Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = semiconductor superlattices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6074 KB  
Article
Cu2S Nanocrystals and Their Superlattices
by Samuel Fuentes, Ryan Hart, Juan Ramirez, Aditi Mulgaonkar, Rainie Luo, Brady Killham, Sashi Debnath, Yunfeng Wang, Xiankai Sun, Jiechao Jiang and Yaowu Hao
Crystals 2025, 15(5), 387; https://doi.org/10.3390/cryst15050387 - 23 Apr 2025
Viewed by 821
Abstract
We report the successful synthesis of monodispersed Cu2S nanocrystals and the subsequent formation of highly ordered nanocrystal superlattices. The synthesis is performed under ambient air conditions using simple experimental setups, making the process both accessible and scalable. By systematically tuning the [...] Read more.
We report the successful synthesis of monodispersed Cu2S nanocrystals and the subsequent formation of highly ordered nanocrystal superlattices. The synthesis is performed under ambient air conditions using simple experimental setups, making the process both accessible and scalable. By systematically tuning the reaction temperature and duration, we demonstrate precise control over the nanocrystal size, which is crucial in achieving uniformity and monodispersity. Furthermore, we uncover a previously unidentified nanocrystal growth mechanism that plays a key role in producing highly monodisperse Cu2S nanocrystals. This insight into the growth process enhances our fundamental understanding of nanocrystal formation and could be extended to the synthesis of other semiconductor nanomaterials. The self-assembly of these nanocrystals into superlattices is carefully examined using electron diffraction techniques, revealing the presence of pseudo-crystalline structures. The ordered arrangement of nanocrystals within these superlattices suggests strong interparticle interactions and opens up new possibilities to tailor their collective optical, electronic, and mechanical properties for potential applications in optoelectronics, nanomedicine, and energy storage. Full article
(This article belongs to the Special Issue Celebrating the 10th Anniversary of International Crystallography)
Show Figures

Figure 1

28 pages, 4096 KB  
Article
Spontaneous and Piezo Polarization Versus Polar Surfaces: Fundamentals and Ab Initio Calculations
by Pawel Strak, Pawel Kempisty, Konrad Sakowski, Jacek Piechota, Izabella Grzegory, Eva Monroy, Agata Kaminska and Stanislaw Krukowski
Materials 2025, 18(7), 1489; https://doi.org/10.3390/ma18071489 - 26 Mar 2025
Cited by 1 | Viewed by 703
Abstract
In this study, the fundamental properties of spontaneous and piezo polarization and surface polarity were defined. It was demonstrated that the Landau definition of polarization as a dipole density could be used in infinite systems. Differences between bulk polarization and surface polarity were [...] Read more.
In this study, the fundamental properties of spontaneous and piezo polarization and surface polarity were defined. It was demonstrated that the Landau definition of polarization as a dipole density could be used in infinite systems. Differences between bulk polarization and surface polarity were distinguished, thus creating a clear identification of both components. This identification is in agreement with numerous experimental data—red shift presence and absence for wurtzite and zinc blende multiquantum wells (MQWs), respectively. A local model of spontaneous polarization was created and used to calculate spontaneous polarization as electric dipole density. The proposed local model correctly predicted the c-axis spontaneous polarization values of nitride wurtzite semiconductors. In addition, the model’s results are in accordance with a polarization equal to zero for the zinc blende lattice. The spontaneous polarization values obtained for all wurtzite III nitrides are in basic agreement with earlier calculations using the Berry phase. Ab initio calculations of wurtzite nitride superlattices in Heyd–Scuseria–Ernzerhof (HSE) approximation were performed to derive polarization-induced fields in coherently strained lattices, showing good agreement with the polarization values. Strained superlattice data were used to determine the piezoelectric parameters of wurtzite nitrides, obtaining values that are in basic agreement with earlier data. Zinc blende superlattices were also modeled using ab initio HSE calculations, showing results that are in agreement with the absence of polarization in all nitrides in zinc blende symmetry. Full article
Show Figures

Graphical abstract

20 pages, 14049 KB  
Article
The Formation of an Interface and Its Energy Levels Inside a Band Gap in InAs/GaSb/AlSb/GaSb M-Structures
by Paweł Śliż, Dawid Jarosz, Marta Pasternak and Michał Marchewka
Materials 2025, 18(5), 991; https://doi.org/10.3390/ma18050991 - 24 Feb 2025
Viewed by 673
Abstract
We studied specially designed InAs/GaSb/AlSb/GaSb M-structures, a type-II superlattice (T2SL), that can serve as active materials for short-wavelength infrared (SWIR) applications. To obtain the dispersion relation of the investigated M-structures, k·p perturbation theory based on the eight-band model implemented in the nextnano++ v1.18.1 [...] Read more.
We studied specially designed InAs/GaSb/AlSb/GaSb M-structures, a type-II superlattice (T2SL), that can serve as active materials for short-wavelength infrared (SWIR) applications. To obtain the dispersion relation of the investigated M-structures, k·p perturbation theory based on the eight-band model implemented in the nextnano++ v1.18.1 (nextnano GmbH, Munich, Germany) software was used. Numerical band-gap engineering and dispersion calculations for the investigated M-structures (composed of 6/1/5/1 monolayers, with InSb interfaces included) revealed the presence of an additional energy level within the energy gap. This energy level originates from the InSb-like interfaces and does not appear in structures with different layer or interface thicknesses. Its properties strongly depend on interface thickness, temperature, and strain. Numerical calculations of the probability density function |Ψ|2, absorption coefficients, and optical absorption spectra at varying temperatures demonstrate that, under specific conditions, such as an optimised interface thickness and temperature, optical absorption increases significantly. These theoretical results are based on structures fabricated using molecular-beam epitaxy (MBE) technology. High-resolution X-ray diffraction (HRXRD) measurements confirm the high crystallographic quality of these M-structures. Full article
Show Figures

Figure 1

13 pages, 3806 KB  
Article
Influence of the Annealing Temperature on the Properties of {ZnO/CdO}30 Superlattices Deposited on c-Plane Al2O3 Substrate by MBE
by Anastasiia Lysak, Aleksandra Wierzbicka, Piotr Dłużewski, Marcin Stachowicz, Jacek Sajkowski and Ewa Przezdziecka
Crystals 2025, 15(2), 174; https://doi.org/10.3390/cryst15020174 - 10 Feb 2025
Viewed by 937
Abstract
{CdO/ZnO}m superlattices (SLs) have been grown on c-plane sapphire substrates by plasma-assisted molecular beam epitaxy (PA-MBE). The observation of satellite peaks in the XRD studies of the as-grown and annealed samples confirms the presence of a periodic superlattice structure. The properties [...] Read more.
{CdO/ZnO}m superlattices (SLs) have been grown on c-plane sapphire substrates by plasma-assisted molecular beam epitaxy (PA-MBE). The observation of satellite peaks in the XRD studies of the as-grown and annealed samples confirms the presence of a periodic superlattice structure. The properties of as-grown and annealed SLs deposited on c-oriented sapphire were investigated by transmission electron microscopy, X-ray diffraction and temperature dependent PL studies. The deformation of the SLs structure was observed after rapid thermal annealing. As the thermal annealing temperature increases, the diffusion of Cd ions from the quantum well layers into the ZnO barrier increases. The formation of CdZnO layers causes changes in the luminescence spectrum in the form of peak shifts, broadening and changes in the spacing of the satellite peaks visible in X-ray analysis. Full article
(This article belongs to the Special Issue Materials and Devices Grown via Molecular Beam Epitaxy)
Show Figures

Figure 1

21 pages, 8328 KB  
Article
Impact of Buffer Layer on Electrical Properties of Bow-Tie Microwave Diodes on the Base of MBE-Grown Modulation-Doped Semiconductor Structure
by Algirdas Sužiedėlis, Steponas Ašmontas, Jonas Gradauskas, Aurimas Čerškus, Aldis Šilėnas and Andžej Lučun
Crystals 2025, 15(1), 50; https://doi.org/10.3390/cryst15010050 - 3 Jan 2025
Cited by 2 | Viewed by 837
Abstract
Bow-tie diodes on the base of modulation-doped semiconductor structures are often used to detect radiation in GHz to THz frequency range. The operation of the bow-tie microwave diodes is based on carrier heating phenomena in an epitaxial semiconductor structure with broken geometrical symmetry. [...] Read more.
Bow-tie diodes on the base of modulation-doped semiconductor structures are often used to detect radiation in GHz to THz frequency range. The operation of the bow-tie microwave diodes is based on carrier heating phenomena in an epitaxial semiconductor structure with broken geometrical symmetry. However, the electrical properties of bow-tie diodes are highly dependent on the purity of the grown epitaxial layer—specifically, the minimal number of defects—and the quality of the ohmic contacts. The quality of MBE-grown semiconductor structure depends on the presence of a buffer layer between a semiconductor substrate and an epitaxial layer. In this paper, we present an investigation of the electrical and optical properties of planar bow-tie microwave diodes fabricated using modulation-doped semiconductor structures grown via the MBE technique, incorporating either a GaAs buffer layer or a GaAs–AlGaAs super-lattice buffer between the semi-insulating substrate and the active epitaxial layer. These properties include voltage sensitivity, electrical resistance, I–V characteristic asymmetry, nonlinearity coefficient, and photoluminescence. The investigation revealed that the buffer layer, as well as the illumination with visible light, strongly influences the properties of the bow-tie diodes. Full article
Show Figures

Figure 1

31 pages, 8660 KB  
Article
Quantum Well Model for Charge Transfer in Aperiodic DNA and Superlattice Sequences
by Alan Tai
Biophysica 2024, 4(3), 411-441; https://doi.org/10.3390/biophysica4030027 - 28 Aug 2024
Viewed by 2273
Abstract
This study presents a quantum well model using the transfer matrix technique to analyze the charge transfer characteristics of nanostructure sequences in both DNA and superlattices. The unconfined state, or unbound state, above the quantum well is used to investigate carrier behaviors in [...] Read more.
This study presents a quantum well model using the transfer matrix technique to analyze the charge transfer characteristics of nanostructure sequences in both DNA and superlattices. The unconfined state, or unbound state, above the quantum well is used to investigate carrier behaviors in a semiconductor nanostructure. These analytical approaches can be extended to enhance the understanding of charge transfer in DNA nanostructures with periodic and aperiodic sequences. Experimental validation was conducted through photoreflectance spectroscopy on nanostructures within the semiconductor superlattices. Furthermore, the study’s findings were compared with earlier research by Li et al. on the thermoelectric effect and its dependence on molecular length and sequences in single DNA molecules. The results showed agreement, offering novel insights into charge transfer and transport in DNA nanostructures across various sequence types. Full article
(This article belongs to the Special Issue The Structure and Function of Proteins, Lipids, and Nucleic Acids)
Show Figures

Figure 1

36 pages, 6509 KB  
Review
Hydrostatic Pressure as a Tool for the Study of Semiconductor Properties—An Example of III–V Nitrides
by Iza Gorczyca, Tadek Suski, Piotr Perlin, Izabella Grzegory, Agata Kaminska and Grzegorz Staszczak
Materials 2024, 17(16), 4022; https://doi.org/10.3390/ma17164022 - 13 Aug 2024
Cited by 2 | Viewed by 1631
Abstract
Using the example of III–V nitrides crystallizing in a wurtzite structure (GaN, AlN, and InN), this review presents the special role of hydrostatic pressure in studying semiconductor properties. Starting with a brief description of high-pressure techniques for growing bulk crystals of nitride compounds, [...] Read more.
Using the example of III–V nitrides crystallizing in a wurtzite structure (GaN, AlN, and InN), this review presents the special role of hydrostatic pressure in studying semiconductor properties. Starting with a brief description of high-pressure techniques for growing bulk crystals of nitride compounds, we focus on the use of hydrostatic pressure techniques in both experimental and theoretical investigations of the special properties of nitride compounds, their alloys, and quantum structures. The bandgap pressure coefficient is one of the most important parameters in semiconductor physics. Trends in its behavior in nitride structures, together with trends in pressure-induced phase transitions, are discussed in the context of the behavior of other typical semiconductors. Using InN as an example, the pressure-dependent effects typical of very narrow bandgap materials, such as conduction band filling or effective mass behavior, are described. Interesting aspects of bandgap bowing in In-containing nitride alloys, including pressure and clustering effects, are discussed. Hydrostatic pressure also plays an important role in the study of native defects and impurities, as illustrated by the example of nitride compounds and their quantum structures. Experiments and theoretical studies on this topic are reviewed. Special attention is given to hydrostatic pressure and strain effects in short periods of nitride superlattices. The explanation of the discrepancies between theory and experiment in optical emission and its pressure dependence from InN/GaN superlattices led to the well-documented conclusion that InN growth on the GaN substrate is not possible. The built-in electric field present in InGaN/GaN and AlGaN/GaN heterostructures crystallizing in a wurtzite lattice can reach several MV/cm, leading to drastic changes in the physical properties of these structures and related devices. It is shown how hydrostatic pressure modifies these effects and helps to understand their origin. Full article
Show Figures

Figure 1

23 pages, 1900 KB  
Review
Nonlinear Charge Transport and Excitable Phenomena in Semiconductor Superlattices
by Luis L. Bonilla, Manuel Carretero and Emanuel Mompó
Entropy 2024, 26(8), 672; https://doi.org/10.3390/e26080672 - 8 Aug 2024
Viewed by 1557
Abstract
Semiconductor superlattices are periodic nanostructures consisting of epitaxially grown quantum wells and barriers. For thick barriers, the quantum wells are weakly coupled and the main transport mechanism is a sequential resonant tunneling of electrons between wells. We review quantum transport in these materials, [...] Read more.
Semiconductor superlattices are periodic nanostructures consisting of epitaxially grown quantum wells and barriers. For thick barriers, the quantum wells are weakly coupled and the main transport mechanism is a sequential resonant tunneling of electrons between wells. We review quantum transport in these materials, and the rate equations for electron densities, currents, and the self-consistent electric potential or field. Depending on superlattice configuration, doping density, temperature, voltage bias, and other parameters, superlattices behave as excitable systems, and can respond to abrupt dc bias changes by large transients involving charge density waves before arriving at a stable stationary state. For other parameters, the superlattices may have self-sustained oscillations of the current through them. These oscillations are due to repeated triggering and recycling of charge density waves, and can be periodic in time, quasiperiodic, and chaotic. Modifying the superlattice configuration, it is possible to attain robust chaos due to wave dynamics. External noise of appropriate strength can generate time-periodic current oscillations when the superlattice is in a stable stationary state without noise, which is called the coherence resonance. In turn, these oscillations can resonate with a periodic signal in the presence of sufficient noise, thereby displaying a stochastic resonance. These properties can be exploited to design and build many devices. Here, we describe detectors of weak signals by using coherence and stochastic resonance and fast generators of true random sequences useful for safe communications and storage. Full article
(This article belongs to the Special Issue Quantum Transport in Molecular Nanostructures)
Show Figures

Figure 1

21 pages, 1579 KB  
Article
An On-Demand Fault-Tolerant Routing Strategy for Secure Key Distribution Network
by Zhiwei Wu, Haojiang Deng and Yang Li
Electronics 2024, 13(3), 525; https://doi.org/10.3390/electronics13030525 - 27 Jan 2024
Viewed by 1661
Abstract
The point-to-point key distribution technology based on twinning semiconductor superlattice devices can provide high-speed secure symmetric keys, suitable for scenarios with high security requirements such as the one-time pad cipher. However, deploying these devices and scaling them in complex scenarios, such as many-to-many [...] Read more.
The point-to-point key distribution technology based on twinning semiconductor superlattice devices can provide high-speed secure symmetric keys, suitable for scenarios with high security requirements such as the one-time pad cipher. However, deploying these devices and scaling them in complex scenarios, such as many-to-many communication, poses challenges. To address this, an effective solution is to build a secure key distribution network for communication by selecting trusted relays and deploying such devices between them. The larger the network, the higher the likelihood of relay node failure or attack, which can impact key distribution efficiency and potentially result in communication key leakage. To deal with the above challenges, this paper proposes an on-demand fault-tolerant routing strategy based on the secure key distribution network to improve the fault tolerance of the network while ensuring scalability and availability. The strategy selects the path with better local key status through a fault-free on-demand path discovery mechanism. To improve the reliability of the communication key, we integrate an acknowledgment-based fault detection mechanism in the communication key distribution process to locate the fault, and then identified the cause of the fault based on the Dempster–Shafer evidence theory. The identified fault is then isolated through subsequent path discovery and the key status is transferred. Simulation results demonstrate that the proposed method outperforms OSPF, the adaptive stochastic routing and the multi-path communication scheme, achieving an average 20% higher packet delivery ratio and lower corrupted key ratio, thus highlighting its reliability. Additionally, the proposed solution exhibits a relatively low local key overhead, indicating its practical value. Full article
(This article belongs to the Section Networks)
Show Figures

Figure 1

13 pages, 4666 KB  
Article
Toward Red Light Emitters Based on InGaN-Containing Short-Period Superlattices with InGaN Buffers
by Grzegorz Staszczak, Iza Gorczyca, Ewa Grzanka, Julita Smalc-Koziorowska, Grzegorz Targowski and Tadeusz Suski
Materials 2023, 16(23), 7386; https://doi.org/10.3390/ma16237386 - 27 Nov 2023
Cited by 2 | Viewed by 1357
Abstract
In order to shift the light emission of nitride quantum structures towards the red color, the technological problem of low In incorporation in InGaN−based heterostructures has to be solved. To overcome this problem, we consider superlattices grown on InGaN buffers with different In [...] Read more.
In order to shift the light emission of nitride quantum structures towards the red color, the technological problem of low In incorporation in InGaN−based heterostructures has to be solved. To overcome this problem, we consider superlattices grown on InGaN buffers with different In content. Based on the comparison of the calculated ab initio superlattice band gaps with the photoluminescence emission energies obtained from the measurements on the specially designed samples grown by metal-organic vapor phase epitaxy, it is shown that by changing the superlattice parameters and the composition of the buffer structures, the light emission can be shifted to lower energies by about 167 nm (0.72 eV) in comparison to the case of a similar type of superlattices grown on GaN substrate. The importance of using superlattices to achieve red emission and the critical role of the InGaN buffer are demonstrated. Full article
(This article belongs to the Topic Electronic and Optical Properties of Nanostructures)
Show Figures

Figure 1

11 pages, 3612 KB  
Article
High Resistivity and High Mobility in Localized Beryllium-Doped InAlAs/InGaAs Superlattices Grown at Low Temperature
by Deyan Dai, Hanqing Liu, Xiangbin Su, Xiangjun Shang, Shulun Li, Haiqiao Ni and Zhichuan Niu
Crystals 2023, 13(10), 1417; https://doi.org/10.3390/cryst13101417 - 24 Sep 2023
Cited by 3 | Viewed by 1600
Abstract
InAlAs:Be/InGaAs superlattices grown at low temperatures were investigated in this study. To obtain the highest resistivity and mobility simultaneously, a growth temperature above 200 °C was applied. The electrical properties were conducted via Hall effect measurement and a photoresponse test. The experimental results [...] Read more.
InAlAs:Be/InGaAs superlattices grown at low temperatures were investigated in this study. To obtain the highest resistivity and mobility simultaneously, a growth temperature above 200 °C was applied. The electrical properties were conducted via Hall effect measurement and a photoresponse test. The experimental results demonstrate that the sample grown at 257.5~260 °C exhibits the highest resistivity (1290 Ω × cm) and lowest carrier concentration (3.18 × 1014 cm−3), along with the highest mobility (187.2 cm2/Vs). Furthermore, the highest photoresponse (1.21) relative to dark resistivity was obtained under 1500 nm excitation. The optimized growth parameter of InGaAs/InAlAs multilayered structures is of great significance for fabricating high-performance terahertz photoconductive semiconductor antennas. Full article
Show Figures

Figure 1

29 pages, 5238 KB  
Review
Infrared HOT Photodetectors: Status and Outlook
by Antoni Rogalski, Małgorzata Kopytko, Weida Hu and Piotr Martyniuk
Sensors 2023, 23(17), 7564; https://doi.org/10.3390/s23177564 - 31 Aug 2023
Cited by 25 | Viewed by 6270
Abstract
At the current stage of long-wavelength infrared (LWIR) detector technology development, the only commercially available detectors that operate at room temperature are thermal detectors. However, the efficiency of thermal detectors is modest: they exhibit a slow response time and are not very useful [...] Read more.
At the current stage of long-wavelength infrared (LWIR) detector technology development, the only commercially available detectors that operate at room temperature are thermal detectors. However, the efficiency of thermal detectors is modest: they exhibit a slow response time and are not very useful for multispectral detection. On the other hand, in order to reach better performance (higher detectivity, better response speed, and multispectral response), infrared (IR) photon detectors are used, requiring cryogenic cooling. This is a major obstacle to the wider use of IR technology. For this reason, significant efforts have been taken to increase the operating temperature, such as size, weight and power consumption (SWaP) reductions, resulting in lower IR system costs. Currently, efforts are aimed at developing photon-based infrared detectors, with performance being limited by background radiation noise. These requirements are formalized in the Law 19 standard for P-i-N HgCdTe photodiodes. In addition to typical semiconductor materials such as HgCdTe and type-II AIIIBV superlattices, new generations of materials (two-dimensional (2D) materials and colloidal quantum dots (CQDs)) distinguished by the physical properties required for infrared detection are being considered for future high-operating-temperature (HOT) IR devices. Based on the dark current density, responsivity and detectivity considerations, an attempt is made to determine the development of a next-gen IR photodetector in the near future. Full article
Show Figures

Figure 1

14 pages, 1806 KB  
Article
Density-Functional Study of the Si/SiO2 Interfaces in Short-Period Superlattices: Structures and Energies
by Mikhail Smirnov, Evgenii Roginskii, Aleksandr Savin, Nurlan Mazhenov and Dmitrii Pankin
Coatings 2023, 13(7), 1231; https://doi.org/10.3390/coatings13071231 - 10 Jul 2023
Cited by 10 | Viewed by 2696
Abstract
The oxide-semiconductor interface is a key element of MOS transistors, which are widely used in modern electronics. In silicon electronics, SiO2 is predominantly used. The miniaturization requirement raises a problem regarding the growing of heterostructures with ultrathin oxide layers. Two structural models [...] Read more.
The oxide-semiconductor interface is a key element of MOS transistors, which are widely used in modern electronics. In silicon electronics, SiO2 is predominantly used. The miniaturization requirement raises a problem regarding the growing of heterostructures with ultrathin oxide layers. Two structural models of interface between crystalline Si and cristobalite SiO2 are studied by using DFT-based computer modelling. The structures of several Si/SiO2 superlattices (SL), with layer thicknesses varied within 0.5–2 nm, were optimized and tested for stability. It was found that in both models the silicon lattice conserves its quasi-cubic structure, whereas the oxide lattice is markedly deformed by rotations of the SiO4 tetrahedra around axes perpendicular to the interface plane. Based on the analysis of the calculated total energy of SLs with different thicknesses of the layers, an assessment of the interface formation energy was obtained. The formation energy is estimated to be approximately 3–5 eV per surface Si atom, which is close to the energies of various defects in silicon. Elastic strains in silicon layers are estimated at 5–10%, and their value rapidly decreases as the layer thickens. The elastic strains in the oxide layer vary widely, in a range of 1–15%, depending on the interface structure. Full article
Show Figures

Figure 1

17 pages, 42229 KB  
Article
Coexistence of Bloch and Parametric Mechanisms of High-Frequency Gain in Doped Superlattices
by Vladislovas Čižas, Natalia Alexeeva, Kirill N. Alekseev and Gintaras Valušis
Nanomaterials 2023, 13(13), 1993; https://doi.org/10.3390/nano13131993 - 1 Jul 2023
Cited by 2 | Viewed by 1374
Abstract
The detailed theoretical study of high-frequency signal gain, when a probe microwave signal is comparable to the AC pump electric field in a semiconductor superlattice, is presented. We identified conditions under which a doped superlattice biased by both DC and AC fields can [...] Read more.
The detailed theoretical study of high-frequency signal gain, when a probe microwave signal is comparable to the AC pump electric field in a semiconductor superlattice, is presented. We identified conditions under which a doped superlattice biased by both DC and AC fields can generate or amplify high-frequency radiation composed of harmonics, half-harmonics, and fractional harmonics. Physical mechanisms behind the effects are discussed. It is revealed that in a general case, the amplification mechanism in superlattices is determined by the coexistence of both the phase-independent Bloch and phase-dependent parametric gain mechanisms. The interplay and contribution of these gain mechanisms can be adjusted by the sweeping AC pump strength and leveraging a proper phase between the pump and strong probe electric fields. Notably, a transition from the Bloch gain to the parametric gain, often naturally occurring as the amplitude of the amplified signal field grows, can facilitate an effective method of fractional harmonic generation in DC–AC-driven superlattices. The study also uncovers that the pure parametric generation of the fractional harmonics can be initiated via their ignition by switching the DC pump electric field. The findings open a promising avenue for the advancement of new miniature GHz–THz frequency generators, amplifiers, and dividers operating at room temperature. Full article
(This article belongs to the Special Issue Nanomaterials for Terahertz Technology Applications)
Show Figures

Figure 1

13 pages, 6627 KB  
Article
Enhanced Power Factor and Ultralow Lattice Thermal Conductivity Induced High Thermoelectric Performance of BiCuTeO/BiCuSeO Superlattice
by Xuewen Yang, Zhiqian Sun, Guixian Ge and Jueming Yang
Materials 2023, 16(12), 4318; https://doi.org/10.3390/ma16124318 - 11 Jun 2023
Cited by 5 | Viewed by 2133
Abstract
Based on the first-principles calculations, the electronic structure and transport properties of BiMChO (M=Cu and Ag, Ch=S, Se, and Te) superlattices have been studied. They are all semiconductors with indirect band gaps. The increased band gap and decreased band dispersion near the valence [...] Read more.
Based on the first-principles calculations, the electronic structure and transport properties of BiMChO (M=Cu and Ag, Ch=S, Se, and Te) superlattices have been studied. They are all semiconductors with indirect band gaps. The increased band gap and decreased band dispersion near the valence band maximum (VBM) lead to the lowest electrical conductivity and the lowest power factor for p-type BiAgSeO/BiCuSeO. The band gap value of BiCuTeO/BiCuSeO decreases because of the up-shifted Fermi level of BiCuTeO compared with BiCuSeO, which would lead to relatively high electrical conductivity. The converged bands near VBM can produce a large effective mass of density of states (DOS) without explicitly reducing the mobility µ for p-type BiCuTeO/BiCuSeO, which means a relatively large Seebeck coefficient. Therefore, the power factor increases by 15% compared with BiCuSeO. The up-shifted Fermi level leading to the band structure near VBM is dominated by BiCuTeO for the BiCuTeO/BiCuSeO superlattice. The similar crystal structures bring out the converged bands near VBM along the high symmetry points Γ-X and Z-R. Further studies show that BiCuTeO/BiCuSeO possesses the lowest lattice thermal conductivity among all the superlattices. These result in the ZT value of p-type BiCuTeO/BiCuSeO increasing by over 2 times compared with BiCuSeO at 700 K. Full article
(This article belongs to the Special Issue Thermoelectric Materials for Sustainable Applications)
Show Figures

Figure 1

Back to TopTop