Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (121)

Search Parameters:
Keywords = sedimentary pyrite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 10039 KB  
Article
The Discovery of MVT-like Ga-Enriched Sphalerite from the Zhaojinci Area in the South Hunan District (South China)
by Feiyun Xiao, Hongjie Shen, Qingrui He, Shihong Huang, Xiaoxi Liu and Yu Zhang
Minerals 2025, 15(11), 1163; https://doi.org/10.3390/min15111163 - 4 Nov 2025
Viewed by 252
Abstract
Gallium (Ga) enrichment in sphalerite has been widely recognized; however, its enrichment mechanisms remain insufficiently understood. The South Hunan district, located at the intersection of the Nanling Region and the Qin-Hang Metallogenic Belt in South China, is characterized by abundant Jurassic magmatic-hydrothermal Pb–Zn [...] Read more.
Gallium (Ga) enrichment in sphalerite has been widely recognized; however, its enrichment mechanisms remain insufficiently understood. The South Hunan district, located at the intersection of the Nanling Region and the Qin-Hang Metallogenic Belt in South China, is characterized by abundant Jurassic magmatic-hydrothermal Pb–Zn deposits, which typically host Ga-depleted sphalerite. Recently, Ga-enriched sphalerite (up to 385 ppm by LA-ICP-MS) has been identified in newly drilled cores at Zhaojinci, adding complexity to the regional Pb–Zn metallogenic framework. EPMA elemental mapping and LA-ICP-MS time-resolved spectra indicate that Ga is homogeneously distributed within sphalerite, excluding the presence of micron-scale Ga-bearing mineral inclusions. A strong positive correlation between Ga and Cu concentrations suggests that Ga incorporation is facilitated by the coupled substitution of Zn2+ by Cu+. Sphalerite geothermometry yields formation temperatures of 118–138 °C (average 126 °C for GGIMF is and ~129 °C for SPRFT), accompanied by intermediate sulfur fugacity conditions (lg fS2 = −22.9 to −21.2), which appear to favor Ga enrichment in sphalerite. The trace element geochemistry of the Zhaojinci sphalerite (Ga-Ge-Cd-enriched and Mn-In-Sn-Co-depleted), combined with its formation under low-temperature (120–180 °C) and intermediate fS2 conditions (within the pyrite stability field), is consistent with MVT-like mineralization. This interpretation is supported by multiple lines of geological evidence, including the strict confinement of stratabound Pb–Zn mineralization to the Devonian Xikuangshan Formation limestone, structural control by syn-sedimentary normal faults, pervasive dolomitization of the host rocks, and the absence of genetic relationship to magmatic activity. Moreover, the sphalerite geochemical signature, corroborated by an XGBoost-based machine learning classifier, reinforce the MVT-like affinity for the Zhaojinci mineralization. This study not only emphasizes the importance of low-temperature and intermediate-fS2 conditions in Ga enrichment within sphalerite, but also highlights the significance of discovering MVT-like sphalerite for Pb–Zn resource exploration in the South Hunan district, providing valuable new insights and directions for mineral prospecting in this geologically important region of South China. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

20 pages, 4476 KB  
Article
Effects of Permeability and Pyrite Distribution Heterogeneity on Pyrite Oxidation in Flooded Lignite Mine Dumps
by Tobias Schnepper, Michael Kühn and Thomas Kempka
Water 2025, 17(21), 3157; https://doi.org/10.3390/w17213157 - 4 Nov 2025
Viewed by 396
Abstract
The role of sedimentary heterogeneity in reactive transport processes is becoming increasingly important as closed open-pit lignite mines are converted into post-mining lakes or pumped hydropower storage reservoirs. Flooding of the open pits introduces constant oxygen-rich inflows that reactivate pyrite oxidation within internal [...] Read more.
The role of sedimentary heterogeneity in reactive transport processes is becoming increasingly important as closed open-pit lignite mines are converted into post-mining lakes or pumped hydropower storage reservoirs. Flooding of the open pits introduces constant oxygen-rich inflows that reactivate pyrite oxidation within internal mine dumps. A reactive transport model coupling groundwater flow, advection–diffusion–dispersion, and geochemical reactions was applied to a 2D cross-section of a water-saturated mine dump to determine the processes governing pyrite oxidation. Spatially correlated fields representing permeability and pyrite distributions were generated via exponential covariance models reflecting the end-dumping depositional architecture, supported by a suite of scenarios with systematically varied correlation lengths and variances. Simulation results covering a time span of 100 years quantify the impact of heterogeneous permeability fields that result in preferential flow paths, which advance tracer breakthrough by ~15 % and increase the cumulative solute outflux up to 139 % relative to the homogeneous baseline. Low initial pyrite concentrations (0.05 wt %) allow for deeper oxygen penetration, extending oxidation fronts over the complete length of the modeling domain. Here, high initial pyrite concentrations (0.5 wt %) confine reactions close to the inlet. Kinetic oxidation allows for more precise simulation of redox dynamics, while equilibrium assumptions substantially reduce the computational time (>10×), but may oversimplify the redox system. We conclude that reliable risk assessments for post-mining redevelopment should not simplify numerical models by assuming average homogeneous porosity and mineral distributions, but have to incorporate site-specific spatial heterogeneity, as it critically controls acid generation, sulfate mobilization, and the timing of contaminant release. Full article
Show Figures

Figure 1

19 pages, 15681 KB  
Article
Genesis of W Mineralization in the Caledonian Granite Porphyry of the Chuankou W Deposit, South China: Insights from Fluid Inclusions and C–H–O–S Isotopes
by Wei Liu, Yi Wang, Yong-Jun Shao, Wen-Jing Mao and Zhongfa Liu
Appl. Sci. 2025, 15(19), 10553; https://doi.org/10.3390/app151910553 - 29 Sep 2025
Viewed by 425
Abstract
The Chuankou deposit is a super-large W deposit formed during the Indosinian collision event in South China, and its mineralization is suggested to be related to the Indosinian muscovite granite. However, two types of W mineralizations were discovered in the Caledonian granite porphyry [...] Read more.
The Chuankou deposit is a super-large W deposit formed during the Indosinian collision event in South China, and its mineralization is suggested to be related to the Indosinian muscovite granite. However, two types of W mineralizations were discovered in the Caledonian granite porphyry in the Chuankou W deposit: disseminated scheelite and quartz-wolframite-scheelite vein mineralizations. The genesis of W mineralization in the Caledonian granite porphyry is not yet clear. This paper focuses on fluid microthermometry and stable isotopes (C, H, O, S) analysis of the quartz and scheelite in the ores in the Caledonian granite porphyry in the Chuankou W deposit. The aims are to determine the nature and evolution of the ore-forming fluids, the origin of the ore-forming materials involved in the two types of W mineralization in the Caledonian granite porphyry, and to provide a detailed discussion of the deposit’s genesis. Microthermometry results of fluid inclusions with scheelite and quartz from two stages show that the average homogenization temperature in the quartz-veins within the Caledonian granite porphyry is 248 °C, and the average salinity is 6.31 wt.% NaCl eq (n = 85), the average homogenization temperature in the quartz-veins within the slate is 219 °C, and the average salinity is 5.57 wt.% NaCl eq (n = 49). The ore-forming fluids experienced an evolution from high temperature and high salinity to low temperature and low salinity. Sulfur isotope compositions show that the δ34S values of pyrite and arsenopyrite in the quartz-veins within the Caledonian granite porphyry are 2.06 to 3.28‰ and −0.38 to 0.21‰, respectively, and the δ34S value of pyrite in the quartz-veins within the slate is −1.72 to 0.47‰. The δ34S values of each stage are close to 0‰, indicating that the origin of sulfur mainly from magma. The H-O isotope compositions of the quartz indicate that the ore-forming fluid was primarily magmatic water. The low δ18OH2O values (1.74 to 1.58‰) are influenced by fluid–rock interactions or the incorporation of atmospheric precipitation. The carbon isotopes (δ13C = −9.5 to 8.3‰) indicate a magmatic origin, but the C isotopes of quartz in the quartz-veins within the slate shift toward sedimentary rocks, reflecting the incorporation of rock components in the late mineralization period. These isotopic differences indicate that the fluid–rock interaction gradually strengthened during fluid evolution. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

29 pages, 5957 KB  
Article
Multistage Fluid Evolution and P-T Path at Ity Gold Deposit and Dahapleu Prospect (Western Ivory Coast)
by Yacouba Coulibaly, Michel Cathelineau and Marie-Christine Boiron
Minerals 2025, 15(9), 918; https://doi.org/10.3390/min15090918 - 28 Aug 2025
Viewed by 949
Abstract
Gold mineralisation at Ity (Ivory Coast) is spatially associated with skarns formed at contacts between carbonate-rich Birimian volcano-sedimentary rocks and felsic intrusions, whereas at Dahapleu, a nearby skarn-free prospect, gold occurs in structurally controlled shear zones. Gold occurs as native gold in pyrite [...] Read more.
Gold mineralisation at Ity (Ivory Coast) is spatially associated with skarns formed at contacts between carbonate-rich Birimian volcano-sedimentary rocks and felsic intrusions, whereas at Dahapleu, a nearby skarn-free prospect, gold occurs in structurally controlled shear zones. Gold occurs as native gold in pyrite or as a Bi–Te–Au–Ag telluride assemblage. Fluid inclusion data indicate that Ity formed through a hybrid model: a mesothermal orogenic gold system dominated by CO2–CH4 fluids at >350 °C, superimposed on earlier skarn mineralisation characterised by saline fluids. At Dahapleu, no skarn fluids were identified, but volatile-rich inclusions with more variable signatures (CO2, CO2–CH4, CO2–N2) indicate metamorphic fluids circulating in convective, fault-related systems and recording distinct fluid–rock interactions. The Ity–Dahapleu mineralising system thus displays fluid inclusion characteristics typical of mesothermal orogenic gold systems, likely at higher temperatures than most West African Birimian deposits. Overall, the Ity system reflects a long-lived thermal anomaly driving fluid circulation and metal deposition, with successive favourable events: rapid exhumation of hot lithospheric crust, granite intrusion, and skarn formation, followed by shear deformation and hydrothermal activity. Full article
Show Figures

Figure 1

22 pages, 7924 KB  
Article
Confirmation of Significant Iron Formations During “Boring Billion” in Altyn Region, China: A Case Study of the Dimunalike Iron Deposit
by Wencheng Liu, Fanqi Kong, Haibo Ding, Jing Zhang and Mingtian Zhu
Minerals 2025, 15(9), 905; https://doi.org/10.3390/min15090905 - 26 Aug 2025
Viewed by 780
Abstract
It is generally believed that the ancient oceans during the “boring billion” (1.85–0.8 Ga) lacked the capacity to form large-scale iron formations (IFs), though localized small-scale IFs deposition persisted. The Altyn region of China hosts abundant IFs, with the Dimunalike IFs being the [...] Read more.
It is generally believed that the ancient oceans during the “boring billion” (1.85–0.8 Ga) lacked the capacity to form large-scale iron formations (IFs), though localized small-scale IFs deposition persisted. The Altyn region of China hosts abundant IFs, with the Dimunalike IFs being the largest and most representative, characterized by typical banded iron–silica layers. Detailed fieldwork identified a tuff layer conformably contacting the IFs at the roof rocks of IFs and a ferruginous mudstone layer at the floor rocks of IFs in drill core ZK4312. Geochemical and zircon U-Pb-Hf isotopic analyses were performed. The tuff has a typical tuff structure, mostly made of quartz, and contains a significant amount of natural sulfur. It also has high SiO2 content (77.90%–80.49%) and sulfur content (0.78%–3.06%). The ferruginous mudstone has a volcanic clastic structure and is mainly composed of quartz and chlorite, with abundant coeval pyrite. It shows lower SiO2 content (53.83%–60.32%) and higher TFe2O3 content (10.29%–16.24%). Both layers share similar rare earth element (REE) distribution patterns and trace element compositions, with light REE enrichment and negative Eu, Nb, and Ti anomalies, consistent with arc volcanic geochemistry. Zircon U-Pb ages indicate crystallization of the tuff at 1102 ± 13 Ma and maximum deposition of the mudstone at 1110 ± 41 Ma. These data suggest formation during different stages of the same volcanic–sedimentary process. The εHf(t) values (3.60–12.35 for tuff, 2.92–8.19 for mudstone) resemble those of Algoma-type IF host rocks, implying derivation from re-melted new crust. The Dimunalike IFs likely formed in a submarine volcanic–sedimentary environment. In conclusion, although the Mesoproterozoic ocean was generally in a low-oxygen state, which was not conducive to large-scale IF deposition, localized submarine volcanic–hydrothermal activity could still lead to IF formation. Full article
(This article belongs to the Special Issue Geochemical, Isotopic, and Biotic Records of Banded Iron Formations)
Show Figures

Graphical abstract

13 pages, 6501 KB  
Article
Pyrite-Hosted Inclusions in the Southern Ore Belt of the Bainaimiao Porphyry Cu Deposit: Composition and δ34S Characteristics
by Liwen Wu, Yushan Zuo, Yongwang Zhang, Jianjun Yang, Yimin Liu, Guobin Zhang, Hong Zhang, Peng Zhang and Rui Liu
Minerals 2025, 15(7), 729; https://doi.org/10.3390/min15070729 - 12 Jul 2025
Cited by 1 | Viewed by 463
Abstract
This study presents a comprehensive case analysis of pyrite-hosted solid inclusions and their metallogenic significance in the Bainaimiao porphyry Cu deposit in NE China, which is genetically linked to the early Silurian granodiorite intrusion and porphyry dykes. Solid inclusions in pyrite from the [...] Read more.
This study presents a comprehensive case analysis of pyrite-hosted solid inclusions and their metallogenic significance in the Bainaimiao porphyry Cu deposit in NE China, which is genetically linked to the early Silurian granodiorite intrusion and porphyry dykes. Solid inclusions in pyrite from the deposit’s southern ore belt were analyzed across distinct mineralization stages. Using Electron Probe Micro-Analysis (EPMA) and in situ sulfur isotope analysis (MC-ICP-MS), inclusion assemblages in pyrite were identified, including pyrrhotite-chalcopyrite solid solutions, biotite, and dolomite. The results demonstrate that these inclusions primarily formed through coprecipitation with pyrite during crystal growth. Early-stage mineralizing fluids exhibited extreme temperatures exceeding 700 °C, coupled with low oxygen fugacity (fO2) and low sulfur fugacity (fS2). Sulfur isotope compositions (δ34S: −5.85 to −4.97‰) indicate a dominant mantle-derived magmatic sulfur source, with contributions from reduced sulfur in sedimentary rocks. Combined with regional geological evolution, the Bainaimiao deposit is classified as a porphyry-type deposit. Its ore-forming materials were partially derived from Mesoproterozoic submarine volcanic exhalative sedimentary source beds, which were later modified and enriched by granodiorite porphyry magmatism. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

22 pages, 16452 KB  
Article
The Uranium Enrichment Mechanism of Hydrocarbon-Bearing Fluids in Aeolian Sedimentary Background Uranium Reservoirs of the Ordos Basin
by Tao Zhang, Jingchao Lei, Cong Hu, Xiaofan Zhou, Chao Liu, Lei Li, Qilin Wang, Yan Hao and Long Guo
Minerals 2025, 15(7), 716; https://doi.org/10.3390/min15070716 - 8 Jul 2025
Viewed by 666
Abstract
Significant uranium exploration breakthroughs have been achieved in the eolian deposits of the uranium reservoirs in the southwestern part of the Ordos Basin. The redox environment remains a crucial factor in controlling the migration and precipitation of uranium. This study, through rock mineralogical [...] Read more.
Significant uranium exploration breakthroughs have been achieved in the eolian deposits of the uranium reservoirs in the southwestern part of the Ordos Basin. The redox environment remains a crucial factor in controlling the migration and precipitation of uranium. This study, through rock mineralogical observations and hydrocarbon gas composition analysis, combined with the regional source rock and basin tectonic evolution history, reveals the characteristics of the reducing medium and the mineralization mechanisms involved in uranium ore formation. The Lower Cretaceous Luohe Formation uranium reservoirs in the study area exhibit a notable lack of common reducing media, such as carbonaceous debris and pyrite. However, the total hydrocarbon gases in the Luohe Formation range from 2967 to 20,602 μmol/kg, with an average of 8411 μmol/kg—significantly higher than those found in uranium reservoirs elsewhere in China, exceeding them by 10 to 100 times. Due to the absence of other macroscopically visible organic matter, hydrocarbon gases are identified as the most crucial reducing agent for uranium mineralization. These gases consist predominantly of methane and originate from the Triassic Yanchang Formation source rock. Faults formed during the Indosinian, Yanshanian, and Himalayan tectonic periods effectively connect the Cretaceous uranium reservoirs with the oil and gas reservoirs of the Triassic and Jurassic, providing pathways for the migration of deep hydrocarbon fluids into the Cretaceous uranium reservoirs. The multiphase tectonic evolution of the Ordos Basin since the Cenozoic has facilitated the development of faults, ensuring a sufficient supply of reducing media for uranium reservoirs in an arid sedimentary context. Additionally, the “Replenishment-Runoff-Drainage System” created by tectonic activity promotes a continuous supply of uranium- and oxygen-bearing fluids to the uranium reservoirs, resulting in a multi-energy coupling mineralization effect. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

29 pages, 8189 KB  
Article
The Key Controlling Factors and Mechanisms for the Formation of Sandstone-Type Uranium Deposits in the Central Part of the Ulanqab Depression, Erlian Basin
by Yang Liu, Hu Peng, Ning Luo, Xiaolin Yu, Ming Li and Bo Ji
Minerals 2025, 15(7), 688; https://doi.org/10.3390/min15070688 - 27 Jun 2025
Viewed by 607
Abstract
The characteristics of interlayer oxidation zones constrain sandstone-type uranium mineralization. This study conducted a quantitative characterization of the interlayer oxidation zones in the uranium-bearing reservoir of the Saihan Formation in the central Wulanchabu Subbasin of the Erlian Basin through sand dispersion system mapping, [...] Read more.
The characteristics of interlayer oxidation zones constrain sandstone-type uranium mineralization. This study conducted a quantitative characterization of the interlayer oxidation zones in the uranium-bearing reservoir of the Saihan Formation in the central Wulanchabu Subbasin of the Erlian Basin through sand dispersion system mapping, the analysis of sedimentary debris components, environmentally sensitive parameters, and elemental geochemical characteristics. The formation mechanisms and controlling factors of interlayer oxidation zones were investigated, along with uranium mineralization patterns. Research findings reveal that the sandbodies in the study area primarily consist of red sandstone, yellow sandstone, gray ore-bearing sandstone, and primary gray sandstone, representing strong oxidation zones, weak oxidation zones, transitional zones, and reduction zones, respectively. Although the mineral debris content shows minimal variation among different zones, feldspar dissolution is more prevalent in oxidized zones. During interlayer oxidation, environmentally sensitive parameters exhibit an ascending trend from strong oxidation zones through weak oxidation zones and reduction zones to mineralized transitional zones. Four transition metal elements (Co, Ni, Zn, and Mo) demonstrate enrichment in mineralized transitional zones. The development of interlayer oxidation zones is directly controlled by reservoir heterogeneity and sedimentary environments. Oxidation subzones primarily occur in sandbodies with moderate thickness (40–80 m), sand content ratios of 40%–80%, and 2–10 or 10–18 mudstone barriers (approximately 20 m thick), mainly in braided river channels and channel margin deposits. Reduction zones develop in thicker sandbodies (~100 m) with higher sand contents (~80%), fewer mudstone barriers (2–8 layers), greater thickness (40–80 m), and predominantly channel margin deposits. Transitional zones mainly occur in braided distributary channels and floodplain deposits. When oxygen-bearing uranium fluids infiltrate reservoirs, oxygen reacts with reductants like organic matter, whereFe2+ oxidizes to Fe3+, S2− reacts with oxygen, and U4+ oxidizes to U6+, migrating as uranyl complexes. As oxygen depletes, Fe3+ reduces to Fe2+, combining with S2− to form pyrite between mineral grains. Uranyl complexes reduce to precipitate as pitchblende, while some U4+ reacts with SiO44−, forming coffinite, occurring as colloids around quartz debris or pyrite. The concurrent enrichment of certain transition metal elements occurs during this process. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

26 pages, 32475 KB  
Article
Geochemistry and Enrichment of Rare Earth Elements in Phosphorite Successions in the Lower Cambrian, Eastern Yun’nan, South China
by Wenhua Mei, Chunfang Cai, Xinyu Ming, Zichen Wang and Lei Jiang
Minerals 2025, 15(6), 581; https://doi.org/10.3390/min15060581 - 29 May 2025
Viewed by 1723
Abstract
The South China Block hosts extensive sedimentary phosphorites that offer valuable insights into both paleoenvironmental reconstruction and rare earth element (REE) resource potential. However, the mechanisms governing REE enrichment in these deposits remain poorly understood. This study investigates two distinct phosphorite layers from [...] Read more.
The South China Block hosts extensive sedimentary phosphorites that offer valuable insights into both paleoenvironmental reconstruction and rare earth element (REE) resource potential. However, the mechanisms governing REE enrichment in these deposits remain poorly understood. This study investigates two distinct phosphorite layers from the Lower Cambrian Zhujiaqing (ZJQ) Formation in the Bailongtan (BLT) area of the Yangtze Platform using integrated analyses including petrology, XRD, major and trace elements, δ13C and δ18O isotopes, and LA-ICP-MS. The lower thin-bedded phosphorite, composed of finer phosphatic grains (<300 μm), exhibits significantly higher REE concentrations (883.6 ± 160.9 ppm; n = 48) compared to the upper thick-bedded phosphorite (303.2 ± 82.7 ppm; n = 64), which is dominated by larger, reworked grains (300–600 μm). Intervening strata consist of laminated phosphate-bearing carbonates interbedded with quartz, dolomite, and pyrite. PAAS-normalized REE patterns display MREE–HREE enrichment, negative Ce anomalies (avg. 0.60 ± 0.18; n = 18), and positive Y anomalies—indicative of oxic depositional conditions. The elevated REE content in the lower layer, coupled with the lowest δ13C values (−4.59‰), suggests enrichment linked to organic matter degradation. A proposed two-stage depositional model links REE enrichment to proximity with REE-rich deep-shelf waters, underscoring the critical role of redox and depositional dynamics in phosphorite-hosted REE accumulation. Full article
Show Figures

Figure 1

37 pages, 17692 KB  
Article
Geological, Mineralogical, Geochemical, and Petrogenetic Characteristics of Plutonic Rocks in Çiftehan (Ulukışla-Niğde) Area, South-Central Türkiye: Implication for Genetic Link with Fe-Zn Skarn Mineralization
by Emmanuel Daanoba Sunkari and Abdurrahman Lermi
Minerals 2025, 15(6), 578; https://doi.org/10.3390/min15060578 - 29 May 2025
Viewed by 1084
Abstract
Globally, most skarn deposits show a direct relationship with magmatic activity, indicating a genetic link between the geochemical composition of causative plutons and the metal content of associated skarns. Therefore, this study investigated the Early–Middle Eocene plutonic rocks and their relationship with Fe-Zn [...] Read more.
Globally, most skarn deposits show a direct relationship with magmatic activity, indicating a genetic link between the geochemical composition of causative plutons and the metal content of associated skarns. Therefore, this study investigated the Early–Middle Eocene plutonic rocks and their relationship with Fe-Zn skarn deposits in the Esendemirtepe-Koçak and Horoz areas of south-central Türkiye. Despite the regional significance, previous studies have not adequately addressed the petrogenetic evolution of these intrusions and the geochemical characteristics of the related skarns. In particular, the fluid-aided mobility of elements at the contact between the causative plutons and the volcano-sedimentary country rocks remains poorly understood. Therefore, in this study, field studies, petrographic and mineralogical analysis, and whole-rock geochemical analysis were conducted to investigate the genetic link between the plutonic rocks and the skarn deposits. Field studies reveal that the skarn zones are within volcano-sedimentary sequences and marble-schist units intruded by four distinct plutonic bodies: (1) Esendemirtepe diorite, (2) Koçak diorite, (3) Horoz granodiorite, and (4) Çifteköy monzogabbro. These rocks exhibit calc-alkaline, I-type, and metaluminous signatures, except for the Çifteköy monzogabbro, which shows I-type, tholeiitic, and alkaline characteristics. All the plutonic rocks associated with the skarn formation display steep LREE-enriched REE patterns with minor positive Eu anomalies (Eu/Eu* = 0.98–1.35), suggesting a subduction-related volcanic arc setting similar to other granitoids in the Ulukışla Basin. The Horoz skarn exhibits both endoskarn and exoskarn features, while the Esendemirtepe-Koçak deposit is characterized by typical exoskarn features. Dominant ore minerals in both skarn deposits include magnetite, hematite, sphalerite, chalcopyrite, and pyrite, with minor arsenopyrite, galena, and cobaltite. The mineral composition of the skarn also shows the dominance of Na-rich and Mg-rich minerals in both locations. The geochemical compositions of the I-type, metaluminous Esendemirtepe-Koçak, and Horoz plutonic rocks are compatible with Fe-Zn skarn type deposits based on the moderate MgO (0.36–4.44 wt.%) and K2O (1.38–7.99 wt.%), and Rb/Zr and Sr/Zr ratios. They also show typical volcanic arc features, and the variation in various trace element concentrations shows similarity with Fe-Zn skarn type granitoids. These findings support a strong genetic relationship between the mineralization and the geochemical and mineralogical characteristics of the associated plutonic rocks. Full article
(This article belongs to the Special Issue Igneous Rocks and Related Mineral Deposits)
Show Figures

Figure 1

28 pages, 12692 KB  
Article
Genesis of the Aït Abdellah Copper Deposit, Bou Azzer-El Graara Inlier, Anti-Atlas, Morocco
by Marieme Jabbour, Said Ilmen, Moha Ikenne, Basem Zoheir, Mustapha Souhassou, Ismail Bouskri, Ali El-Masoudy, Ilya Prokopyev, Mohamed Oulhaj, Mohamed Ait Addi and Lhou Maacha
Minerals 2025, 15(5), 545; https://doi.org/10.3390/min15050545 - 20 May 2025
Viewed by 1756
Abstract
The Aït Abdellah copper deposit in the Bou Azzer-El Graara inlier of the Moroccan Anti-Atlas provides key insights into structurally and lithologically controlled mineralization in Precambrian terranes. The deposit is hosted in feldspathic sandstones of the Tiddiline Group, which unconformably overlie the Bou [...] Read more.
The Aït Abdellah copper deposit in the Bou Azzer-El Graara inlier of the Moroccan Anti-Atlas provides key insights into structurally and lithologically controlled mineralization in Precambrian terranes. The deposit is hosted in feldspathic sandstones of the Tiddiline Group, which unconformably overlie the Bou Azzer ophiolite, and is spatially associated with a NE–SW-trending shear zone. This zone is characterized by mylonitic fabrics, calcite veining, and an extensive network of fractures, reflecting a two-stage deformation history involving early ductile shearing followed by brittle faulting and brecciation. These structural features enhanced rock permeability, enabling fluid flow and metal precipitation. Copper mineralization includes primary sulfides such as chalcopyrite, bornite, pyrite, chalcocite, digenite, and covellite, as well as supergene minerals like malachite, azurite, and chrysocolla. Sulfur isotope values (δ³⁴S = +5.9% to +22.8%) indicate a mixed sulfur source, likely derived from both ophiolitic rocks and volcano-sedimentary sequences. Carbon and oxygen isotope data suggest fluid interaction with marine carbonates and meteoric waters, potentially linked to post-Snowball Earth deglaciation processes. Fluid inclusion studies reveal homogenization temperatures ranging from 195 °C to 310 °C and salinities between 5.7 and 23.2 wt.% NaCl equivalent, supporting a model of fluid mixing between magmatic-hydrothermal and volcano-sedimentary sources. The paragenetic evolution of the deposit comprises three stages: (1) early hydrothermal precipitation of quartz, dolomite, sericite, pyrite, and early chalcopyrite and bornite; (2) a main mineralizing stage characterized by fracturing and deposition of bornite, chalcopyrite, and Ag-bearing sulfosalts; and (3) a late supergene phase with oxidation and secondary enrichment. The Aït Abdellah deposit is best classified as a shear zone-hosted copper system with a complex, multistage mineralization history. The integrated analysis of structural features, mineral assemblages, isotopic signatures, and fluid inclusion data reveals a dynamic interplay between deformation processes, hydrothermal alteration, and evolving fluid sources. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Graphical abstract

21 pages, 22649 KB  
Article
Epigenetic Alteration of the Hailijin Sandstone-Hosted Uranium Deposit and Its Indications on Uranium Metallogenesis in the Songliao Basin, NE China
by Mingming Tian, Ziying Li, Licheng Jia, Jungang Liu, Jun Ning and Jimu Li
Minerals 2025, 15(4), 393; https://doi.org/10.3390/min15040393 - 8 Apr 2025
Viewed by 741
Abstract
This study focuses on the Hailijing sandstone-hosted uranium deposit in the Songliao Basin. Through a combination of petrographic analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), and geochemical analysis, the epigenetic alteration of the deposit was systematically investigated, and the alteration zonation was [...] Read more.
This study focuses on the Hailijing sandstone-hosted uranium deposit in the Songliao Basin. Through a combination of petrographic analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), and geochemical analysis, the epigenetic alteration of the deposit was systematically investigated, and the alteration zonation was delineated. On this basis, the metallogenic mechanisms were further explored. The results indicate that six major types of alteration can be identified in the ore-bearing strata of the Hailijing uranium deposit: hematitization, limonitization, carbonatization, pyritization, clay mineralization (including kaolinite, illite, and illite-smectite mixed-layer), and baritization. The mineral assemblages at different stages of alteration vary: during the sedimentary diagenetic stage, the assemblage consists of “hematite + clay minerals + II-type pyrite (framboidal pyrite) + III-type pyrite (euhedral granular pyrite)”; during the uranium mineralization stage, it transitions to “ankerite + barite + I-type pyrite (colloidal pyrite) + minor kaolinite”; and in the post-ore stage, alteration is characterized by calcite cementation in red sandstones. Based on petrological, mineralogical, and geochemical characteristics, as well as the spatial distribution of the host gray sandstones, it is inferred that during uranium mineralization stage, the ore-bearing strata underwent reduction by uranium-rich reducing fluids sourced from the Lower Cretaceous Jiufotang Formation. The primary red sandstones of the Lower Yaojia Formation, formed under arid to semi-arid conditions, experienced varying degrees of reduction, resulting in a color transition from light red, brownish red, and yellowish brown to grayish-yellow and gray. Accordingly, four alteration zones are distinguished in the Hailijing uranium deposit: the primary red zone, weakly reduced pink zone, moderately reduced grayish-yellow zone, and strongly reduced gray zone. Furthermore, as the uranium-rich reducing fluids migrated from a high-temperature, high-pressure deep system to the low-temperature, low-pressure ore-bearing sandstone strata near the surface, uranium was unloaded, precipitated, and enriched, ultimately forming multi-layered and tabular-shaped uranium orebodies within the gray sandstone. This study elucidates the epigenetic alteration processes and metallogenic mechanisms of the Hailijing uranium deposit, providing a critical theoretical basis for further uranium exploration in the southern Songliao Basin. Full article
Show Figures

Figure 1

21 pages, 11239 KB  
Article
Genetic Model of the Luhai Sandstone-Type Uranium Deposit in the Erlian Basin, Inner Mongolia
by Chao Tang, Zenglian Xu, Ming Duan, Lishan Meng, Huajian Liu, Jialin Wei, Chao Zhang and Lijun Zhao
Minerals 2025, 15(3), 294; https://doi.org/10.3390/min15030294 - 13 Mar 2025
Cited by 2 | Viewed by 1085
Abstract
The Luhai uranium deposit is a large-scale uranium deposit newly discovered in recent years through comprehensive prospecting methods. It is located in the Basaiqi Paleochannel Uranium metallogenic belt of the Erlian Basin and is characterized by its shallow burial and large scale. This [...] Read more.
The Luhai uranium deposit is a large-scale uranium deposit newly discovered in recent years through comprehensive prospecting methods. It is located in the Basaiqi Paleochannel Uranium metallogenic belt of the Erlian Basin and is characterized by its shallow burial and large scale. This paper provides new data on the genetic processes of sandstone-type uranium mineralization through sedimentological and geochemical environmental indicators (such as Fe3⁺/Fe2⁺, organic carbon, total sulfur, etc.), analysis of C-O isotopes of carbonate cements and H-O isotopes of groundwater, and geochemical and mineralogical studies of uranium minerals, iron–titanium oxides (involving backscatter analysis, micro-area chemical composition determination, and elemental surface scanning), and organic matter. Sedimentological analysis shows that the ore- bearing layer in the upper member of the Saihan Formation developed a braided channel within floodplain subfacies, which control the distribution of uranium ore bodies. Uranium mineralogical observations, geochemical environmental indicators, and organic geochemical data indicate that the main reducing agents related to mineralization are pyrite, terrestrial plants, and deep-sourced oil and gas. The δD values of groundwater in the ore-bearing layer range from −95.34‰ to −90.68‰, and the δ18O values range from −12.24‰ to −11.87‰. For calcite cements, the δ18OV-PDB values range from −24‰ to −11.5‰, and the δ18OV-SMOW values range from 6.2‰ to 19‰. It was determined that the ore-forming fluid is mainly surface fresh water that entered the strata during the tectonic uplift stage, with local mixing of deep-sourced brine. Based on these data, the main modes of uranium mineralization in the paleochannel were obtained as follows: (1) Redox mineralization occurs due to the reducing medium within the sand body itself and the reduction caused by deep- sourced oil and gas generated from the Tengge’er and Arshan Formations. (2) Mineralization is achieved through the mixing of fluids from different sources. Furthermore, a genetic model related to uranium mineralization in the paleochannels of the Luhai area has been established: favorable uranium reservoirs were formed during the sedimentary period, and during the post-sedimentary stage, reverse structures promoted redox reactions and fluid-mixing-induced mineralization. The research findings can provide guidance for the exploration of paleochannel sandstone-type uranium deposits in other areas of the Erlian Basin. Full article
Show Figures

Figure 1

25 pages, 8170 KB  
Article
Linking Volcanism, Hydrothermal Venting, and Ordovician/Silurian Marine Organic-Rich Sediments in the Eastern Sichuan Basin, Southwest China
by Shaojie Li, Zhou Zhu, Qilin Xiao, Suyang Cai and Huan Li
J. Mar. Sci. Eng. 2025, 13(3), 483; https://doi.org/10.3390/jmse13030483 - 28 Feb 2025
Viewed by 952
Abstract
The Ordovician/Silurian boundary (Wufeng/Longmaxi formations) in the Shizhu region, eastern Sichuan Basin, China hosts organic-rich black shales which are frequently interbedded with bentonite and hydrothermal minerals (e.g., pyrite). This study investigated the mineralogical, total organic carbon (TOC), total sulfur (TS), and major and [...] Read more.
The Ordovician/Silurian boundary (Wufeng/Longmaxi formations) in the Shizhu region, eastern Sichuan Basin, China hosts organic-rich black shales which are frequently interbedded with bentonite and hydrothermal minerals (e.g., pyrite). This study investigated the mineralogical, total organic carbon (TOC), total sulfur (TS), and major and trace element compositions of organic-rich samples. Non-visible volcanic input is identified to influence organic matter accumulation, as shown by the correlations between TOC and proxies, including Zr and Hf contents and the Cr/Al2O3, V/Al2O3, Ni/Al2O3, and SiO2/Al2O3 ratios. Redox indicators (V/Cr, v/v + Ni, degree of pyritization (DOP), U/Th, and Mo contents) display positive correlations with TOC values, suggesting that an oxygen-depleted environment is necessary for organic matter (OM) preservation. The TOC values exhibit better regression coefficients (R2) against redox indicators, including DOP (0.43), U/Th (0.70), and Mo contents (0.62), than V/Cr (0.16) and v/v + Ni (0.21). This may because some V, Cr, and Ni is hosted in non-volcanic ashes within shales but not inherited from contemporaneous water columns. The greater scatter in TOC-DOP and TOC-Mo relative to TOC-U/Th relations may result from hydrothermal venting in shales, evidenced by the coexistence of framboid and euhedral pyrite and the previous finding of hydrothermally altered dolomites in the studied sections. There is no systematic relation between TOC and Ni/Co ratios, and this means that portions of Ni are contributed by non-visible volcanic ashes and Ni and Co are redistributed during the precipitation of hydrothermal pyrites due to their strong chalcophile affinities. Such a feature may further suggest that most pyrites are precipitated during hydrothermal venting. The DOP displays broad correlations with non-visible volcanic indicators, supporting that hydrothermal venting may be triggered by volcanic activities. The outcomes of this study highlight that caution is necessary when evaluating the sedimentary facies features of volcanism-affected organic-rich black shales with the used metallic proxies. Full article
Show Figures

Figure 1

24 pages, 22130 KB  
Article
Interpreting the Complexity of Sulfur, Carbon, and Oxygen Isotopes from Sulfides and Carbonates in a Precious Metal Epithermal Field: Insights from the Permian Drake Epithermal Au-Ag Field of Northern New South Wales, Australia
by Hongyan Quan, Ian Graham, Rohan Worland, Lewis Adler, Christian Dietz, Emmanuel Madayag, Huixin Wang and David French
Minerals 2025, 15(2), 134; https://doi.org/10.3390/min15020134 - 29 Jan 2025
Cited by 1 | Viewed by 1248
Abstract
The Drake Goldfield, also known as Mount Carrington, is located in north-eastern New South Wales, Australia. It contains a number of low–intermediate-sulfidation epithermal precious metal deposits with a current total resource of 724.51 metric tons of Ag and 10.95 metric tons of Au. [...] Read more.
The Drake Goldfield, also known as Mount Carrington, is located in north-eastern New South Wales, Australia. It contains a number of low–intermediate-sulfidation epithermal precious metal deposits with a current total resource of 724.51 metric tons of Ag and 10.95 metric tons of Au. These deposits occur exclusively within the Drake Volcanics, a 60 × 20 km NW-SE trending sequence of Late Permian volcanics and related epiclastics. Drilling of the Copper Deeps geochemical anomaly suggests that the volcanics are over 600 m thick. The Drake Volcanics are centered upon a geophysical anomaly called “the Drake Quiet Zone” (DQZ), interpreted to be a collapsed volcanic caldera structure. A total of 105 fresh carbonate samples were micro-drilled from diamond drillcores from across the field and at various depths. A pXRD analysis of these carbonates identified five types as follows: ankerite, calcite, dolomite, magnesite, and siderite. Except for three outlier values (i.e., −21.32, −19.48, and 1.42‰), the δ13CVPDB generally ranges from−15.06 to −5.00‰, which is less variable compared to the δ18OVSMOW, which varies from −0.92 to 17.94‰. μ-XRF was used to analyze the elemental distribution, which indicated both syngenetic/epigenetic relationships between calcite and magnesite. In addition, a total of 53 sulfide samples (primarily sphalerite and pyrite) from diamond drillcores from across the Drake Goldfield were micro-drilled for S isotope analysis. Overall, these have a wide range in δ34SCDT values from −16.54 to 2.10‰. The carbon and oxygen isotope results indicate that the fluids responsible for the precipitation of carbonates from across the Drake Goldfield had complex origins, involving extensive mixing of hydrothermal fluids from several sources including those of magmatic origin, meteoric fluids and fluids associated with low-temperature alteration processes. Sulfur isotope ratios of sulfide minerals indicate that although the sulfur was most likely derived from at least two different sources; magmatic sulfur was the dominant source while sedimentary-derived sulfur was more significant for the deposits distal from the DQZ, with the relative importance of each varying from one deposit to another. Our findings contribute to a greater understanding of Au-Ag formation in epithermal environments, particularly in collapsed calderas, enhancing exploration strategies and models for ore deposition. Full article
Show Figures

Figure 1

Back to TopTop