Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (116)

Search Parameters:
Keywords = rotor-side converter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1513 KB  
Article
Accurate Fault Classification in Wind Turbines Based on Reduced Feature Learning and RVFLN
by Mehmet Yıldırım and Bilal Gümüş
Electronics 2025, 14(19), 3948; https://doi.org/10.3390/electronics14193948 - 7 Oct 2025
Viewed by 242
Abstract
This paper presents a robust and computationally efficient fault classification framework for wind energy conversion systems (WECS), built upon a Robust Random Vector Functional Link Network (Robust-RVFLN) and validated through real-time simulations on a Real-Time Digital Simulator (RTDS). Unlike existing studies that depend [...] Read more.
This paper presents a robust and computationally efficient fault classification framework for wind energy conversion systems (WECS), built upon a Robust Random Vector Functional Link Network (Robust-RVFLN) and validated through real-time simulations on a Real-Time Digital Simulator (RTDS). Unlike existing studies that depend on high-dimensional feature extraction or purely data-driven deep learning models, our approach leverages a compact set of five statistically significant and physically interpretable features derived from rotor torque, phase current, DC-link voltage, and dq-axis current components. This reduced feature set ensures both high discriminative power and low computational overhead, enabling effective deployment in resource-constrained edge devices and large-scale wind farms. A synthesized dataset representing seven representative fault scenarios—including converter, generator, gearbox, and grid faults—was employed to evaluate the model. Comparative analysis shows that the Robust-RVFLN consistently outperforms conventional classifiers (SVM, ELM) and deep models (CNN, LSTM), delivering accuracy rates of up to 99.85% for grid-side line-to-ground faults and 99.81% for generator faults. Beyond accuracy, evaluation metrics such as precision, recall, and F1-score further validate its robustness under transient operating conditions. By uniting interpretability, scalability, and real-time performance, the proposed framework addresses critical challenges in condition monitoring and predictive maintenance, offering a practical and transferable solution for next-generation renewable energy infrastructures. Full article
Show Figures

Figure 1

20 pages, 2322 KB  
Article
Transient Stability-Oriented Nonlinear Power Control of PMSG-WT Using Power Transfer Matrix Modeling with DC Link Behavior
by Muhammad Ali Bijarani, Ghulam S. Kaloi, Mazhar Baloch, Rameez Akbar Talani, Muhammad I. Masud, Mohammed Aman and Touqeer Ahmed Jumani
Machines 2025, 13(10), 886; https://doi.org/10.3390/machines13100886 - 26 Sep 2025
Viewed by 266
Abstract
In this paper, a nonlinear power transfer matrix model is presented for power control of Permanent Magnet Synchronous Generator (PMSG) wind turbines, incorporating the DC link dynamics to account for transient stability, thereby clarifying the technical aspect and purpose. The rising penetration of [...] Read more.
In this paper, a nonlinear power transfer matrix model is presented for power control of Permanent Magnet Synchronous Generator (PMSG) wind turbines, incorporating the DC link dynamics to account for transient stability, thereby clarifying the technical aspect and purpose. The rising penetration of wind turbines (WTs) into the power grid necessitates that they remain connected during and after faults to ensure system reliability. During voltage dips, the stator and grid-side converter (GSC) of a permanent magnet synchronous generator (PMSG) system are directly impacted by the sudden voltage changes. These disturbances can induce large transient voltages and currents in the stator, which in turn may lead to uncontrolled current flow in the rotor circuit and stress the converter components. Moreover, Low Voltage Ride-Through (LVRT) is a critical requirement for grid connection to Wind Energy Conversion Systems (WECS). It ensures that WTs remain connected and operational during short periods of grid voltage dips (faults), instead of disconnecting immediately. This capability is essential for maintaining grid stability. However, in this paper, the authors propose an LVRT scheme for a grid-connected PMSG-based WECS. A sequence of attempts was performed to validate the effectiveness of the proposed control scheme under fault conditions and to improve its overall performance. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

20 pages, 9282 KB  
Article
Electromagnetic Vibration Characteristics Analysis of Large-Scale Doubly Fed Induction Machines Under Multiple Operating Conditions
by Haoyu Kang, Yiming Ma, Liyang Liu, Fanqi Huang and Libing Zhou
Machines 2025, 13(9), 777; https://doi.org/10.3390/machines13090777 - 30 Aug 2025
Viewed by 408
Abstract
The electromagnetic vibration characteristics of doubly fed induction machines (DFIMs) employed in variable-speed pumped storage units, which must accommodate frequent power response and operational mode transitions, serve as critical indicators for assessing unit safety and stability. Nevertheless, there persists a significant research gap [...] Read more.
The electromagnetic vibration characteristics of doubly fed induction machines (DFIMs) employed in variable-speed pumped storage units, which must accommodate frequent power response and operational mode transitions, serve as critical indicators for assessing unit safety and stability. Nevertheless, there persists a significant research gap regarding generalized vibration analysis models and comprehensive investigations into their steady-state and dynamic vibration performance. To address this challenge, this study develops a universal analytical model for electromagnetic excitation forces in DFIMs using Maxwell’s stress tensor method, explicitly incorporating operational conditions such as rotor eccentricity and load imbalance. Using a 300 MW DFIM as a case study, we employ a hybrid numerical-analytical approach to examine the detrimental effects of harmonic currents generated by rotor-side converters. Furthermore, we systematically analyze how spatial harmonics induced by mechanical faults and temporal harmonics arising from electrical faults collectively influence the electromagnetic vibration behavior. Experimental validation conducted on a 10 MW DFIM prototype through vibration displacement measurements confirms the efficacy of the proposed analytical framework. Full article
Show Figures

Figure 1

19 pages, 4287 KB  
Article
Steady-State Reactive Power Capability Analysis of Doubly-Fed Variable Speed Pumped Storage Unit Considering the Unit’s Operating Characteristics
by Bo Yi, Zheyuan Zhang, Chuang Dong, Chunyang Gao, Sijia Sun, Jiawei Gu and Qiming Yan
Water 2025, 17(17), 2519; https://doi.org/10.3390/w17172519 - 24 Aug 2025
Viewed by 837
Abstract
Based on the actual data of a 300 MW doubly-fed variable speed pumped storage units (DFVSPSUs) in China, the reactive power characteristics of both the stator side and the grid-side converter are analyzed, and the reactive power regulation capability of the unit is [...] Read more.
Based on the actual data of a 300 MW doubly-fed variable speed pumped storage units (DFVSPSUs) in China, the reactive power characteristics of both the stator side and the grid-side converter are analyzed, and the reactive power regulation capability of the unit is discussed. First, the power coupling relationship is analyzed, demonstrating that the reactive power-regulation capability is jointly composed of the stator side and the grid-side converter, without direct coupling between them. Next, we determine the doubly-fed induction generator (DFIG) capacity, explaining that the capacity of the DFIG exceeds the rated capacity of the unit. Then, we note that the stator-side reactive power regulation capability is limited by prime mover power, stator current, and rotor current, while the grid-side converter regulation capability is influenced by converter capacity and rotor-side real power. Furthermore, the stator-side, grid-side converter and total reactive power-regulation capabilities of the unit under different water heads and real power conditions are determined. The results demonstrate that fully considering the grid-side converter can increase the unit’s reactive power regulation capability by 12% to 26%. Finally, by comparing the reactive power operating ranges of fixed-speed and variable-speed units, the reactive power advantages of the variable-speed unit are quantified. Full article
Show Figures

Figure 1

23 pages, 2768 KB  
Article
Nonlinear Algebraic Parameter Estimation of Doubly Fed Induction Machine Based on Rotor Current Falling Curves
by Alexander Glazyrin, Dmitriy Bunkov, Evgeniy Bolovin, Yusup Isaev, Vladimir Kopyrin, Sergey Kladiev, Alexander Filipas, Sergey Langraf, Rustam Khamitov, Vladimir Kovalev, Evgeny Popov, Semen Popov and Marina Deneko
Energies 2025, 18(16), 4316; https://doi.org/10.3390/en18164316 - 14 Aug 2025
Viewed by 354
Abstract
Currently, wind turbines utilize doubly fed induction machines that incorporate a frequency converter in the rotor circuit to manage slip energy. This setup ensures a stable voltage amplitude and frequency that align with the alternating current. It is crucial to accurately determine the [...] Read more.
Currently, wind turbines utilize doubly fed induction machines that incorporate a frequency converter in the rotor circuit to manage slip energy. This setup ensures a stable voltage amplitude and frequency that align with the alternating current. It is crucial to accurately determine the parameters of the equivalent circuit from the rotor side of the vector control system of the frequency converter. The objective of this study is to develop a method for the preliminary identification of the doubly fed induction machines parameters by analyzing the rotor current decay curves using Newton’s method. The numerical estimates of the equivalent circuit parameters a doubly fed induction machines with a fixed short-circuited rotor are obtained during the validation of the results on a real plant. It is along with the integral errors of deviation between the experimental rotor current decay curve and the response of the adaptive regression model. The integral errors do not exceed 4% in nearly all sections of the curves. It is considered acceptable in engineering practice. The developed algorithm for the preliminary identification for the parameters of the doubly fed induction machines substitution scheme can be applied with the configuring machines control systems, including a vector control system. Full article
Show Figures

Figure 1

22 pages, 3601 KB  
Article
Support-Vector-Regression-Based Intelligent Control Strategy for DFIG Wind Turbine Systems
by Farhat Nasim, Shahida Khatoon, Ibraheem Nasiruddin, Mohammad Shahid, Shabana Urooj and Basel Bilal
Machines 2025, 13(8), 687; https://doi.org/10.3390/machines13080687 - 5 Aug 2025
Cited by 1 | Viewed by 603
Abstract
Achieving sustainable energy goals requires efficient integration of renewables like wind energy. Doubly fed induction generator (DFIG)-based wind turbine systems (WTSs) operate efficiently across a range of speeds, making them well-suited for modern renewable energy systems. However, sudden wind speed variations can cause [...] Read more.
Achieving sustainable energy goals requires efficient integration of renewables like wind energy. Doubly fed induction generator (DFIG)-based wind turbine systems (WTSs) operate efficiently across a range of speeds, making them well-suited for modern renewable energy systems. However, sudden wind speed variations can cause power oscillations, rotor speed fluctuations, and voltage instability. Traditional proportional–integral (PI) controllers struggle with such nonlinear, rapidly changing scenarios. A control approach utilizing support vector regression (SVR) is proposed for the DFIG wind turbine system. The SVR controller manages both active and reactive power by simultaneously controlling the rotor- and grid-side converters (RSC and GSC). Simulations under a sudden wind speed variation from 10 to 12 m per second show the SVR approach reduces settling time significantly (up to 70.3%), suppresses oscillations in rotor speed, torque, and power output, and maintains over 97% DC-link voltage stability. These improvements enhance power quality, reliability, and system performance, demonstrating the SVR controller’s superiority over conventional PI methods for variable-speed wind energy systems. Full article
(This article belongs to the Special Issue Modelling, Design and Optimization of Wind Turbines)
Show Figures

Figure 1

27 pages, 3529 KB  
Article
Coordinated Sliding Mode and Model Predictive Control for Enhanced Fault Ride-Through in DFIG Wind Turbines
by Ahmed Muthanna Nori, Ali Kadhim Abdulabbas and Tawfiq M. Aljohani
Energies 2025, 18(15), 4017; https://doi.org/10.3390/en18154017 - 28 Jul 2025
Cited by 2 | Viewed by 431
Abstract
This work proposes an effective control technique for enhancing the stability of Doubly Fed Induction Generator-Based Wind Turbines (DFIG-WTs) connected to the grid during voltage sag and swell events, ensuring the reliable and efficient operation of wind energy systems integrated with the grid. [...] Read more.
This work proposes an effective control technique for enhancing the stability of Doubly Fed Induction Generator-Based Wind Turbines (DFIG-WTs) connected to the grid during voltage sag and swell events, ensuring the reliable and efficient operation of wind energy systems integrated with the grid. The proposed approach integrates a Dynamic Voltage Restorer (DVR) in series with a Wind Turbine Generator (WTG) output terminal to enhance the Fault Ride-Through (FRT) capability during grid disturbances. To develop a flexible control strategy for both unbalanced and balanced fault conditions, a combination of feedforward and feedback control based on a sliding mode control (SMC) for DVR converters is used. This hybrid strategy allows for precise voltage regulation, enabling the series compensator to inject the required voltage into the grid, thereby ensuring constant generator terminal voltages even during faults. The SMC enhances the system’s robustness by providing fast, reliable regulation of the injected voltage, effectively mitigating the impact of grid disturbances. To further enhance system performance, Model Predictive Control (MPC) is implemented for the Rotor-Side Converter (RSC) within the back-to-back converter (BTBC) configuration. The main advantages of the predictive control method include eliminating the need for linear controllers, coordinate transformations, or modulators for the converter. Additionally, it ensures the stable operation of the generator even under severe operating conditions, enhancing system robustness and dynamic response. To validate the proposed control strategy, a comprehensive simulation is conducted using a 2 MW DFIG-WT connected to a 120 kV grid. The simulation results demonstrate that the proposed control approach successfully limits overcurrent in the RSC, maintains electromagnetic torque and DC-link voltage within their rated values, and dynamically regulates reactive power to mitigate voltage sags and swells. This allows the WTG to continue operating at its nominal capacity, fully complying with the strict requirements of modern grid codes and ensuring reliable grid integration. Full article
Show Figures

Figure 1

23 pages, 4087 KB  
Article
Low-Voltage Ride Through Capability Analysis of a Reduced-Size DFIG Excitation Utilized in Split-Shaft Wind Turbines
by Rasoul Akbari and Afshin Izadian
J. Low Power Electron. Appl. 2025, 15(3), 41; https://doi.org/10.3390/jlpea15030041 - 21 Jul 2025
Viewed by 588
Abstract
Split-shaft wind turbines decouple the turbine’s shaft from the generator’s shaft, enabling several modifications in the drivetrain. One of the significant achievements of a split-shaft drivetrain is the reduction in size of the excitation circuit. The grid-side converter is eliminated, and the rotor-side [...] Read more.
Split-shaft wind turbines decouple the turbine’s shaft from the generator’s shaft, enabling several modifications in the drivetrain. One of the significant achievements of a split-shaft drivetrain is the reduction in size of the excitation circuit. The grid-side converter is eliminated, and the rotor-side converter can safely reduce its size to a fraction of a full-size excitation. Therefore, this low-power-rated converter operates at low voltage and handles regular operations well. However, fault conditions may expose weaknesses in the converter and push it to its limits. This paper investigates the effects of the reduced-size rotor-side converter on the voltage ride-through capabilities required from all wind turbines. Four different protection circuits, including the active crowbar, active crowbar along a resistor–inductor circuit (C-RL), series dynamic resistor (SDR), and new-bridge fault current limiter (NBFCL), are employed, and their effects are investigated and compared. Wind turbine controllers are also utilized to reduce the impact of faults on the power electronic converters. One effective method is to store excess energy in the generator’s rotor. The proposed low-voltage ride-through strategies are simulated in MATLAB Simulink (2022b) to validate the results and demonstrate their effectiveness and functionality. Full article
Show Figures

Figure 1

15 pages, 2113 KB  
Article
Improved Segmented Control Strategy for Continuous Fault Ride-Through of Doubly-Fed Wind Turbines
by Tie Chen, Yifan Xu, Yue Liu, Junlin Ren and Youyuan Fan
Energies 2025, 18(14), 3845; https://doi.org/10.3390/en18143845 - 19 Jul 2025
Viewed by 370
Abstract
Aiming at the transient overcurrent problem faced by doubly-fed induction generators (DFIGs) during continuous voltage fault ride-through, a segmented control strategy based on the rotor side converter (RSC) is proposed. First, through theoretical analysis of the relationship between stator current and transient induced [...] Read more.
Aiming at the transient overcurrent problem faced by doubly-fed induction generators (DFIGs) during continuous voltage fault ride-through, a segmented control strategy based on the rotor side converter (RSC) is proposed. First, through theoretical analysis of the relationship between stator current and transient induced electromotive force (EMF) in each stage of continuous faults, a feedforward control strategy based on the transient component of stator current is proposed. The observable stator current is extracted for its transient component, which is used as a rotor voltage compensation term to effectively counteract the influence of transient EMF. Meanwhile, a fuzzy control algorithm is introduced during the low voltage ride-through (LVRT) stage to dynamically adjust the virtual resistance value, enhancing the system’s damping characteristics. Studies show that this strategy significantly suppresses rotor current spikes in all stages of voltage ride-through. Finally, simulation results verify that the proposed method improves the ride-through performance of DFIG under continuous voltage faults. Full article
Show Figures

Figure 1

22 pages, 3239 KB  
Article
Analysis and Suppression Strategies of Sub-Synchronous Oscillations in DFIG Wind Farm Integrated with Synchronous Pumped Storage System
by Yuzhe Chen, Feng Wu, Linjun Shi, Yang Li, Zizhao Wang and Yanbo Ding
Sustainability 2025, 17(10), 4588; https://doi.org/10.3390/su17104588 - 16 May 2025
Viewed by 644
Abstract
The sub-synchronous oscillation (SSO) characteristics and suppression strategies of a hybrid system comprising doubly fed induction generator (DFIG)-based wind turbines and synchronous pumped storage units connected to the power grid via series-compensated transmission lines are analyzed. A modular modeling approach is used to [...] Read more.
The sub-synchronous oscillation (SSO) characteristics and suppression strategies of a hybrid system comprising doubly fed induction generator (DFIG)-based wind turbines and synchronous pumped storage units connected to the power grid via series-compensated transmission lines are analyzed. A modular modeling approach is used to construct a detailed system model, including the wind turbine shaft system, DFIG, converter control system, synchronous machine, excitation system, power system stabilizer (PSS), and series-compensated transmission lines. Eigenvalue calculation-based small-signal stability analysis is conducted to identify the dominant oscillation modes. Suppression measures are also developed using relative participation analysis, and simulations are carried out to validate the accuracy of the model and analysis method. The analysis results indicate that the SSO phenomenon is primarily influenced by the electrical state variables of the DFIG system, while the impact of the state variables of the synchronous machine is relatively minor. When the level of series compensation in the system increases, SSO is significantly exacerbated. To address this issue, a sub-synchronous damping controller (SSDC) is incorporated on the rotor side of the DFIG. The results demonstrate that this method effectively mitigates the SSO and significantly enhances the system’s robustness against disturbances. Furthermore, a simplified modeling approach is proposed based on relative participation analysis. This method neglects the dynamic characteristics of the synchronous machine while considering its impact on the steady-state impedance and initial conditions of the model. These findings provide theoretical guidance and practical insights for addressing and mitigating SSO issues in hybrid renewable energy systems composed of DFIGs and synchronous machines. Full article
Show Figures

Figure 1

17 pages, 3443 KB  
Article
Low Voltage Ride Through Coordination Control Strategy of DFIG with Series Grid Side Converter
by Xin Qi, Can Ding, Jun Zhang, Quan Wang and Wenhui Chen
Energies 2025, 18(10), 2537; https://doi.org/10.3390/en18102537 - 14 May 2025
Viewed by 640
Abstract
The present study investigates the control strategy of a novel doubled-fed induction generator (DFIG) with a series grid-side converter (SGSC) during grid faults. The rotor-side inverter is subject to a control strategy derived from the Model Predictive Current Control (MPCC) theory, which is [...] Read more.
The present study investigates the control strategy of a novel doubled-fed induction generator (DFIG) with a series grid-side converter (SGSC) during grid faults. The rotor-side inverter is subject to a control strategy derived from the Model Predictive Current Control (MPCC) theory, which is implemented during periods of fault occurrence; for the series grid-side converter, the positive and negative sequence component control is implemented during both steady state and fault periods to enhance system stability and performance. The proposed coordinated control strategy is implemented on a doubly fed turbine with SGSC, while taking into account different degrees of symmetric and asymmetric faults to further evaluate the efficacy of the proposed method. The results of the simulations demonstrate the efficacy of the model-predictive current control scheme applied to the rotor-side converter under conditions of asymmetric faults. This enables the suppression of a range of phenomena, including rotor overcurrent, stator overcurrent, and overvoltage, electromagnetic torque ripple, and DC bus voltage during low-voltage ride-through (LVRT), among others. The present study confirms the viability of implementing positive and negative sequences of voltage separation control in the SGSC during both grid faults and steady state. This approach is expected to minimize the switching of SGSC control strategies and thereby reduce output power fluctuations. The Rotor Side Converter (RSC) and SGSC can perform coordinated control during faults, and the proposed method is able to improve low-voltage ride-through performance compared to existing methods, thereby preventing damage to the converter under multiple fault conditions. Full article
(This article belongs to the Special Issue Control and Optimization of Power Converters)
Show Figures

Figure 1

25 pages, 5934 KB  
Article
Detection and Localization of Rotor Winding Inter-Turn Short Circuit Fault in DFIG Using Zero-Sequence Current Component Under Variable Operating Conditions
by Muhammad Shahzad Aziz, Jianzhong Zhang, Sarvarbek Ruzimov and Xu Huang
Sensors 2025, 25(9), 2815; https://doi.org/10.3390/s25092815 - 29 Apr 2025
Viewed by 978
Abstract
DFIG rotor windings face high stress and transients from back-to-back converters, causing inter-turn short circuit (ITSC) faults. Rapid rotor-side dynamics, combined with the unique capability of DFIG to operate in multiple modes, make the fault detection in rotor windings more challenging. This paper [...] Read more.
DFIG rotor windings face high stress and transients from back-to-back converters, causing inter-turn short circuit (ITSC) faults. Rapid rotor-side dynamics, combined with the unique capability of DFIG to operate in multiple modes, make the fault detection in rotor windings more challenging. This paper presents a comprehensive methodology for online ITSC fault diagnosis in DFIG rotor windings based on zero-sequence current (ZSC) component analysis under variable operating conditions. Fault features are identified and defined through the analytical evaluation of the DFIG mathematical model. Further, a simple yet effective algorithm is presented for online implementation of the proposed methodology. Finally, the simulation of the DFIG model is carried out in MATLAB/Simulink under both sub-synchronous and super-synchronous modes, covering a range of variable loads and low-frequency conditions, along with different fault severity levels of ITSC in rotor windings. Simulation results confirm the effectiveness of the proposed methodology for online ITSC fault detection at a low-severity stage and precise location identification of the faulty phase within the DFIG rotor windings under both sub-synchronous and super-synchronous modes. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

18 pages, 8126 KB  
Article
Strengthening Low-Voltage Ride Through Competency of Doubly Fed Induction Generator Driven by Wind Turbine Using Super-Twisting Sliding Mode Control
by Ashraf K. Abdelaal and Mohamed A. El-Hameed
Energies 2025, 18(8), 1954; https://doi.org/10.3390/en18081954 - 11 Apr 2025
Viewed by 580
Abstract
Power network codes necessitate that any renewable source aligns with LVRT rules and assists in voltage restoration during voltage dips. This paper focuses on increasing the low-voltage ride through capability of a doubly fed induction generator-based wind turbine. Three different controllers are discussed [...] Read more.
Power network codes necessitate that any renewable source aligns with LVRT rules and assists in voltage restoration during voltage dips. This paper focuses on increasing the low-voltage ride through capability of a doubly fed induction generator-based wind turbine. Three different controllers are discussed in this article. The first is based on robust super-twisting sliding mode control, which is a recent robust control technique. The second uses a new metaheuristic optimizer called the Arctic Puffin optimizer (APO), and the third relies on the traditional PI controller. The grid-side converter sustains the potential of the DC converter link and the regulation of both the active and reactive power supplied to the power grid via three controllers. The rotor-side converter regulates the generator’s electromagnetic torque via two controllers. Doubly fed induction generator control is a challenging task as the two converters have five controllers, and it is vital to specify the ideal parameters for each controller. In the case of super-twisting sliding mode control, the APO is utilized to obtain the sliding surfaces needed for the five controllers. Moreover, the APO is exploited to obtain the optimal constants of the suggested PI regulators. The simulation results prove the excellent performance of both super-twisting- and APO-based controllers, with better performance demonstrated with super-twisting sliding mode control, which demonstrates excellent transient performance with the least overshoot among the three controllers. The super-twisting-based controller has a distinct feature, as it has good performance with parameter variations. Full article
(This article belongs to the Special Issue Intelligent Control for Electrical Power and Energy System)
Show Figures

Figure 1

20 pages, 7097 KB  
Article
Crowbar-Less Low-Voltage Ride-Through Control Strategy for Full-Size Converter-Based Variable-Speed Pumped Storage Units in Generation Mode
by Demin Liu, Xinchi Ma, Zhichao Wang, Yong Yang, Jin Wang and Libing Zhou
Electronics 2025, 14(7), 1411; https://doi.org/10.3390/electronics14071411 - 31 Mar 2025
Cited by 2 | Viewed by 486
Abstract
The full-size converter-based variable-speed pumped storage unit (FSC-VSPSU) is widely regarded as the future direction of variable-speed pumped storage technology due to its wide operating range and fast switching capabilities. However, previous studies often assume a constant DC-link voltage, which is not applicable [...] Read more.
The full-size converter-based variable-speed pumped storage unit (FSC-VSPSU) is widely regarded as the future direction of variable-speed pumped storage technology due to its wide operating range and fast switching capabilities. However, previous studies often assume a constant DC-link voltage, which is not applicable to FSC-VSPSU, as fluctuations in grid-side active power can affect the DC-link voltage, thereby threatening system stability. To address this issue, this article proposes a crowbar-less low-voltage ride-through (LVRT) control strategy for FSC-VSPSU. The proposed approach effectively mitigates the elevated system costs inherent in conventional crowbar circuit implementations by harnessing the significant energy storage potential of the rotor to absorb power imbalances during LVRT. Furthermore, a novel parameter design methodology for the DC-link voltage controller is introduced to guarantee that the DC-link voltage consistently remains within the allowable threshold range during LVRT. The effectiveness of the proposed control strategy and the accuracy of the parameter design methodology have been validated through MATLAB(R2023a)/Simulink. Full article
Show Figures

Figure 1

12 pages, 2288 KB  
Article
Cryo-EM Structure of the Flagellar Motor Complex from Paenibacillus sp. TCA20
by Sakura Onoe, Tatsuro Nishikino, Miki Kinoshita, Norihiro Takekawa, Tohru Minamino, Katsumi Imada, Keiichi Namba, Jun-ichi Kishikawa and Takayuki Kato
Biomolecules 2025, 15(3), 435; https://doi.org/10.3390/biom15030435 - 18 Mar 2025
Viewed by 1237
Abstract
The bacterial flagellum, a complex nanomachine composed of numerous proteins, is utilized by bacteria for swimming in various environments and plays a crucial role in their survival and infection. The flagellar motor is composed of a rotor and stator complexes, with each stator [...] Read more.
The bacterial flagellum, a complex nanomachine composed of numerous proteins, is utilized by bacteria for swimming in various environments and plays a crucial role in their survival and infection. The flagellar motor is composed of a rotor and stator complexes, with each stator unit functioning as an ion channel that converts flow from outside of cell membrane into rotational motion. Paenibacillus sp. TCA20 was discovered in a hot spring, and a structural analysis was conducted on the stator complex using cryo-electron microscopy to elucidate its function. Two of the three structures (Classes 1 and 3) were found to have structural properties typical for other stator complexes. In contrast, in Class 2 structures, the pentamer ring of the A subunits forms a C-shape, with lauryl maltose neopentyl glycol (LMNG) bound to the periplasmic side of the interface between the A and B subunits. This interface is conserved in all stator complexes, suggesting that hydrophobic ligands and lipids can bind to this interface, a feature that could potentially be utilized in the development of novel antibiotics aimed at regulating cell motility and infection. Full article
(This article belongs to the Section Molecular Biophysics: Structure, Dynamics, and Function)
Show Figures

Figure 1

Back to TopTop