Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = seedling picking mechanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 10488 KiB  
Article
Design and Testing of a Whole-Row Top-Loosening Stem-Clamping Seedling Extraction Device for Hole Tray Seedlings
by Zehui Peng, Fazhan Yang, Yuhuan Li, Xiang Li, Baogang Li and Guoli Xu
Agriculture 2025, 15(2), 165; https://doi.org/10.3390/agriculture15020165 - 13 Jan 2025
Cited by 1 | Viewed by 804
Abstract
A combined seedling extraction device was developed that operates by first top loosening and then clamping the stem in order to solve the current issues with automated transplanting technology, such as low seedling extraction efficiency and a high rate of substrate loss. The [...] Read more.
A combined seedling extraction device was developed that operates by first top loosening and then clamping the stem in order to solve the current issues with automated transplanting technology, such as low seedling extraction efficiency and a high rate of substrate loss. The pepper plug tray seedlings were selected as the experimental subjects for testing the mechanical properties of the stems. The tensile and compressive mechanical properties of the stems were obtained, and the kinematic model of the seedling spacing process and the mechanical model of the seedling clamping process were established. Key parameters of the seedling extraction device were analyzed and calculated, and an automated seedling extraction system was constructed. Using substrate moisture content, seedling age, and extraction frequency as experimental factors, orthogonal tests were conducted. Through variance analysis and 3D response surface analysis, the optimal rounded parameter values were determined: 48% substrate moisture content, 38-day-old seedlings, and a seedling extraction frequency of 60 plants/min. Under these conditions, the seedling extraction success rate was 94.44%, the substrate loss rate was 6.07%, and the seedling damage rate was 4.17%, meeting the requirements for automated seedling extraction. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

30 pages, 14991 KiB  
Review
Current Status and Analysis of Key Technologies in Automatic Transplanters for Vegetables in China
by Bo Cheng, Huarui Wu, Huaji Zhu, Jie Liang, Yisheng Miao, Youlin Cui and Weitang Song
Agriculture 2024, 14(12), 2168; https://doi.org/10.3390/agriculture14122168 - 28 Nov 2024
Cited by 2 | Viewed by 1645
Abstract
Transplanting is a critical step in vegetable production, and the application of automatic transplanters can significantly reduce labor intensity, improve production efficiency, and enhance the precision and consistency of operations. However, automatic transplanters are structurally complex, with diverse components, each design and function [...] Read more.
Transplanting is a critical step in vegetable production, and the application of automatic transplanters can significantly reduce labor intensity, improve production efficiency, and enhance the precision and consistency of operations. However, automatic transplanters are structurally complex, with diverse components, each design and function offering its own advantages and limitations. To assist industry professionals in quickly understanding and selecting transplanters suited to specific crops and environments, this paper reviews three key technologies in current vegetable transplanters: planting mechanisms, automated seedling picking and placing, and tray conveyance. Each technology is classified, compared, and analyzed to evaluate its applicability. Based on the current state of technology, the paper identifies major challenges in the development of vegetable transplanters in China, including insufficient integration of machinery and agronomy, high demands for equipment adaptability, lack of standardized systems, and delays in the development of core technologies for fully automated transplanting. Solutions are proposed for each of these issues. Finally, the paper discusses future directions for the development of automatic transplanters, including enhancing transplanting efficiency, achieving autonomous navigation, digitalizing operations, developing supporting systems for transplanting, and unmanned transplanting. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

17 pages, 10541 KiB  
Article
Design and Test of Seedling-Picking Mechanism of Fully Automatic Transplanting Machine
by Biao Zhou, Hong Miao, Chunsong Guan, Xin Ji and Xiaochan Wang
Appl. Sci. 2024, 14(20), 9235; https://doi.org/10.3390/app14209235 - 11 Oct 2024
Cited by 2 | Viewed by 1505
Abstract
The seedling retrieval mechanism is a crucial component of fully automatic transplanting machines, significantly influencing the quality, reliability, and efficiency of the transplanting process. Nonetheless, the existing seedling retrieval mechanisms in current transplanting machines exhibit several deficiencies, including substantial damage to seedlings and [...] Read more.
The seedling retrieval mechanism is a crucial component of fully automatic transplanting machines, significantly influencing the quality, reliability, and efficiency of the transplanting process. Nonetheless, the existing seedling retrieval mechanisms in current transplanting machines exhibit several deficiencies, including substantial damage to seedlings and inadequate retrieval accuracy. To overcome these challenges, we propose an integrated approach combining pneumatic and mechanical techniques to further improve performance. By employing a lower thimble elevation and clamping mechanism, alongside a mathematical model based on the seedling removal process, this method ensures precise seedling extraction and minimizes damage to the root system and substrate. The novelty of this study lies in its ability to reduce the adhesion between seedlings and the holes of the plug plate, thereby minimizing non-destructive extraction of the seedlings and preserving the integrity of the matrix, which is essential for ensuring healthy seedling growth. Moreover, the optimization of the seedling retrieval trajectory enhances the accuracy of the seedling retrieval mechanism while also meeting the requisite speed requirements. Experimental results indicate that at a rate of 72 seedlings per minute, the extraction success rate reached 94.90%, and the casting success rate was 98.53%. The seedling injury rate was only 1.95%, resulting in an overall success rate of 91.69%. These findings confirm that the device meets operational efficiency requirements and delivers effective performance. Full article
(This article belongs to the Special Issue Sustainable and Smart Agriculture)
Show Figures

Figure 1

15 pages, 7837 KiB  
Article
Design and Testing of a Closed Multi-Channel Air-Blowing Seedling Pick-Up Device for an Automatic Vegetable Transplanter
by Bingchao Zhang, Xiangyu Wen, Yongshuang Wen, Xinglong Wang, Haoqi Zhu, Zexin Pan and Zhenyu Yang
Agriculture 2024, 14(10), 1688; https://doi.org/10.3390/agriculture14101688 - 26 Sep 2024
Cited by 1 | Viewed by 1055
Abstract
In this study, a closed multi-channel air-blowing plug seedling pick-up device and a combined plug tray were designed to address the issues of complex structure, high seedling damage rates and low pick-up efficiency in fully automated vegetable transplanter systems. The device operates by [...] Read more.
In this study, a closed multi-channel air-blowing plug seedling pick-up device and a combined plug tray were designed to address the issues of complex structure, high seedling damage rates and low pick-up efficiency in fully automated vegetable transplanter systems. The device operates by sealing the plug seedlings in a seedling cup, where compressed air is channeled into the sealed cavity through multiple passages during the seedling pick-up process. The upper surface of the seedling plug is subjected to uniform force, overcoming the friction and adhesion between the plug seedlings and the tray. This process presses the seedlings into the guide tube, completing the pick-up operation. A mechanical model for the plug seedlings was developed, and the kinetics of the pick-up process were analyzed. The multi-channel high-pressure airflow was simulated and evaluated, identifying three key parameters affecting seedling pick-up performance: water content of the seedling plug, air pressure during pick-up, and air-blowing duration. Using these factors as variables, and with seedling pick-up rate and substrate loss rate as evaluation indicators, single-factor experiments and a three-factor, three-level orthogonal experiment were conducted. The experiments’ results showed that the best seedling pick-up performance was achieved when the water content of the plug was 20%, the air pressure was 0.3 MPa, and the air-blowing time was 30 ms. Under these conditions, the seedling pick-up success rate was 97.22%, and the substrate loss rate was 10.46%. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

20 pages, 6738 KiB  
Article
Design of a 2R Open-Chain Plug Seedling-Picking Mechanism and Control System Constrained by a Differential Non-Circular Planetary Gear Train
by Maile Zhou, Tingbo Xu, Guibin Wang, Herui Dong, Shiyu Yang and Zeliang Wang
Agriculture 2024, 14(9), 1576; https://doi.org/10.3390/agriculture14091576 - 10 Sep 2024
Viewed by 1021
Abstract
With a focus on the problems of complex structure and accumulated lateral clearance in the single degree of freedom non-circular wheel system seedling-picking mechanism, which leads to poor motion accuracy, trajectory, and attitude, this study developed a 2R open-chain chili plug seedling-picking mechanism [...] Read more.
With a focus on the problems of complex structure and accumulated lateral clearance in the single degree of freedom non-circular wheel system seedling-picking mechanism, which leads to poor motion accuracy, trajectory, and attitude, this study developed a 2R open-chain chili plug seedling-picking mechanism (SPM) constrained by a differential non-circular wheel system. The picking arm was driven by a single-stage non-uniform speed transmission mechanism to reproduce the seedling-picking trajectory and attitude. A protruding seedling-picking device, SPM control system, and test bench were designed. A kinematic model of a differential non-circular gear system was established, and an optimization design software for the SPM was developed based on kinematic analysis. The kinematic characteristics of the SPM were analyzed under optimal parameters. This study completed the seedling-picking performance test of the SPM on the control panel. The test showed that the designed chili SPM can sequentially complete the processes of seedling picking, conveying, retracting, pushing, and returning under the automatic control of the test bench without damaging the main root. The lateral root damage rate was 15.7%, effectively ensuring the integrity of the seedling bowl substrate. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

18 pages, 4718 KiB  
Article
Design and Experiment of Dual-Row Seedling Pick-Up Device for High-Speed Automatic Transplanting Machine
by Rencai Yue, Mengjiao Yao, Tengfei Zhang, Jiawei Shi, Jinhao Zhou and Jianping Hu
Agriculture 2024, 14(6), 942; https://doi.org/10.3390/agriculture14060942 - 17 Jun 2024
Cited by 6 | Viewed by 2027
Abstract
To address the inefficiency and instability of automatic transplanting machines, a dual-row seedling pick-up device and its corresponding control system were developed. Existing seedling end-effectors are primarily mechanically controlled, and the seedling needles can easily cause damage to the interior of the bowl. [...] Read more.
To address the inefficiency and instability of automatic transplanting machines, a dual-row seedling pick-up device and its corresponding control system were developed. Existing seedling end-effectors are primarily mechanically controlled, and the seedling needles can easily cause damage to the interior of the bowl. In order to reduce the damage inflicted by the end-effectors to the bowl, this paper conducted a mechanical analysis of the end-effector. At the same time, a buffer optimization analysis was conducted on the operation of the end-effector, and a flexible pneumatic end-effector for seedling picking was designed. The control system combined the detection of multiple sensors to monitor the process of seedling picking and throwing. By coordinating the lifting cylinder and clamping cylinder, the system effectively reduced seedling pot damage while improving seedling picking efficiency. By setting the operating parameters of the servo motor, the goal of low-speed and high-efficiency seedling picking was achieved. To evaluate the performance of the control system, the linear displacement sensors and acceleration testing systems were used to analyze the performance of the seedling throwing. The results showed that the seedling picking efficiency could reach 180 plants min−1, with no significant difference between the actual measured moving distance and the theoretical setting distance. The positioning error remained stable between 0.5 and 0.9 mm, which met the requirements for seedling picking accuracy. The buffer optimization design reduced the peak acceleration of the end-effector from −22.1 m/s2 to −13.4 m/s2, and the peak value was reduced by 39.4%, which proved the significant effectiveness of the buffer design. A performance test was conducted using 128-hole seed trays and 33-day-old cabbage seedlings for seedling picking and throwing. When the planting frequency reached 90 plants/row·min−1, the average success rate of picking and throwing seedlings was 97.3%. This indicates that the various components of the designed seedling pick-up device work in good coordination during operation, and the control system operates stably. Technical requirements for the automatic mechanical transplanting of tray seedlings were achieved, which can provide reference for research on automatic transplanting machines. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

21 pages, 8068 KiB  
Article
Mechanical Characteristics Testing and Parameter Optimization of Rapeseed Blanket Seedling Conveying for Transplanters
by Lan Jiang, Tingwei Zhu, Qing Tang, Jun Wu, Dong Jiang and Minghui Huang
Agriculture 2024, 14(5), 699; https://doi.org/10.3390/agriculture14050699 - 29 Apr 2024
Cited by 3 | Viewed by 1134
Abstract
Rapeseed blanket seedling transplanters have developed rapidly due to their high efficiency and adaptability to the soil in many areas of China. However, during the transplanter’s longitudinal seedling conveying process, seedling blanket compression leads to inaccurate conveying and thus declined seedling picking performance. [...] Read more.
Rapeseed blanket seedling transplanters have developed rapidly due to their high efficiency and adaptability to the soil in many areas of China. However, during the transplanter’s longitudinal seedling conveying process, seedling blanket compression leads to inaccurate conveying and thus declined seedling picking performance. In this paper, a mechanical compression test was carried out on rapeseed seedling blankets. The longitudinal compression force of the rapeseed seedling blanket on a transplanter was calculated through mechanical analysis. A compression model of the rapeseed seedling blanket was established to determine how the blanket’s mechanical characteristics and the device’s structural parameters affect blanket compression. In addition, with the index of longitudinal compression Y1, the coefficient of variation in the longitudinal seedling conveying distance Y2, and the qualified-block-cutting rate Y3, the interactive influence between the seedling tray tilt angle A, the seedling blanket moisture content B, and the seedling blanket thickness C were analyzed using response surface analysis. Aiming to reduce blanket compression and enhance the accuracy of longitudinal seedling conveying and block-cutting quality, the optimized results show that the predicted optimal parameters were a 50.14° seedling tray tilt angle, a 71.86% seedling blanket moisture content, and a 22.13 mm seedling blanket thickness. Using these optimized parameters, the transplanter achieved a blanket longitudinal compression of 18.17 mm, a coefficient of variation in the longitudinal seedling conveying distance of 1.142, and a qualified-block-cutting rate of 90%. Subsequently, a validation test was performed, revealing a high degree of conformity between the optimization model and the experimental data. Thus, the predicted optimal parameters can provide significantly reduced compression and a high seedling conveying performance. The results of this study provide theoretical and empirical support for the optimized design and operation of mechanized rapeseed blanket seedling transplanting. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

19 pages, 11084 KiB  
Article
Design and Development of Rice Pot-Seedling Transplanting Machinery Based on a Non-Circular Gear Mechanism
by Jiajia Yang, Maile Zhou, Daqing Yin and Jianjun Yin
Appl. Sci. 2024, 14(3), 1027; https://doi.org/10.3390/app14031027 - 25 Jan 2024
Cited by 2 | Viewed by 2866
Abstract
Transplanting rice pot seedlings without damaging the roots, which promotes early tillering, is an effective measure to enhance rice yield and quality. This study aimed to obtain the mechanized-transplanting trajectory and attitude of rice pot seedlings by utilizing non-circular planetary-gear trains, focusing on [...] Read more.
Transplanting rice pot seedlings without damaging the roots, which promotes early tillering, is an effective measure to enhance rice yield and quality. This study aimed to obtain the mechanized-transplanting trajectory and attitude of rice pot seedlings by utilizing non-circular planetary-gear trains, focusing on the three key actions of rice pot-seedling transplanting: seedling picking, conveying, and planting. A lightweight and simplified rice pot-seedling transplanting machinery was designed, referring to the motion characteristics of artificially transplanting rice pot seedlings by first pulling them out and then planting them. Key technologies such as non-circular gear trains, the rice seedling supply system, the transmission system, and the rice seedling-picking device were studied, and their key components were designed and manufactured, resulting in the creation of two physical model machines: an ordinary ride type and a high-speed type. The seedling-picking test and field-transplanting test showed that the rice pot-seedling transplanting mechanism can accomplish the rice pot-seedling picking, rice conveying, and planting actions. The designed operation efficiency yielded a planting-depth qualification rate of over 92%, a seedling injury rate of less than 1.2%, and a missed-transplanting rate of less than 2%. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

21 pages, 10486 KiB  
Article
Study on the Method and Mechanism of Seedling Picking for Pepper (Capsicum annuum L.) Plug Seedlings
by Maile Zhou, Hao Sun, Xin Xu, Jiajia Yang, Guibin Wang, Zhaoxiang Wei, Tingbo Xu and Jianjun Yin
Agriculture 2024, 14(1), 11; https://doi.org/10.3390/agriculture14010011 - 21 Dec 2023
Cited by 11 | Viewed by 1999
Abstract
To better meet the requirements of mechanized transplanting of pepper plug seedlings, this study explores the seedling picking mechanism of a fully automatic pepper transplanting machine. It introduces a novel “eagle beak” type trajectory for seedling picking and designs a probe-type mechanism for [...] Read more.
To better meet the requirements of mechanized transplanting of pepper plug seedlings, this study explores the seedling picking mechanism of a fully automatic pepper transplanting machine. It introduces a novel “eagle beak” type trajectory for seedling picking and designs a probe-type mechanism for pepper plug seedling retrieval. We establish a kinematic theoretical model and delineate the composition and operational principles of this probe-type mechanism. Additionally, we develop an auxiliary optimization software tailored based on Visual Basic 6.0 visual programming software for this mechanism. It employs a blend of manual fine-tuning and a “parameter guidance” optimization algorithm, enabling the determination of 11 optimal target parameters. Our comparative analysis between the theoretical model, optimization software, and high-speed camera experiments reveals a strong correlation in the motion trajectories, and the maximum error of the pose angle is 1.2°. To validate the mechanism’s design, we conducted a seedling retrieval experiment. In this test, the success rates of the seedling harvesting mechanism at speeds of 30, 40, and 50 r/min were 96.4%, 94.3%, and 91.4%, respectively, thus demonstrating its practical feasibility. Full article
(This article belongs to the Special Issue Agricultural Machinery Design and Agricultural Engineering)
Show Figures

Figure 1

18 pages, 7659 KiB  
Article
Design and Mechanical Analysis of a Cam-Linked Planetary Gear System Seedling Picking Mechanism
by Xin Jin, Bo Zhang, Hongbin Suo, Cheng Lin, Jiangtao Ji and Xiaolin Xie
Agriculture 2023, 13(4), 810; https://doi.org/10.3390/agriculture13040810 - 31 Mar 2023
Cited by 2 | Viewed by 2605
Abstract
This study designed a cam-linked planetary gear system automatic seedling picking mechanism to address unstable operation and issues of high damage to the substrate caused by the picking mechanism of the dryland vegetable seedling transplanter. Through an analysis of the kinematic principle of [...] Read more.
This study designed a cam-linked planetary gear system automatic seedling picking mechanism to address unstable operation and issues of high damage to the substrate caused by the picking mechanism of the dryland vegetable seedling transplanter. Through an analysis of the kinematic principle of the structure and the establishment of the kinematic model, computer-aided analysis software was developed using Visual Basic 6.0. Consequently, a set of structural parameter values satisfying the target trajectory was derived employing the human–computer interaction method, and the 3D model was designed. The model was imported into Adams for kinematic simulation, and the seedling picking mechanism’s trajectory during the operation was obtained through simulation. Modal analysis of the model was performed using Ansys, and the first six-order modal vibration patterns and modal frequencies of the seedling picking mechanism were obtained under the simulated working environment. The results confirmed that no resonance occurred during the operation. Comparisons of the seedling picking needle trajectory with the idle test revealed that the theoretical, simulated, and test trajectories were approximately identical. This proved the reliability of the theoretical design of the seedling picking mechanism, the machining of the parts, and the test bench construction. The success rates of seedling picking were 97.66, 96.09, 93.75, and 90.63% at 90, 100, 110, and 120 plants/min, respectively, with rates of substrate damage of 4.43%, 6.73%, 9.57%, and 14.37%, respectively. Thus, the experimental results confirmed that the operating parameters of the cam-linked planetary gear system seedling picking mechanism satisfied the design requirements. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

14 pages, 9604 KiB  
Article
Vision-Based a Seedling Selective Planting Control System for Vegetable Transplanter
by Mingyong Li, Liqiang Xiao, Xiqiang Ma, Fang Yang, Xin Jin and Jiangtao Ji
Agriculture 2022, 12(12), 2064; https://doi.org/10.3390/agriculture12122064 - 1 Dec 2022
Cited by 10 | Viewed by 3846
Abstract
Seedling transplanting is an important part of vegetable mechanized production in modern agriculture. After the seedlings are cultivated on a large scale by the nursery tray, they are planted into the field by the transplanter. However, unlike manual transplanting, transplanter is unable to [...] Read more.
Seedling transplanting is an important part of vegetable mechanized production in modern agriculture. After the seedlings are cultivated on a large scale by the nursery tray, they are planted into the field by the transplanter. However, unlike manual transplanting, transplanter is unable to judge the status of seedlings in the hole during seedling planting, which leads to problems such as damaged seedlings and empty holes being picked in the same order and planted into the field, resulting in yield reduction and missed planting. Aiming at this problem, we designed a seedling selective planting control system for vegetable transplanter which includes vision unit, seedling picking mechanism, seedling feeding mechanism, planting mechanism, pneumatic push rod unit, limit sensor, industrial computer and logic controller. We used asymmetrical light to construct visual identification scenes for planting conditions, which suppresses environmental disturbances. Based on the intersection operation of mask and image, a fast framework of tray hole location and seedling identification (FHLSI) was proposed combined with FCM segmentation algorithm. The vision unit provides the transplanting system with information on the status of the holes to be transplanted. Based on the information, planting system chooses the healthy seedlings for transplanting, improving the survival rate and quality of transplanting. The results show that the proposed visual method has an average accuracy of 92.35% for identification with the selective planting control system of seedlings and improves the transplanting quality by 15.4%. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

18 pages, 4407 KiB  
Article
Design and Working Parameter Optimization of Pneumatic Reciprocating Seedling-Picking Device of Automatic Transplanter
by Rencai Yue, Jianping Hu, Yijun Liu, Mengjiao Yao, Tengfei Zhang and Jiawei Shi
Agriculture 2022, 12(12), 1989; https://doi.org/10.3390/agriculture12121989 - 23 Nov 2022
Cited by 13 | Viewed by 2119
Abstract
To improve the seedling-picking efficiency of the vegetable transplanter and reduce the damage rate of the seedling pot, a reciprocating seedling-picking device driven by full air pressure was designed. In this paper, the structure and working principle of the pneumatic seedling-picking device are [...] Read more.
To improve the seedling-picking efficiency of the vegetable transplanter and reduce the damage rate of the seedling pot, a reciprocating seedling-picking device driven by full air pressure was designed. In this paper, the structure and working principle of the pneumatic seedling-picking device are introduced. Through the mechanical analysis between the seedling-picking claw and the seedling pot, working parameters such as the stroke and driving force of the pneumatic seedling-picking claw clamping cylinder were determined. According to the action sequence of the seedling-picking mechanism, which is horizontally dispersed and longitudinally conveyed, the pneumatic control scheme of the seedling-picking and -dropping system was formulated. The simulation model for the control loop of the longitudinal cylinder was created with AMESim simulation software, and the simulation analysis was carried out. The Box–Behnken response surface design optimization method was used to determine the best operating parameters of the cylinder. The optimized peak value of shock vibration at the end of the cylinder was optimized from −65.64 mm·s−2 to 35.41 mm·s−2, proving that the optimization of pneumatic working parameters has a positive effect on the success rate of seedling picking. The bench test of the seedling-picking mechanism was conducted on 72-hole plug seedlings with two picking frequencies of 120 plants·min−1 and 144 plants·min−1, respectively, and the average seedling leakage rate, seedling damage rate, and seedling pot damage rate at different picking frequencies were counted. The experimental results show that under the two seedling-picking frequencies, the average success rate of seedling picking and throwing after optimization is increased from 96.4% and 92.4% to 97.9% and 95.3%, respectively. This is in line with the requirements of high-speed seedling picking and confirms the rationality of the seedling-picking mechanism design. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

17 pages, 4800 KiB  
Article
Design and Test of a Force Feedback Seedling Pick-Up Gripper for an Automatic Transplanter
by Pengfei Li, Zhihao Yun, Kaihang Gao, Laiqiang Si and Xinwu Du
Agriculture 2022, 12(11), 1889; https://doi.org/10.3390/agriculture12111889 - 10 Nov 2022
Cited by 7 | Viewed by 2511
Abstract
Aiming at the problems of seedling injury and planting leakage due to the lack of seeding clamping force detection and real-time control in vegetable transplanting, a force feedback gripper was developed based on the linear Hall element. The mechanical properties of the stem [...] Read more.
Aiming at the problems of seedling injury and planting leakage due to the lack of seeding clamping force detection and real-time control in vegetable transplanting, a force feedback gripper was developed based on the linear Hall element. The mechanical properties of the stem of pepper cavity seedlings were first analyzed to provide a basis for the design of the gripper. A linear Hall sensor, a magnet, an elastic actuator, and an Arduino Uno development board make up the grasping force detecting system. Upon picking up a seedling, the elastic actuator, which is connected to the magnet, bends like a cantilever beam. As a result of the micro-displacement created by the elastic actuator, the Hall sensor’s voltage changes and can be used to determine the clamping force. Detection avoids direct contact between the sensor and the cavity seedlings, reducing the risk of sensor damage. Finite element method (FEM) simulations were used to determine the initial spacing between the magnet and Hall sensor and the effect of the elastic actuator. Control commands are sent to the servo based on the gripping force collected by the Arduino Uno board. Finally, the functions of accurate measurement, display, storage, and control of the clamping force of the cavity tray seedlings are realized, so that the damage rate of the cavity tray seedlings is reduced. In order to explore the influence of the elastic actuators on the clamping force detection system and the performance of the force feedback gripper, a calibration test of the clamping force detection system and a test of the indoor transplantation of pepper seedlings were carried out. Based on the calibration test, the clamping force detection system has a sensitivity of 0.0693 V/N, linearity of 3.21%, an average linear coefficient of determination of 0.986, and a range of 10 N, which fully meet the clamping force detection accuracy requirements during transplantation. Indoor tests showed that the force feedback gripper was stable and adaptable. This study can provide a reference for detecting and controlling clamping forces during transplantation. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

22 pages, 7426 KiB  
Article
Design and Experimental Study of Intermittent Automatic Grouping Dropping Plug Seedling Mechanism of Fixed Seedling Cups
by Bin Chen, Guangfa Hu, Songlin Sun, Mingtao Xiao and Chaoran Sun
Appl. Sci. 2022, 12(21), 11125; https://doi.org/10.3390/app122111125 - 2 Nov 2022
Cited by 2 | Viewed by 1823
Abstract
In a vegetable transplanting operation, if the seedling picking mechanism extracts the whole row of seedlings, the seedling separating mechanism needs to place the seedlings in groups. In this study, a seedling separating mechanism based on a fixed seedling cup was proposed to [...] Read more.
In a vegetable transplanting operation, if the seedling picking mechanism extracts the whole row of seedlings, the seedling separating mechanism needs to place the seedlings in groups. In this study, a seedling separating mechanism based on a fixed seedling cup was proposed to realize faster seedling grouping in a smaller volume. A collision model between the pot and the wall of the seedling dropping cylinder during the seedling dropping process was established. The duration of seedling dropping at different positions was analyzed. Subsequently, the calculation equations between the installation angle and the cam rotation speed and the dropping duration were derived. The net dropping duration of seedlings at different positions was measured. According to the measurement results, the installation angles of the driving cam at each position were calculated as 0°, 72°, 150°, 216°, and 288°, respectively. The seedling uniformity test was conducted according to the optimized installation angles. The test results revealed that the success rate of dropping seedlings was 100%, the coefficient of variation in dropping seedling interval at different positions was 6.25%, and the matrix damage rate was less than 10%, which verified the reliability of the dropping seedling principle. Finally, the stability tests results showed that the mechanism was able to complete the uniform seedling drop operation at a seeding frequency of 75~108 plants/(min · row) under the existing installation conditions. Therefore, the research results can provide a reference for the design and research of a subsequent traction-based automatic pot seedling transplanting machine. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

19 pages, 6530 KiB  
Article
Design and Application of Non-Circular Gear with Cusp Pitch Curve
by Jian-Gang Liu, Zhi-Peng Tong, Gao-Hong Yu, Xiong Zhao and Hai-Li Zhou
Machines 2022, 10(11), 985; https://doi.org/10.3390/machines10110985 - 28 Oct 2022
Cited by 9 | Viewed by 2754
Abstract
To solve the design problem of non-circular gears with cusp pitch curves, this paper proposed a new variable-involute and incomplete variable-cycloid composite tooth profile (VIIVC-CTF), deduced the new VIIVC-CTF mathematical model, and constructed the conjugate gear model based on the envelope method. The [...] Read more.
To solve the design problem of non-circular gears with cusp pitch curves, this paper proposed a new variable-involute and incomplete variable-cycloid composite tooth profile (VIIVC-CTF), deduced the new VIIVC-CTF mathematical model, and constructed the conjugate gear model based on the envelope method. The design software of the non-circular gear with a cusp pitch curve was developed based on MATLAB. The variation law of rolling radius on an incomplete cycloid profile and its characteristics such as pressure angle and radius of curvature were analyzed. The variation relationship of the rolling radius on the meshing line and the contact ratio of the VIIVC-CTF were studied. The variation relationship of incomplete variable-cycloid profile shape, pressure angle, and curvature radius corresponding to different elliptical eccentricities were analyzed. The meshing analysis of the non-circular gear transmission mechanism was carried out based on virtual software. A comparison of the consistency of the theoretical value and simulation value of the transmission ratio curve verified that the tooth profile design method was feasible, and the VIIVC-CTF was applied to the seedling pick-up mechanism of the non-circular gear planetary gear train. Through the seedling picking experiment of the seedling pick-up mechanism, the feasibility of the application of the VIIVC-CTF was verified. Full article
Show Figures

Figure 1

Back to TopTop