations of the Berg model describing the process were studied. The achieved stoichiometry and the associated technological parameters are of critical importance for the analysis of the equations; consequently, this established the primary guiding principle when selecting the analytical approximations. A straightforward graph of the processing parameters (pumping speed, partial pressure) has been constructed, with the objective of avoiding the hysteresis that is an inherent feature of the reactive sputtering process. In addition, we have extended the classical Berg model to examine how the biased substrate can influence deposition. It was found that applying a substrate bias can decrease target coverage, while it does not alter substrate coverage. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

16 pages, 4940 KB  
Article
Substrate and Doping Effects on the Growth Aspects of Zinc Oxide Thin Films Developed on a GaN Substrate by the Sputtering Technique
by R. Perumal, Lakshmanan Saravanan and Jih-Hsin Liu
Processes 2025, 13(4), 1257; https://doi.org/10.3390/pr13041257 - 21 Apr 2025
Viewed by 793
Abstract
A one-micron-thick pure zinc oxide (ZnO) and nitrogen-doped zinc oxide (N-ZnO) film were fabricated on p-type, pristine (non-porous), and porous gallium nitride (GaN) substrates using a radio frequency (RF) sputtering technique at room temperature. The doping medium was nitrogen gas, which has a [...] Read more.
A one-micron-thick pure zinc oxide (ZnO) and nitrogen-doped zinc oxide (N-ZnO) film were fabricated on p-type, pristine (non-porous), and porous gallium nitride (GaN) substrates using a radio frequency (RF) sputtering technique at room temperature. The doping medium was nitrogen gas, which has a flow rate that ranges from 0 to 10 sccm (0 sccm refers to pure ZnO). The photoelectrochemical etching process, using ultraviolet light, was employed to etch the wafer surface and create a porous GaN substrate. ZnO films were developed on GaN with ZnO powder as the target material under vacuum conditions. This research aimed to investigate how variations in substrate and doping influenced the structural, optical, and electrical characteristics of the resulting thin films. The SEM images indicated that the pores developed on the etched GaN surface had a spherical shape. The A1 (LO) phonon peak at 750.2 cm−1 was observed in the Raman spectrum of the etched porous GaN. The X-ray diffraction (XRD) analysis confirmed that the films grown on GaN possessed a hexagonal wurtzite structure and the observed peak shift of (101) in all N-ZnO films suggested interstitial nitrogen doping. For the N-ZnO films, the UV-visible cut-off wavelength shifted towards the blue region. The root mean square (RMS) roughness of the N-ZnO films, measured using atomic force microscopy (AFM), was found to decrease with an increasing N-doping concentration. The 10 sccm sample exhibited the lowest roughness value of 1.1 nm, whereas the pure ZnO film showed the highest roughness of 3.4 nm. The N-ZnO thin films were found to exhibit p-type conductivity, as computed by Hall measurements using the van der Pauw method, and the higher value of carrier concentration obtained for the nitrogen gas flow rate of 8 sccm was 5.29 × 1021 cm−3. Full article
Show Figures

Figure 1

12 pages, 3545 KB  
Article
High Capacitance Density and Thermal Stability in Strontium
by Yilong Feng, Zhenya Lu and Ming Lv
Materials 2025, 18(8), 1687; https://doi.org/10.3390/ma18081687 - 8 Apr 2025
Viewed by 402
Abstract
Magnetron sputtering allows for the accurate estimation of film thickness. Strontium titanate (STO) thin films were deposited on Nb-doped STO substrates using radiofrequency magnetron sputtering technology. The microstructures and dielectric properties of STO thin films were investigated. X-ray diffraction (XRD) analysis indicates that [...] Read more.
Magnetron sputtering allows for the accurate estimation of film thickness. Strontium titanate (STO) thin films were deposited on Nb-doped STO substrates using radiofrequency magnetron sputtering technology. The microstructures and dielectric properties of STO thin films were investigated. X-ray diffraction (XRD) analysis indicates that uniform polycrystalline STO films were obtained after thermal annealing at 650 °C. The films exhibit a significant correlation between thickness, annealing temperature, and breakdown field strength. The optimal film with a thickness of 1150 nm achieves a capacitance density of 1688 pF/mm2 and a breakdown field strength of 270 kV/mm. Additionally, STO films annealed at 650 °C maintained their capacitance value within ±15% across a temperature range of −55 °C to 125 °C. These results highlight the potential of STO thin films for high-performance capacitor applications. Full article
(This article belongs to the Special Issue The Microstructures and Advanced Functional Properties of Thin Films)
Show Figures

Figure 1

17 pages, 6225 KB  
Article
RF Sputtering of Gold Nanoparticles in Liquid and Direct Transfer to Nafion Membrane for PEM Water Electrolysis
by Chandrakanth Reddy Chandraiahgari, Gloria Gottardi, Giorgio Speranza, Beatrice Muzzi, Domenico Dalessandro, Andrea Pedrielli, Victor Micheli, Ruben Bartali, Nadhira Bensaada Laidani and Matteo Testi
Membranes 2025, 15(4), 115; https://doi.org/10.3390/membranes15040115 - 7 Apr 2025
Viewed by 1205
Abstract
Sputtering onto liquids is rapidly gaining attention for the green and controlled dry synthesis of ultrapure catalysts nanomaterials. In this study, we present a clean and single-step method for the synthesis of gold nanoparticles directly in polyethylene glycol (PEG) liquid using radio frequency [...] Read more.
Sputtering onto liquids is rapidly gaining attention for the green and controlled dry synthesis of ultrapure catalysts nanomaterials. In this study, we present a clean and single-step method for the synthesis of gold nanoparticles directly in polyethylene glycol (PEG) liquid using radio frequency (RF) magnetron sputtering and by subsequently transferring them to Nafion ionomer, fabricating a catalyst-coated membrane (CCM), an essential component of the proton exchange membrane water electrolyzer (PEMWE). The samples were systematically characterized at different stages of process development. The innovative transfer process resulted in a monodispersed homogeneous distribution of catalyst particles inside CCM while retaining their nascent nanoscale topography. The chemical analysis confirmed the complete removal of the trapped PEG through the process optimization. The electrochemical catalytic activity of the optimized CCM was verified, and the hydrogen evolution reaction (HER) in acidic media appeared outstanding, a vital step in water electrolysis toward H2 production. Therefore, this first study highlights the advantages of RF sputtering in liquid for nanoparticle synthesis and its direct application in preparing CCM, paving the way for the development of innovative membrane preparation techniques for water electrolysis. Full article
(This article belongs to the Section Membrane Applications for Energy)
Show Figures

Figure 1

Back to TopTop