Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (82)

Search Parameters:
Keywords = reforestation monitoring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 38657 KB  
Article
Spatiotemporal Dynamics of Eco-Environmental Quality and Driving Factors in China’s Three-North Shelter Forest Program Using GEE and GIS
by Lina Jiang, Jinning Zhang, Shaojie Wang, Jingbo Zhang and Xinle Li
Sustainability 2025, 17(17), 7698; https://doi.org/10.3390/su17177698 - 26 Aug 2025
Viewed by 559
Abstract
The long-term sustainability of conservation efforts in critical reforestation regions requires timely, spatiotemporal assessments of ecological quality. In alignment with China’s environmental initiatives, this study integrates Google Earth Engine (GEE) and MODIS data to construct an enhanced Remote Sensing Ecological Index (RSEI) for [...] Read more.
The long-term sustainability of conservation efforts in critical reforestation regions requires timely, spatiotemporal assessments of ecological quality. In alignment with China’s environmental initiatives, this study integrates Google Earth Engine (GEE) and MODIS data to construct an enhanced Remote Sensing Ecological Index (RSEI) for two decades of ecological monitoring. Hotspot analysis (Getis-Ord Gi*) revealed concentrated high-quality zones, particularly in Xinjiang’s Altay Prefecture, with ‘Good’ and ‘Excellent’ areas increasing from 21.64% in 2000 to 31.30% in 2020. To uncover driving forces, partial correlation and geographic detector analyses identified a transition in the Three-North Shelter Forest Program (TNSFP) from climate–topography constraints to land use–climate synergy, with land use emerging as the dominant factor. Socioeconomic influences, shaped by policy interventions, also played an important but fluctuating role. This progression—from natural constraints to active human regulation—underscores the need for climate-adaptive land use, balanced ecological–economic development, and region-specific governance. These findings validate the effectiveness of current conservation strategies and provide guidance for sustaining ecological progress and optimizing future development in the TNSFP. Full article
Show Figures

Figure 1

33 pages, 2560 KB  
Review
Geospatial Sensing and Data-Driven Technologies in the Western Balkan 6 (Agro)Forestry Region: A Strategic Science–Technology–Policy Nexus Analysis
by Branislav Trudić, Boris Kuzmanović, Aleksandar Ivezić, Nikola Stojanović, Tamara Popović, Nikola Grčić, Miodrag Tolimir and Kristina Petrović
Forests 2025, 16(8), 1329; https://doi.org/10.3390/f16081329 - 15 Aug 2025
Viewed by 751
Abstract
Geospatial sensing and data-driven technologies (GSDDTs) are playing an increasingly important role in transforming (agro)forestry practices across the Western Balkans 6 region (WB6). This review critically examines the current state of GSDDT application in six WB countries (also known as the WB6 group)—Albania, [...] Read more.
Geospatial sensing and data-driven technologies (GSDDTs) are playing an increasingly important role in transforming (agro)forestry practices across the Western Balkans 6 region (WB6). This review critically examines the current state of GSDDT application in six WB countries (also known as the WB6 group)—Albania, Bosnia and Herzegovina, Kosovo*, Montenegro, North Macedonia, and Serbia—with a focus on their contributions to sustainable (agro)forest management. The analysis explores the use of unmanned aerial vehicles (UAVs), light detection and ranging (LiDAR), geographic information systems (GIS), and satellite imagery in (agro)forest monitoring, biodiversity assessment, landscape restoration, and the promotion of circular economy models. Drawing on 25 identified case studies across WB6—for example, ALFIS, Forest Beyond Borders, ForestConnect, Kuklica Geosite Survey, CREDIT Vibes, and Project O2 (including drone-assisted reforestation in Kosovo*)—this review highlights both technological advancements and systemic limitations. Key barriers to effective GSDDT deployment across WB6 in the (agro)forestry sector and its cross-border cooperation initiatives include fragmented legal frameworks, limited technical expertise, weak institutional coordination, and reliance on short-term donor funding. In addition to mapping current practices, this paper offers a comparative overview of UAV regulations across the WB6 region and identifies six major challenges influencing the adoption and scaling of GSDDTs. To address these, it proposes targeted policy interventions, such as establishing national LiDAR inventories, harmonizing UAV legislation, developing national GSDDT strategies, and creating dedicated GSDDT units within forestry agencies. This review also underscores how GSDDTs contribute to compliance with seven European Union (EU) acquis chapters, how they support eight Sustainable Development Goals (SDGs) and their sixteen targets, and how they advance several EU Green Agenda objectives. Strengthening institutional capacities, promoting legal alignment, and enabling cross-border data interoperability are essential for integrating GSDDTs into national (agro)forest policies and research agendas. This review underscores GSDDTs’ untapped potential in forest genetic monitoring and landscape restoration, advocating for their institutional integration as catalysts for evidence-based policy and ecological resilience in WB6 (agro)forestry systems. Full article
Show Figures

Figure 1

25 pages, 3799 KB  
Review
Bibliometric Analysis of Argan (Argania spinosa (L.) Skeels) Research: Scientific Trends and Strategic Directions for Climate-Resilient Ecosystem Management
by Rajaa Timzioura, Sara Ezzine, Lahcen Benomar, Mohammed S. Lamhamedi, Abderrahim Ettaqy, Abdenbi Zine El Abidine, Hafida Zaher, Damase P. Khasa, Steeve Pepin and Younes Abbas
Forests 2025, 16(6), 892; https://doi.org/10.3390/f16060892 - 26 May 2025
Viewed by 1489
Abstract
This study provides a bibliometric analysis of 926 scientific publications on Argania spinosa, representing the first investigation covering all aspects of the argan tree. By combining bibliometric performance indicators and scientific mapping, based on commonly used approaches in previous studies, the analysis [...] Read more.
This study provides a bibliometric analysis of 926 scientific publications on Argania spinosa, representing the first investigation covering all aspects of the argan tree. By combining bibliometric performance indicators and scientific mapping, based on commonly used approaches in previous studies, the analysis examines the evolution, structure, and gaps in argan-related research. The results reveal that scientific production accelerated after 1996 during an industrial exploitation period, driven by the emergence of women’s cooperatives, international certifications, and national development programs. Morocco dominates the argan research landscape, benefiting from targeted policy support, international collaborations, and the species’ endemic status. Two major research aspects were identified: the valuation of argan oil, focusing on its chemical and therapeutic properties; and ecological restoration, encompassing genetic diversity, reforestation practices, and climate adaptation strategies. Despite these advancements, critical gaps remain in operational reforestation, assisted migration, post-plantation monitoring, and the integration of ecological modeling. Research remains skewed toward oil valuation, with insufficient attention to long-term forest sustainability under climate change. Future efforts should adopt a multidisciplinary framework that integrates genomics, nursery innovation, biotechnology, molecular genetics, digital monitoring tools, and socio-institutional governance. Research should also emphasize optimizing by-product use, enhancing climate resilience, and promoting gender-equitable, community-based forest management. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

19 pages, 8529 KB  
Article
Spatio-Temporal Evolution of Water-Regulating Ecosystem Services Values in Morocco’s Protected Areas: A Case Study of Ifrane National Park
by Oumayma Sadgui, Abdellatif Khattabi and Zouhir Dichane
Land 2025, 14(4), 831; https://doi.org/10.3390/land14040831 - 11 Apr 2025
Viewed by 1188
Abstract
Water-Regulating Ecosystem Services (WRES) play a crucial role in maintaining water quality and preventing soil erosion, particularly in watershed areas that are vulnerable to Land Use Land Cover Changes (LULCC) and climate change. This study focuses on the Upper Beht Watershed, the most [...] Read more.
Water-Regulating Ecosystem Services (WRES) play a crucial role in maintaining water quality and preventing soil erosion, particularly in watershed areas that are vulnerable to Land Use Land Cover Changes (LULCC) and climate change. This study focuses on the Upper Beht Watershed, the most ecologically significant basin of the Ifrane National Park (INP). The main objective is to understand how WRES values respond to the challenges posed by grasslands degradation, agricultural intensification, and urban expansion before and after the park’s creation. In this research, we first analyzed historical Land Use Land Cover (LULC) data from 1992 to 2022 using Google Earth Engine platform. We then employed the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST 3.10.2) models to quantify and map the impacts of ongoing LULCC on the watershed’s capacity to retain sediments and nutrients. Finally, we used the damage costs avoided method for economic assessment of WRES. Our findings demonstrate a notable improvement in the economic value of WRES following the establishment of the park, reaching USD 10,000 per year. In contrast, prior to its creation, this service experienced a decline of USD −7000 per year. This positive trend can be attributed to the expansion of forest cover in areas prioritized for reforestation and conservation interventions. The study highlights the critical importance of continuous WRES monitoring, providing park managers with robust data to advocate for sustained conservation efforts and increased investment in restoration initiatives within protected areas. Moreover, the findings can be used to raise awareness among local communities and encourage their active engagement in sustainable development initiatives. Full article
(This article belongs to the Special Issue Soil Ecological Risk Assessment Based on LULC)
Show Figures

Figure 1

20 pages, 7712 KB  
Article
Advancing Urban and Extra-Urban Afforestation: A Case Study of the Italian National Urban Forestry Plan in the Metropolitan City of Genoa
by Adriano Magliocco and Paola Sabbion
Land 2025, 14(4), 695; https://doi.org/10.3390/land14040695 - 25 Mar 2025
Cited by 1 | Viewed by 1131
Abstract
Urban afforestation is a key strategy for combating climate change and enhancing urban living by reducing carbon emissions and improving air quality. Reflecting these priorities, Italy’s National Ecological Transition Plan (NETP), led by the Ministry of Ecological Transition (MiTE), introduced the National Urban [...] Read more.
Urban afforestation is a key strategy for combating climate change and enhancing urban living by reducing carbon emissions and improving air quality. Reflecting these priorities, Italy’s National Ecological Transition Plan (NETP), led by the Ministry of Ecological Transition (MiTE), introduced the National Urban Forestry Plan to accelerate sustainability and resilience in urban areas. This plan focuses on reducing carbon emissions, enhancing natural capital through reforestation, and promoting Nature-Based Solutions (NBS) for climate adaptation. Our study aligns with this framework by exploring how local urban forestry initiatives support the NETP’s objectives, providing a concrete example of policy implementation. Genoa (Italy) serves as a compelling case study. In 2023, the city received PNRR funding under the “Protection and Enhancement of Urban and Extra-Urban Greenery” initiative to improve air quality, restore biodiversity, and strengthen ecological corridors. Our research identifies three key areas for improvement: ecological planning, citizen engagement, and impact monitoring. We present initial findings and quantitative data, evaluating CO2 sequestration potential, communication strategies, and consider the strengths and weaknesses of the specific context. These findings highlight the need for further investigation to optimize and communicate urban greening efforts. Full article
(This article belongs to the Special Issue Potential for Nature-Based Solutions in Urban Green Infrastructure)
Show Figures

Figure 1

22 pages, 17211 KB  
Article
ForestSplat: Proof-of-Concept for a Scalable and High-Fidelity Forestry Mapping Tool Using 3D Gaussian Splatting
by Belal Shaheen, Matthew David Zane, Bach-Thuan Bui, Shubham, Tianyuan Huang, Manuel Merello, Ben Scheelk, Steve Crooks and Michael Wu
Remote Sens. 2025, 17(6), 993; https://doi.org/10.3390/rs17060993 - 12 Mar 2025
Cited by 2 | Viewed by 2474
Abstract
Accurate, scalable forestry insights are critical for implementing carbon credit-based reforestation initiatives and data-driven ecosystem management. However, existing forest quantification methods face significant challenges: hand measurement is labor-intensive, time-consuming, and difficult to trust; satellite imagery is not accurate enough; and airborne LiDAR remains [...] Read more.
Accurate, scalable forestry insights are critical for implementing carbon credit-based reforestation initiatives and data-driven ecosystem management. However, existing forest quantification methods face significant challenges: hand measurement is labor-intensive, time-consuming, and difficult to trust; satellite imagery is not accurate enough; and airborne LiDAR remains prohibitively expensive at scale. In this work, we introduce ForestSplat: an accurate and scalable reforestation monitoring, reporting, and verification (MRV) system built from consumer-grade drone footage and 3D Gaussian Splatting. To evaluate the performance of our approach, we map and reconstruct a 200-acre mangrove restoration project in the Jobos Bay National Estuarine Research Reserve. ForestSplat produces an average mean absolute error (MAE) of 0.17 m and mean error (ME) of 0.007 m compared to canopy height maps derived from airborne LiDAR scans, using 100× cheaper hardware. We hope that our proposed framework can support the advancement of accurate and scalable forestry modeling with consumer-grade drones and computer vision, facilitating a new gold standard for reforestation MRV. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Graphical abstract

39 pages, 12565 KB  
Article
Integrating Land Use/Land Cover and Climate Change Projections to Assess Future Hydrological Responses: A CMIP6-Based Multi-Scenario Approach in the Omo–Gibe River Basin, Ethiopia
by Paulos Lukas, Assefa M. Melesse and Tadesse Tujuba Kenea
Climate 2025, 13(3), 51; https://doi.org/10.3390/cli13030051 - 28 Feb 2025
Cited by 2 | Viewed by 2457
Abstract
It is imperative to assess and comprehend the hydrological processes of the river basin in light of the potential effects of land use/land cover and climate changes. The study’s main objective was to evaluate hydrologic response of water balance components to the projected [...] Read more.
It is imperative to assess and comprehend the hydrological processes of the river basin in light of the potential effects of land use/land cover and climate changes. The study’s main objective was to evaluate hydrologic response of water balance components to the projected land use/land cover (LULC) and climate changes in the Omo–Gibe River Basin, Ethiopia. The study employed historical precipitation, maximum and minimum temperature data from meteorological stations, projected LULC change from module for land use simulation and evaluation (MOLUSCE) output, and climate change scenarios from coupled model intercomparison project phase 6 (CMIP6) global climate models (GCMs). Landsat thematic mapper (TM) (2007) enhanced thematic mapper plus (ETM+) (2016), and operational land imager (OLI) (2023) image data were utilized for LULC change analysis and used as input in MOLUSCE simulation to predict future LULC changes for 2047, 2073, and 2100. The predictive capacity of the model was evaluated using performance evaluation metrics such as Nash–Sutcliffe Efficiency (NSE), the coefficient of determination (R2), and percent bias (PBIAS). The bias correction and downscaling of CMIP6 GCMs was performed via CMhyd. According to the present study’s findings, rainfall will drop by up to 24% in the 2020s, 2050s, and 2080s while evapotranspiration will increase by 21%. The findings of this study indicate that in the 2020s, 2050s, and 2080s time periods, the average annual Tmax will increase by 5.1, 7.3, and 8.7%, respectively under the SSP126 scenario, by 5.2, 10.5, and 14.9%, respectively under the SSP245 scenario, by 4.7, 11.3, and 20.7%, respectively, under the SSP585 scenario while Tmin will increase by 8.7, 13.1, and 14.6%, respectively, under the SSP126 scenario, by 1.5, 18.2, and 27%, respectively, under the SSP245 scenario, and by 4.7, 30.7, and 48.2%, respectively, under the SSP585 scenario. Future changes in the annual average Tmax, Tmin, and precipitation could have a significant effect on surface and subsurface hydrology, reservoir sedimentation, hydroelectric power generation, and agricultural production in the OGRB. Considering the significant and long-term effects of climate and LULC changes on surface runoff, evapotranspiration, and groundwater recharge in the Omo–Gibe River Basin, the following recommendations are essential for efficient water resource management and ecological preservation. National, regional, and local governments, as well as non-governmental organizations, should develop and implement a robust water resources management plan, promote afforestation and reforestation programs, install high-quality hydrological and meteorological data collection mechanisms, and strengthen monitoring and early warning systems in the Omo–Gibe River Basin. Full article
Show Figures

Figure 1

23 pages, 8904 KB  
Perspective
Building Greener Cities Together: Urban Afforestation Requires Multiple Skills to Address Social, Ecological, and Climate Challenges
by Raffaello Resemini, Chiara Geroldi, Giulia Capotorti, Andrea De Toni, Francesco Parisi, Michele De Sanctis, Thomas Cabai, Micol Rossini, Luigi Vignali, Matteo Umberto Poli, Ermes Lo Piccolo, Barbara Mariotti, Andrea Arcidiacono, Paolo Biella, Erica Alghisi, Luciano Bani, Massino Bertini, Carlo Blasi, Francesca Buffi, Enrico Caprio, Stefano Castiglione, Patrizia Digiovinazzo, Olivia Dondina, Giuliano Fanelli, Francesco Ferrini, Valentina Fiorilli, Gianluca Gaiani, Daniela Gambino, Andrea Genre, Bruno Lasserre, Alberto Maltoni, Marco Marchetti, Chiara Montagnani, Marco Ottaviano, Cinzia Panigada, Silvia Ronchi, Stefano Salata, Fabio Salbitano, Enrico Simoni, Soraya Versace, Maria Chiara Pastore, Sandra Citterio, Massimo Labra and Rodolfo Gentiliadd Show full author list remove Hide full author list
Plants 2025, 14(3), 404; https://doi.org/10.3390/plants14030404 - 29 Jan 2025
Cited by 7 | Viewed by 2862
Abstract
Urban afforestation is increasingly regarded as a key strategy for fostering biodiversity to restore and enhance the ecosystem services needed to counteract the effects of climate change in built-up areas. In Italy, several experimental afforestation projects have been launched as part of the [...] Read more.
Urban afforestation is increasingly regarded as a key strategy for fostering biodiversity to restore and enhance the ecosystem services needed to counteract the effects of climate change in built-up areas. In Italy, several experimental afforestation projects have been launched as part of the National Recovery and Resilience Plan (NRRP), focusing on cities or metropolitan areas such as Milan, Rome, Pistoia and Campobasso. These projects follow a multidisciplinary approach, integrating botanists, foresters, urban planners, landscape architects and remote sensing specialists. The goal is to address the challenging complexity of urban forest restoration through reforestation and afforestation actions. Key innovations include the integration of transdisciplinary methodologies (landscape analysis, landscape design, forest and plant ecology) with the application of advanced remote sensing technologies and participatory community engagement frameworks to address ecological and social challenges. Experimental plots have been set up across various urban areas, testing a range of planting schemes to maximise climate change resilience and ensure long-term ecological sustainability. Emphasis has been placed on selecting drought-tolerant and thermophilic species that are better adapted to widespread warming and local urban heat islands. ‘Biodiversity strips’ with perennial flowers for insects, shrubs with berries for birds and nests for wild bees and vertebrates have been set up to enhance biodiversity in new afforestation areas. Advanced monitoring tools, such as Light Detection and Ranging (LiDAR) and multi-sensor drones, have been employed alongside field observations to assess forest growth, species survival, structural complexity and biodiversity enhancement over time. Historical analyses of landscape patterns and ecological connectivity over the past 200 years, along with evaluations of afforestation projects from the last 70 years, have provided critical insights into the successes and challenges of previous interventions, serving as a guide for future efforts. By focusing on ecological connectivity, the integration of afforested areas into the urban matrix, and citizen engagement, the current project aims to align urban forestry efforts with sustainable development goals. This comprehensive project framework addresses environmental restoration and the social and aesthetic impacts on local communities, contributing to the overall resilience and well-being of urban and peri-urban ecosystems. Full article
Show Figures

Figure 1

18 pages, 2423 KB  
Article
Variation Patterns of Fine Root Biomass, Production, and Turnover Rates in Four Subtropical Forests of China
by Jingjie Fang, Xiaoxin Feng, Yuanying Peng, Jun Wang, Xiaohong Wu, Wende Yan and Xiaoyong Chen
Forests 2025, 16(2), 220; https://doi.org/10.3390/f16020220 - 24 Jan 2025
Cited by 2 | Viewed by 1185
Abstract
Fine roots (diameter ≤ 2 mm) play a critical role in regulating soil organic carbon storage and nutrient cycling in forest ecosystems. However, the variability in fine root biomass, production, and turnover rates across different forest types remains poorly understood. This study investigates [...] Read more.
Fine roots (diameter ≤ 2 mm) play a critical role in regulating soil organic carbon storage and nutrient cycling in forest ecosystems. However, the variability in fine root biomass, production, and turnover rates across different forest types remains poorly understood. This study investigates fine root dynamics, including biomass, distribution, and turnover, across four major monoculture plantation forests in subtropical China: Chinese fir (Cunninghamia lanceolata (Lamb.) Hook), Masson pine (Pinus massoniana Lamb.), Chinese sweet gum (Liquidambar formosana Hance), and camphor tree (Cinnamomum camphora (L.) J. Presl). Using a sequential coring method, soil samples were collected monthly to monitor live and dead fine root biomass across different soil depths (0–15 cm, 15–30 cm, 30–45 cm, and 45–60 cm). Fine root production and turnover rates were estimated using three methods: Max–Min, Integral and Decision Matrix. The results showed that fine root biomass was highest in the camphor tree forest (1.96 t ha−1), followed by Masson pine (1.12 t ha−1), Chinese fir (0.89 t ha−1), and Chinese sweet gum (0.83 t ha−1). Approximately 90% of the total fine root biomass was composed of live roots across all forest types, highlighting their significant role in nutrient uptake. Both live and dead fine roots were predominantly concentrated in the upper 0–30 cm soil layer, with a notable decline in biomass in deeper layers. Fine root biomass production was highest in the camphor tree forest (2.66–2.90 t ha−1 a−1), followed by Masson pine (1.16–1.83 t ha−1 a−1), Chinese fir (0.87–0.97 t ha−1 a−1), and Chinese sweet gum (0.87–0.93 t ha−1 a−1). Turnover rates were highest in the camphor tree forest (1.25–1.36 a−1), followed by Masson pine (0.96–1.51 a−1), and both Chinese fir and Chinese sweet gum (0.94–1.05 a−1 and 0.97–1.04 a−1, respectively). This study identifies significant differences in fine root dynamics among subtropical forest types, providing baseline data critical for optimizing forest management, particularly in urban and peri-urban areas. These insights can enhance reforestation efforts, ecosystem resilience, and sustainable forest productivity. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

22 pages, 8042 KB  
Article
Quercus cerris Leaf Functional Traits to Assess Urban Forest Health Status for Expeditious Analysis in a Mediterranean European Context
by Luca Quaranta, Piera Di Marzio and Paola Fortini
Plants 2025, 14(2), 285; https://doi.org/10.3390/plants14020285 - 20 Jan 2025
Cited by 4 | Viewed by 1453
Abstract
In the Mediterranean basin, urban forests are widely recognized as essential landscape components, playing a key role in nature-based solutions by enhancing environmental quality and providing a range of ecosystem services. The selection of woody plant species for afforestation and reforestation should prioritize [...] Read more.
In the Mediterranean basin, urban forests are widely recognized as essential landscape components, playing a key role in nature-based solutions by enhancing environmental quality and providing a range of ecosystem services. The selection of woody plant species for afforestation and reforestation should prioritize native species that align with the biogeographical and ecological characteristics of the planting sites. Among these, Quercus cerris L. (Turkey oak) is considered a promising candidate for urban reforestation. However, its fitness within urban forest environments remains poorly understood. This study aimed to identify suitable leaf functional traits for assessing the response of Q. cerris in urban forests and to analyze the main climatic variables influencing its performance in urban contexts. We also proposed practical, rapid monitoring tools to compare urban and natural forests across different seasons. The results demonstrated that Q. cerris experiences significant water stress in urban forests due to the combined effects of drought and high temperatures. To find the tools to mitigate this stress, the differences between leaf traits such as specific leaf area, thickness, and the contents of chlorophyll, anthocyanins, and flavonols in urban and natural forests were analyzed. Our findings underscore the high adaptability of Q. cerris to varied climatic and environmental conditions. This study provides a practical method for rapidly assessing the responses of tree species to climate change. In the future, this approach will be tested on other native species that are characteristic of Mediterranean forest ecosystems to help with choosing afforestation and reforestation strategies. Full article
Show Figures

Figure 1

43 pages, 19436 KB  
Article
Quantification of Forest Regeneration on Forest Inventory Sample Plots Using Point Clouds from Personal Laser Scanning
by Sarah Witzmann, Christoph Gollob, Ralf Kraßnitzer, Tim Ritter, Andreas Tockner, Lukas Moik, Valentin Sarkleti, Tobias Ofner-Graff, Helmut Schume and Arne Nothdurft
Remote Sens. 2025, 17(2), 269; https://doi.org/10.3390/rs17020269 - 14 Jan 2025
Cited by 1 | Viewed by 1476
Abstract
The presence of sufficient natural regeneration in mature forests is regarded as a pivotal criterion for their future stability, ensuring seamless reforestation following final harvesting operations or forest calamities. Consequently, forest regeneration is typically quantified as part of forest inventories to monitor its [...] Read more.
The presence of sufficient natural regeneration in mature forests is regarded as a pivotal criterion for their future stability, ensuring seamless reforestation following final harvesting operations or forest calamities. Consequently, forest regeneration is typically quantified as part of forest inventories to monitor its occurrence and development over time. Light detection and ranging (LiDAR) technology, particularly ground-based LiDAR, has emerged as a powerful tool for assessing typical forest inventory parameters, providing high-resolution, three-dimensional data on the forest structure. Therefore, it is logical to attempt a LiDAR-based quantification of forest regeneration, which could greatly enhance area-wide monitoring, further supporting sustainable forest management through data-driven decision making. However, examples in the literature are relatively sparse, with most relevant studies focusing on an indirect quantification of understory density from airborne LiDAR data (ALS). The objective of this study is to develop an accurate and reliable method for estimating regeneration coverage from data obtained through personal laser scanning (PLS). To this end, 19 forest inventory plots were scanned with both a personal and a high-resolution terrestrial laser scanner (TLS) for reference purposes. The voxelated point clouds obtained from the personal laser scanner were converted into raster images, providing either the canopy height, the total number of filled voxels (containing at least one LiDAR point), or the ratio of filled voxels to the total number of voxels. Local maxima in these raster images, assumed to be likely to contain tree saplings, were then used as seed points for a raster-based tree segmentation, which was employed to derive the final regeneration coverage estimate. The results showed that the estimates differed from the reference in a range of approximately −10 to +10 percentage points, with an average deviation of around 0 percentage points. In contrast, visually estimated regeneration coverages on the same forest plots deviated from the reference by between −20 and +30 percentage points, approximately −2 percentage points on average. These findings highlight the potential of PLS data for automated forest regeneration quantification, which could be further expanded to include a broader range of data collected during LiDAR-based forest inventory campaigns. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Graphical abstract

28 pages, 32933 KB  
Article
The Change Detection of Mangrove Forests Using Deep Learning with Medium-Resolution Satellite Imagery: A Case Study of Wunbaik Mangrove Forest in Myanmar
by Kyaw Soe Win and Jun Sasaki
Remote Sens. 2024, 16(21), 4077; https://doi.org/10.3390/rs16214077 - 31 Oct 2024
Cited by 4 | Viewed by 4087
Abstract
This paper presents the development of a U-Net model using four basic optical bands and SRTM data to analyze changes in mangrove forests from 1990 to 2024, with an emphasis on the impact of restoration programs. The model, which employed supervised learning for [...] Read more.
This paper presents the development of a U-Net model using four basic optical bands and SRTM data to analyze changes in mangrove forests from 1990 to 2024, with an emphasis on the impact of restoration programs. The model, which employed supervised learning for binary classification by fusing multi-temporal Landsat 8 and Sentinel-2 imagery, achieved a superior accuracy of 99.73% for the 2020 image classification. It was applied to predict the long-term mangrove maps in Wunbaik Mangrove Forest (WMF) and to detect the changes at five-year intervals. The change detection results revealed significant changes in the mangrove forests, with 29.3% deforestation, 5.75% reforestation, and −224.52 ha/yr of annual rate of changes over 34 years. The large areas of mangrove forests have increased since 2010, primarily due to naturally recovered and artificially planted mangroves. Approximately 30% of the increased mangroves from 2015 to 2024 were attributed to mangrove plantations implemented by the government. This study contributes to developing a deep learning model with multi-temporal and multi-source imagery for long-term mangrove monitoring by providing accurate performance and valuable information for effective conservation strategies and restoration programs. Full article
(This article belongs to the Special Issue Remote Sensing in Mangroves III)
Show Figures

Figure 1

15 pages, 3362 KB  
Article
Assessing Atlantic Kelp Forest Restoration Efforts in Southern Europe
by Alexandre F. S. Marques, Álvaro Sanchéz-Gallego, Rodrigo R. Correia, Isabel Sousa-Pinto, Silvia Chemello, Inês Louro, Marco F. L. Lemos and João N. Franco
Sustainability 2024, 16(21), 9176; https://doi.org/10.3390/su16219176 - 23 Oct 2024
Cited by 3 | Viewed by 2370
Abstract
Kelp forests are essential marine ecosystems increasingly compromised by human activities. Effective reforestation strategies are urgently needed, and the “green gravel” method is a viable tool already used in some European regions. This study aimed to assess the success of this method using [...] Read more.
Kelp forests are essential marine ecosystems increasingly compromised by human activities. Effective reforestation strategies are urgently needed, and the “green gravel” method is a viable tool already used in some European regions. This study aimed to assess the success of this method using the native Kelp species Laminaria ochroleuca on the Portuguese coastline. Cultures of green gravel were reared until the specimens reached a size of approximately 3 cm. The gravel was then deployed at selected sites in Peniche, Berlengas, and Cascais. Over an eight-month period, scientific scuba divers monitored the integration of Kelp, along with associated fish, invertebrate, and algae communities. Nutrient availability, temperature, water movement, substrate type, and Rugosity Index (RI) were also measured. The highest success rate was 12% in Consolação, with Elefante and Galos (Berlengas) reaching 7% and 4%, respectively. By the end of the monitoring period, Cascais had no remaining Kelp on green gravel. Present data suggest that higher success is dependent on less rugged and higher RI topography. Higher grazing pressure, rougher terrain, and unexpected sedimentation appear to be the main obstacles to deployment success. Solid knowledge (biologic and topographic) on the restoration site, starting restoration actions near already established Kelp forests, and significantly scaling up restoration efforts could substantially improve the success of the green gravel method in future reforestation campaigns. Full article
Show Figures

Figure 1

27 pages, 17193 KB  
Article
A Cost–Benefit Analysis for the Economic Evaluation of Ecosystem Services Lost Due to Erosion in a Mediterranean River Basin
by Giuliano Rocco Romanazzi, Giovanni Ottomano Palmisano, Marilisa Cioffi, Vincenzo Leronni, Ervin Toromani, Romina Koto, Annalisa De Boni, Claudio Acciani and Rocco Roma
Land 2024, 13(9), 1512; https://doi.org/10.3390/land13091512 - 18 Sep 2024
Cited by 4 | Viewed by 2162
Abstract
Soil degradation in Europe is mostly represented by soil erosion that, as a sediment production mechanism, is the main environmental threat to many watersheds, including the Bovilla watershed (Tirana), useful for the supply of drinking water to the city, and therefore, the care [...] Read more.
Soil degradation in Europe is mostly represented by soil erosion that, as a sediment production mechanism, is the main environmental threat to many watersheds, including the Bovilla watershed (Tirana), useful for the supply of drinking water to the city, and therefore, the care of water quality is of particular interest. The soil erosion of the Bovilla watershed was monitored in a work set up in June 2017. Following this work, this research updates the previous data on soil loss at the Bovilla watershed in t/ha/year to September 2019 and focuses on the identification and monetary evaluation of the ecosystem services (ESs) linked to soil erosion (loss of carbon, loss of mineral elements, habitat quality, crop productivity, and sustainable tourism suitability). Then, we applied the replacement cost analysis to test the economic convenience and suggest the adoption of sustainable land management practices (e.g., reforestation) able to improve the quality water in this watershed. The study carried out demonstrates that the values of soil lost due to erosion vary depending on the type of land use (ranging from average values of 120.32 t/ha for bare land to values of 8.16 t/ha for wooded areas). Furthermore, from the application of monetary methods for the evaluation of some ecosystem services linked to erosion (loss of carbonaceous and mineral elements, habitat quality, productivity, suitability for sustainable tourism), it clearly emerges that the value of the productivity of agricultural crops varies from EUR 0 to 35,320.50/ha and that the service represents a more incisive service than the previous ones, so much so as to make the conversion of some agricultural land with high productivity values into wooded areas economically disadvantageous. The data from this study may help to develop Bovilla watershed management strategies for erosion and pollution control and sediment remediation mainly in agricultural lands. A program of measures can be effective for controlling soil erosion, but it must be implemented over long time frames, and it requires relevant investments from the public and private sectors, also with a view to increase the allocation of economic values of monetary compensation aimed at those who decide to start forestation projects on highly productive soils. Full article
Show Figures

Figure 1

19 pages, 7388 KB  
Article
An Interdisciplinary Approach to Understand the Resilience of Agrosystems in the Sahel and West Africa
by Luc Descroix, Anne Luxereau, Laurent A. Lambert, Olivier Ruë, Arona Diedhiou, Aïda Diongue-Niang, Amadou Hamath Dia, Fabrice Gangneron, Sylvie Paméla Manga, Ange B. Diedhiou, Julien Andrieu, Patrick Chevalier and Bakary Faty
Sustainability 2024, 16(13), 5555; https://doi.org/10.3390/su16135555 - 28 Jun 2024
Cited by 2 | Viewed by 1863
Abstract
Sub-Saharan African farmers have long been portrayed with very negative representations, at least since the beginning of coordinated European colonialism in the late 19th century. In the Sahel-Sudan area, agrosystems have been described as overgrazed, forests as endangered, and soils as overexploited, with [...] Read more.
Sub-Saharan African farmers have long been portrayed with very negative representations, at least since the beginning of coordinated European colonialism in the late 19th century. In the Sahel-Sudan area, agrosystems have been described as overgrazed, forests as endangered, and soils as overexploited, with local and traditional “archaic” practices. Against this background, the objective of this article is to focus on these agrosystems’ resilience, for which several criteria have been monitored. The approach used in this research was to synthesize observations from a large amount of material gathered over multiple years by the authors, drawing on our long-term commitment to, and inter-disciplinary study of, the evolution of surface hydrology, ecosystems, and agrosystems of West Africa. The positive trends in rainfall and streamflows, reinforced by farmer’s practices, confirm the overall regreening and reforestation of the Sahel-Sudan strip, especially in areas with high population densities, including the mangrove areas. The intensification of agricultural systems and the recovery of the water-holding capacity of soils and catchments explain the recorded general increase in terms of food self-sufficiency in the Sahel, as well as in crops yields and food production. Finally, we compare the neo-Malthusian discourse to the actual resilience of these agrosystems. The article concludes with a recommendation calling for the empowerment of smallholder farmers to take greater advantage of the current wet period. Overall, the speed of change in knowledge and know-how transfer and implementation, and the farmers’ ability to adapt to ecological and economic crises, must be highlighted. Far from being resistant to change, West African agriculturalists innovate, experiment, borrow, transform, and choose according to their situation, projects, and social issues. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

Back to TopTop