Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (114)

Search Parameters:
Keywords = siglec

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5835 KiB  
Article
Machine Learning Identification of Neutrophil Extracellular Trap-Related Genes as Potential Biomarkers and Therapeutic Targets for Bronchopulmonary Dysplasia
by Xuandong Zhang, Bingqian Yan, Zhou Jiang and Yujia Luo
Int. J. Mol. Sci. 2025, 26(7), 3230; https://doi.org/10.3390/ijms26073230 - 31 Mar 2025
Viewed by 97
Abstract
Neutrophil extracellular traps (NETs) play a key role in the development of bronchopulmonary dysplasia (BPD), yet their molecular mechanisms in contributing to BPD remain unexplored. Using the GSE32472 dataset, which includes 100 blood samples from postnatal day 28, we conducted comprehensive bioinformatics analyses [...] Read more.
Neutrophil extracellular traps (NETs) play a key role in the development of bronchopulmonary dysplasia (BPD), yet their molecular mechanisms in contributing to BPD remain unexplored. Using the GSE32472 dataset, which includes 100 blood samples from postnatal day 28, we conducted comprehensive bioinformatics analyses to identify differentially expressed genes (DEGs) and construct gene modules. We identified 86 DEGs, which were enriched in immune and inflammatory pathways, including NET formation. Weighted gene co-expression network analysis (WGCNA) revealed a key gene module associated with BPD. By intersecting 69 NET-related genes (NRGs), 149 module genes, and 86 DEGs, we identified 12 differentially expressed NET-related genes (DENRGs). Immune infiltration analysis revealed an increase in neutrophils, dendritic cells, and macrophages in BPD patients. Machine learning models (LASSO, SVM-RFE, and RF) identified 5 upregulated biomarkers—MMP9, Siglec-5, DYSF, MGAM, and S100A12—showing potential as diagnostic biomarkers for BPD. Validation using nomogram, ROC curves, and qRT-PCR confirmed the diagnostic accuracy of these biomarkers. Clinical data analysis showed that Siglec-5 was most strongly correlated with BPD severity, while DYSF correlated with the grade of retinopathy of prematurity (ROP) and its laser treatment. Clustering analysis revealed two distinct BPD subtypes with different immune microenvironment profiles. Drug–gene interaction analysis identified potential inhibitors targeting MGAM and MMP9. In conclusion, the study identifies five NET-related biomarkers as reliable diagnostic tools for BPD, with their upregulation and association with disease severity and complications, such as ROP, highlighting their clinical relevance and potential for advancing BPD diagnostics and treatment. Full article
Show Figures

Figure 1

25 pages, 1446 KiB  
Review
Exploring CD169+ Macrophages as Key Targets for Vaccination and Therapeutic Interventions
by Rianne G. Bouma, Aru Z. Wang and Joke M. M. den Haan
Vaccines 2025, 13(3), 330; https://doi.org/10.3390/vaccines13030330 - 20 Mar 2025
Viewed by 252
Abstract
CD169 is a sialic acid-binding immunoglobulin-like lectin (Siglec-1, sialoadhesin) that is expressed by subsets of tissue-resident macrophages and circulating monocytes. This receptor interacts with α2,3-linked Neu5Ac on glycoproteins as well as glycolipids present on the surface of immune cells and pathogens. CD169-expressing macrophages [...] Read more.
CD169 is a sialic acid-binding immunoglobulin-like lectin (Siglec-1, sialoadhesin) that is expressed by subsets of tissue-resident macrophages and circulating monocytes. This receptor interacts with α2,3-linked Neu5Ac on glycoproteins as well as glycolipids present on the surface of immune cells and pathogens. CD169-expressing macrophages exert tissue-specific homeostatic functions, but they also have opposing effects on the immune response. CD169+ macrophages act as a pathogen filter, protect against infectious diseases, and enhance adaptive immunity, but at the same time pathogens also exploit them to enable further dissemination. In cancer, CD169+ macrophages in tumor-draining lymph nodes are correlated with better clinical outcomes. In inflammatory diseases, CD169 expression is upregulated on monocytes and on monocyte-derived macrophages and this correlates with the disease state. Given their role in promoting adaptive immunity, CD169+ macrophages are currently investigated as targets for vaccination strategies against cancer. In this review, we describe the studies investigating the importance of CD169 and CD169+ macrophages in several disease settings and the vaccination strategies currently under investigation. Full article
(This article belongs to the Special Issue Vaccines Targeting Dendritic Cells)
Show Figures

Figure 1

18 pages, 2041 KiB  
Review
Insights on the Role of Sialic Acids in Acute Lymphoblastic Leukemia in Children
by Kimberley Rinai Radu and Kwang-Hyun Baek
Int. J. Mol. Sci. 2025, 26(5), 2233; https://doi.org/10.3390/ijms26052233 - 1 Mar 2025
Viewed by 499
Abstract
Sialic acids serve as crucial terminal sugars on glycoproteins or glycolipids present on cell surfaces. These sugars are involved in diverse physiological and pathological processes through their interactions with carbohydrate-binding proteins, facilitating cell–cell communication and influencing the outcomes of bacterial and viral infections. [...] Read more.
Sialic acids serve as crucial terminal sugars on glycoproteins or glycolipids present on cell surfaces. These sugars are involved in diverse physiological and pathological processes through their interactions with carbohydrate-binding proteins, facilitating cell–cell communication and influencing the outcomes of bacterial and viral infections. The role of hypersialylation in tumor growth and metastasis has been widely studied. Recent research has highlighted the significance of aberrant sialylation in enabling tumor cells to escape immune surveillance and sustain their malignant behavior. Acute lymphoblastic leukemia (ALL) is a heterogenous hematological malignancy that primarily affects children and is the second leading cause of mortality among individuals aged 1 to 14. ALL is characterized by the uncontrolled proliferation of immature lymphoid cells in the bone marrow, peripheral blood, and various organs. Sialic acid-binding immunoglobulin-like lectins (Siglecs) are cell surface proteins that can bind to sialic acids. Activation of Siglecs triggers downstream reactions, including induction of cell apoptosis. Siglec-7 and Siglec-9 have been reported to promote cancer progression by driving macrophage polarization, and their expressions on natural killer cells can inhibit tumor cell death. This comprehensive review aims to explore the sialylation mechanisms and their effects on ALL in children. Understanding the complex interplay between sialylation and ALL holds great potential for developing novel diagnostic tools and therapeutic interventions in managing this pediatric malignancy. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

22 pages, 2088 KiB  
Review
Immune Cell Interactions and Immune Checkpoints in the Tumor Microenvironment of Gastric Cancer
by Andreea-Raluca Cozac-Szőke, Dan Alexandru Cozac, Anca Negovan, Andreea Cătălina Tinca, Alexandra Vilaia, Iuliu-Gabriel Cocuz, Adrian Horațiu Sabău, Raluca Niculescu, Diana Maria Chiorean, Alexandru Nicușor Tomuț and Ovidiu Simion Cotoi
Int. J. Mol. Sci. 2025, 26(3), 1156; https://doi.org/10.3390/ijms26031156 - 29 Jan 2025
Viewed by 860
Abstract
Gastric cancer (GC) ranks as the fifth most prevalent malignant neoplasm globally, with an increased death rate despite recent advancements in research and therapeutic options. Different molecular subtypes of GC have distinct interactions with the immune system, impacting the tumor microenvironment (TME), prognosis, [...] Read more.
Gastric cancer (GC) ranks as the fifth most prevalent malignant neoplasm globally, with an increased death rate despite recent advancements in research and therapeutic options. Different molecular subtypes of GC have distinct interactions with the immune system, impacting the tumor microenvironment (TME), prognosis, and reaction to immunotherapy. Tumor-infiltrating lymphocytes (TILs) in the TME are crucial for preventing tumor growth and metastasis, as evidenced by research showing that patients with GC who have a significant density of TILs have better survival rates. But cancer cells have evolved a variety of mechanisms to evade immune surveillance, both sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) and Programmed Death-Ligand 1 (PD-L1) playing a pivotal role in the development of an immunosuppressive TME. They prevent T cell activation and proliferation resulting in a decrease in the immune system’s capacity to recognize and eliminate malignant cells. These immune checkpoint molecules function via different but complementary mechanisms, the expression of Siglec-15 being mutually exclusive with PD-L1 and, therefore, providing a different therapeutic approach. The review explores how TILs affect tumor growth and patient outcomes in GC, with particular emphasis on their interactions within the TME and potential targeting of the PD-L1 and Siglec-15 pathways for immunotherapy. Full article
Show Figures

Figure 1

24 pages, 6781 KiB  
Article
Monoclonal Antibodies Targeting Porcine Macrophages Are Able to Inhibit the Cell Entry of Macrophage-Tropic Viruses (PRRSV and ASFV)
by Shaojie Han, Dayoung Oh, Nathalie Vanderheijden, Jiexiong Xie, Nadège Balmelle, Marylène Tignon and Hans J. Nauwynck
Viruses 2025, 17(2), 167; https://doi.org/10.3390/v17020167 - 24 Jan 2025
Viewed by 963
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) and African swine fever virus (ASFV) cause serious economic losses to the swine industry worldwide. Both viruses show a tropism for macrophages, based on the use of specific entry mediators (e.g., Siglec-1 and CD163). Identifying additional [...] Read more.
Porcine reproductive and respiratory syndrome virus (PRRSV) and African swine fever virus (ASFV) cause serious economic losses to the swine industry worldwide. Both viruses show a tropism for macrophages, based on the use of specific entry mediators (e.g., Siglec-1 and CD163). Identifying additional mediators of viral entry is essential for advancing antiviral and vaccine development. In this context, monoclonal antibodies (mAbs) are valuable tools. This study employed a library of 166 mAbs targeting porcine alveolar macrophages (PAMs) to identify candidates capable of blocking early infection stages, including viral binding, internalization, and fusion. Immunofluorescence analysis revealed 74 mAbs with cytoplasmic staining and 70 mAbs with membrane staining. Fifteen reacted with blood monocytes as determined by flow cytometry. mAb blocking assays were performed at 4 °C and 37 °C to analyze the ability of mAbs to block PRRSV and/or ASFV infections in PAMs. The mAb 28C10 significantly blocked PRRSV (96% at 4 °C and 80% at 37 °C) and ASFV (64% at 4 °C and 81% at 37 °C) infections. The mAb 28G10B6 significantly blocked PRRSV (86% at 4 °C and 74% at 37 °C) and partially blocked ASFV (35% at 4 °C and 64% at 37 °C) infections. mAb 26B8F5-I only partially blocked PRRSV infection (65% at 4 °C and 46% at 37 °C). Western blotting and mass spectrometry identified the corresponding proteins as Siglec-1 (28C10; 250 kDa), MYH9 (28G10B6; 260 kDa), and ANXA1 (26B8F5-I; 37 kDa). Our findings are indicative that Siglec-1, MYH9, and ANXA1 play a role in PRRSV/ASFV entry into macrophages. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

27 pages, 2509 KiB  
Review
Recent Advances in Our Understanding of Human Inflammatory Dendritic Cells in Human Immunodeficiency Virus Infection
by Freja A. Warner van Dijk, Kirstie M. Bertram, Thomas R. O’Neil, Yuchen Li, Daniel J. Buffa, Andrew N. Harman, Anthony L. Cunningham and Najla Nasr
Viruses 2025, 17(1), 105; https://doi.org/10.3390/v17010105 - 14 Jan 2025
Viewed by 888
Abstract
Anogenital inflammation is a critical risk factor for HIV acquisition. The primary preventative HIV intervention, pre-exposure prophylaxis (PrEP), is ineffective in blocking transmission in anogenital inflammation. Pre-existing sexually transmitted diseases (STIs) and anogenital microbiota dysbiosis are the leading causes of inflammation, where inflammation [...] Read more.
Anogenital inflammation is a critical risk factor for HIV acquisition. The primary preventative HIV intervention, pre-exposure prophylaxis (PrEP), is ineffective in blocking transmission in anogenital inflammation. Pre-existing sexually transmitted diseases (STIs) and anogenital microbiota dysbiosis are the leading causes of inflammation, where inflammation is extensive and often asymptomatic and undiagnosed. Dendritic cells (DCs), as potent antigen-presenting cells, are among the first to capture HIV upon its entry into the mucosa, and they subsequently transport the virus to CD4 T cells, the primary HIV target cells. This increased HIV susceptibility in inflamed tissue likely stems from a disrupted epithelial barrier integrity, phenotypic changes in resident DCs and an influx of inflammatory HIV target cells, including DCs and CD4 T cells. Gaining insight into how HIV interacts with specific inflammatory DC subsets could inform the development of new therapeutic strategies to block HIV transmission. However, little is known about the early stages of HIV capture and transmission in inflammatory environments. Here, we review the currently characterised inflammatory-tissue DCs and their interactions with HIV. Full article
(This article belongs to the Special Issue The Role of Dendritic Cells and Macrophages in HIV Infection)
Show Figures

Figure 1

18 pages, 20003 KiB  
Article
ST8SIA6 Sialylates CD24 to Enhance Its Membrane Localization in BRCA
by Jinxia He, Fengchao Zhang, Baihai Wu and Wengong Yu
Cells 2025, 14(1), 9; https://doi.org/10.3390/cells14010009 - 26 Dec 2024
Viewed by 682
Abstract
CD24, a highly sialylated glycosyl-phosphatidyl-inositol (GPI) cell surface protein that interacts with sialic acid-binding immunoglobulin-like lectins (Siglecs), serves as an innate immune checkpoint and plays a crucial role in inflammatory diseases and tumor progression. Recently, cytoplasmic CD24 has been observed in samples from [...] Read more.
CD24, a highly sialylated glycosyl-phosphatidyl-inositol (GPI) cell surface protein that interacts with sialic acid-binding immunoglobulin-like lectins (Siglecs), serves as an innate immune checkpoint and plays a crucial role in inflammatory diseases and tumor progression. Recently, cytoplasmic CD24 has been observed in samples from patients with cancer. However, whether sialylation governs the subcellular localization of CD24 in cancer remains unclear, and the impact of CD24 expression and localization on the clinical prognosis of cancer remains controversial. Here, we performed a systematic pan-cancer analysis of the gene expression levels and clinical correlation of CD24. Our analysis revealed that CD24 was highly expressed in breast tumor tissues and tumor cells, significantly shortening patient survival time. However, this correlation was not evident in other types of cancer. Additionally, a correlation analysis of CD24 levels with sialyltransferases (STs) revealed that ST8SIA6 is the key ST affecting CD24 sialylation. Further investigation demonstrated that ST8SIA6 directly modified CD24, promoting its localization to the cell membrane. Taken together, these findings elucidate, for the first time, the mechanisms by which ST8SIA6 regulates CD24 subcellular localization, providing new insights into the biological functions and applications of CD24. Full article
Show Figures

Graphical abstract

23 pages, 29492 KiB  
Article
Suppression of Pathological Allergen-Specific B Cells by Protein-Engineered Molecules in a Mouse Model of Chronic House Dust Mite Allergy
by Nikola Ralchev, Silviya Bradyanova, Nikola Kerekov, Andrey Tchorbanov and Nikolina Mihaylova
Int. J. Mol. Sci. 2024, 25(24), 13661; https://doi.org/10.3390/ijms252413661 - 20 Dec 2024
Viewed by 738
Abstract
Der p1 is one of the major allergens causing house dust mite (HDM) allergy. Pathological Der p1-specific B cells play a key role in allergic inflammation as producers of allergen-specific antibodies. Crosslinking the inhibitory FcγRIIb with the B cell receptor triggers a high-affinity [...] Read more.
Der p1 is one of the major allergens causing house dust mite (HDM) allergy. Pathological Der p1-specific B cells play a key role in allergic inflammation as producers of allergen-specific antibodies. Crosslinking the inhibitory FcγRIIb with the B cell receptor triggers a high-affinity suppressive signal in B cells. Selective elimination of allergen-specific cells could potentially be achieved by administering chimeric molecules that combine, through protein engineering, the FcγRIIb-targeting monoclonal 2.4G2 antibody with the epitope-carrying Dp52–71 peptides from Der p1. We tested this hypothesis, in a chronic mouse model of HDM allergy induced in BalB/c mice, using FACS and ELISA assays, along with histopathological and correlational analyses. Dp52–71chimera treatment of HDM-challenged mice led to a decrease in serum anti-HDM IgG1 antibodies, a reduction in BALF β-hexosaminidase levels, a lowered number of SiglecFhigh CD11clow eosinophils, and an improved lung PAS score. Furthermore, we observed overexpression of FcγRIIb on the surface of CD19 cells in the lungs of HDM-challenged animals, which negatively correlated with the levels of lung alveolar macrophages, neutrophils, and BALF IL-13. Taken together, these results suggest that the use of FcγRIIb overexpression, combined with the expansion of chimeric protein technology to include more epitopes, could improve the outcome of inflammation. Full article
Show Figures

Figure 1

30 pages, 3725 KiB  
Article
Association of SIGLEC9 Expression with Cytokine Expression, Tumor Grading, KRAS, NRAS, BRAF, PIK3CA, AKT Gene Mutations, and MSI Status in Colorectal Cancer
by Błażej Ochman, Anna Kot, Sylwia Mielcarska, Agnieszka Kula, Miriam Dawidowicz, Dominika Koszewska, Dorota Hudy, Monika Szrot, Jerzy Piecuch, Dariusz Waniczek, Zenon Czuba and Elżbieta Świętochowska
Curr. Issues Mol. Biol. 2024, 46(12), 13617-13646; https://doi.org/10.3390/cimb46120814 - 29 Nov 2024
Viewed by 957
Abstract
SIGLEC9 (sialic acid-binding Ig-like lectin 9) is a molecule thought to have a significant influence on the immune properties of the colorectal cancer (CRC) tumor microenvironment (TME). In our study, we assessed the expression of the SIGLEC9 protein in CRC tissue and the [...] Read more.
SIGLEC9 (sialic acid-binding Ig-like lectin 9) is a molecule thought to have a significant influence on the immune properties of the colorectal cancer (CRC) tumor microenvironment (TME). In our study, we assessed the expression of the SIGLEC9 protein in CRC tissue and the surgical margin tissue. Using RT-PCR, we analyzed mutations in the KRAS, NRAS, BRAF, PIK3CA, and AKT genes. We observed a significantly elevated expression of the SIGLEC9 protein in CRC tissue compared to the control group. No significant differences were observed in SIGLEC9 protein expression depending on mutations in the KRAS, NRAS, BRAF, PIK3CA, and AKT genes or microsatellite instability (MSI) status. However, we found a significantly higher expression of the SIGLEC9 protein in high-grade tumors compared to the low-grade tumors group. SIGLEC9 expression was significantly associated with the expression of multiple cytokines, chemokines, and growth factors in the CRC TME. These associations suggest the significant potential of SIGLEC9 as a molecule that plays a crucial role in shaping the immune properties of the CRC TME, as well as its potential therapeutic relevance, particularly in the group of high-grade CRC tumors. Full article
(This article belongs to the Special Issue Advances in Molecular Pathogenesis Regulation in Cancer 2025)
Show Figures

Figure 1

35 pages, 5001 KiB  
Review
Mechanistic and Therapeutic Implications of Protein and Lipid Sialylation in Human Diseases
by Xiaotian Zhong, Aaron M. D’Antona and Jason C. Rouse
Int. J. Mol. Sci. 2024, 25(22), 11962; https://doi.org/10.3390/ijms252211962 - 7 Nov 2024
Viewed by 2129
Abstract
Glycan structures of glycoproteins and glycolipids on the surface glycocalyx and luminal sugar layers of intracellular membrane compartments in human cells constitute a key interface between intracellular biological processes and external environments. Sialic acids, a class of alpha-keto acid sugars with a nine-carbon [...] Read more.
Glycan structures of glycoproteins and glycolipids on the surface glycocalyx and luminal sugar layers of intracellular membrane compartments in human cells constitute a key interface between intracellular biological processes and external environments. Sialic acids, a class of alpha-keto acid sugars with a nine-carbon backbone, are frequently found as the terminal residues of these glycoconjugates, forming the critical components of these sugar layers. Changes in the status and content of cellular sialic acids are closely linked to many human diseases such as cancer, cardiovascular, neurological, inflammatory, infectious, and lysosomal storage diseases. The molecular machineries responsible for the biosynthesis of the sialylated glycans, along with their biological interacting partners, are important therapeutic strategies and targets for drug development. The purpose of this article is to comprehensively review the recent literature and provide new scientific insights into the mechanisms and therapeutic implications of sialylation in glycoproteins and glycolipids across various human diseases. Recent advances in the clinical developments of sialic acid-related therapies are also summarized and discussed. Full article
(This article belongs to the Special Issue Glycobiology in Human Health and Disease)
Show Figures

Figure 1

10 pages, 1763 KiB  
Article
Bridging the Gap Between Tolerogenic Dendritic Cells In Vitro and In Vivo: Analysis of Siglec Genes and Pathways Associated with Immune Modulation and Evasion
by Diahann T. S. L. Jansen, Tatjana Nikolic, Nicoline H. M. den Hollander, Jaap Jan Zwaginga and Bart O. Roep
Genes 2024, 15(11), 1427; https://doi.org/10.3390/genes15111427 - 31 Oct 2024
Cited by 1 | Viewed by 1331
Abstract
Background/Objectives: Dendritic cells (DCs) are master regulators of the adaptive immune response. Inflammatory DCs (inflamDCs) can prime inflammatory T cells in, for instance, cancer and infection. In contrast, tolerogenic DCs (tolDCs) can suppress the immune system through a plethora of regulatory mechanisms in [...] Read more.
Background/Objectives: Dendritic cells (DCs) are master regulators of the adaptive immune response. Inflammatory DCs (inflamDCs) can prime inflammatory T cells in, for instance, cancer and infection. In contrast, tolerogenic DCs (tolDCs) can suppress the immune system through a plethora of regulatory mechanisms in the context of autoimmunity. We successfully generated tolDCs in vitro to durably restore immune tolerance to an islet autoantigen in type 1 diabetes patients in a clinical trial. However, cancers can induce inhibitory DCs in vivo that impair anti-tumor immunity through Siglec signaling. Methods: To connect in vivo and in vitro tolDC properties, we tested whether tolDCs generated in vitro may also employ the Siglec pathway to regulate autoimmunity by comparing the transcriptomes and protein expression of immature and mature inflamDCs and tolDCs, generated from monocytes. Results: Both immature DC types expressed most Siglec genes. The expression of these genes declined significantly in mature inflamDCs compared to mature tolDCs. Surface expression of Siglec proteins by DCs followed the same pattern. The majority of genes involved in the different Siglec pathways were differentially expressed by mature tolDCs, as opposed to inflamDCs, and in inhibitory pathways in particular. Conclusions: Our results show that tolDCs generated in vitro mimic tumor-resident inhibitory DCs in vivo regarding Siglec expression. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

12 pages, 2009 KiB  
Article
Effect of Hypoxia on Siglec-7 and Siglec-9 Receptors and Sialoglycan Ligands and Impact of Their Targeting on NK Cell Cytotoxicity
by Husam Nawafleh, Nagwa Zeinelabdin, Michelle K. Greene, Anitha Krishnan, Linus Ho, Mohamed Genead, Derek Kunimoto, Christopher J. Scott, Michael Tolentino and Salem Chouaib
Pharmaceuticals 2024, 17(11), 1443; https://doi.org/10.3390/ph17111443 - 28 Oct 2024
Viewed by 1160
Abstract
Background/Objectives: Tumor microenvironmental hypoxia is an established hallmark of solid tumors. It significantly contributes to tumor aggressiveness and therapy resistance and has been reported to affect the balance of activating/inhibitory surface receptors’ expression and activity on NK cells. In the current study, we [...] Read more.
Background/Objectives: Tumor microenvironmental hypoxia is an established hallmark of solid tumors. It significantly contributes to tumor aggressiveness and therapy resistance and has been reported to affect the balance of activating/inhibitory surface receptors’ expression and activity on NK cells. In the current study, we investigated the impact of hypoxia on the surface expression of Siglec-7 and Siglec-9 (Sig-7/9) and their ligands in NK cells and tumor target cells. The functional consequence of Siglec blockage using nanoparticles specifically designed to target and block Sig-7/9 receptors on NK cell cytotoxicity was elucidated. Methods: CD56⁺ CD3 NK cells were isolated from PBMCs along with an NK-92 clone and used as effector cells, while MCF-7 and K562 served as target cells. All cells were incubated under normoxic or hypoxic conditions for 24 h. To assess Siglec-7 and Siglec-9 receptor expression, U937, NK-92, and primary NK cells were stained with PE-labeled antibodies against CD328 Siglec-7/9. Interactions between Siglec-7/9 and their sialylated ligands, along with their functional impact on NK cell activity, were evaluated using polymeric nanoparticles coated with a sialic acid mimetic. Immunological synapse formation and live-cell imaging were performed with a ZEISS LSM 800 with Airyscan at 10× magnification for 24 h. Results: Our data indicate that hypoxia had no effect on the expression of Siglec-7/9 receptors by NK cells. In contrast, hypoxic stress resulted in an increase in Siglec-7 sialoglycan ligand expression by a sub-population of NK target cells. Using polymeric nanoparticles coated with a sialic acid mimetic that binds both Siglec-7 and -9 (Sig-7/9 NP), we demonstrated that incubation of these nanoparticles with NK cells resulted in increased immunological synapse formation, granzyme B accumulation, and killing of NK target cells. These studies indicate that hypoxic stress may have an impact on NK cell-based therapies and highlight the need to consider the hypoxic microenvironment for tumor-specific glycosylation. Conclusions: Our findings point to the role of Siglec–sialylated glycan interactions in hypoxic stress-induced NK cell dysfunction and recommend the potential integration of the manipulation of this axis through the targeting of Siglecs in future cancer immunotherapy strategies. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

19 pages, 3873 KiB  
Article
Inhibitory Effect of Luteolin on Spike S1 Glycoprotein-Induced Inflammation in THP-1 Cells via the ER Stress-Inducing Calcium/CHOP/MAPK Pathway
by Sonthaya Umsumarng, Sivamoke Dissook, Punnida Arjsri, Kamonwan Srisawad, Pilaiporn Thippraphan, Apiwat Sangphukieo, Patcharawadee Thongkumkoon and Pornngarm Dejkriengkraikul
Pharmaceuticals 2024, 17(10), 1402; https://doi.org/10.3390/ph17101402 - 20 Oct 2024
Viewed by 2691
Abstract
Background/Objectives: The global SARS-CoV-2 outbreak has escalated into a critical public health emergency, with the spike glycoprotein S1 subunit of SARS-CoV-2 (spike-S1) linked to inflammation in lung tissue and immune cells. Luteolin, a flavone with anti-inflammatory properties, shows promise, but research on its [...] Read more.
Background/Objectives: The global SARS-CoV-2 outbreak has escalated into a critical public health emergency, with the spike glycoprotein S1 subunit of SARS-CoV-2 (spike-S1) linked to inflammation in lung tissue and immune cells. Luteolin, a flavone with anti-inflammatory properties, shows promise, but research on its effectiveness against long-COVID-related inflammation and spike protein-induced responses remains limited. This study aims to elucidate the underlying mechanisms of inflammation in THP-1 cells induced by the spike-S1. Additionally, it seeks to assess the potential of luteolin in mitigating inflammatory responses induced by the spike-S1 in a THP-1 macrophage model. Methods: The gene expression profiles of spike-S1 in THP-1 cells were analyzed by transcriptome sequencing. The inhibitory effect of luteolin on ER stress and inflammation in spike-S1-induced THP-1 cells was investigated using Western blotting, RT-PCR, and ELISA. Results: The candidate genes (CAMK2A, SIGLEC7, PPARGC1B, SEC22B, USP28, IER2, and TIRAP) were upregulated in the spike-S1-induced THP-1 group compared to the control group. Among these, calcium/calmodulin-dependent protein kinase II alpha (CAMK2A) was identified as the most promising molecule in spike-S1-induced THP-1 cells. Our results indicate that the spike S1 significantly increased the expression of ER-stress markers at both gene and protein levels. Luteolin significantly reduced ER stress by decreasing the expression of ER-stress marker genes and ER-stress marker proteins (p < 0.01). Additionally, luteolin exhibited anti-inflammatory properties upon spike S1-induction in THP-1 cells by significantly suppressing IL-6, IL-8, and IL-1β cytokine secretion in a dose-dependent manner (p < 0.05). Furthermore, our results revealed that luteolin exhibited the downregulation of the MAPK pathway, as evidenced by modulating the phosphorylation of p-ERK1/2, p-JNK and p-p38 proteins (p < 0.05). Conclusions: The results from this study elucidate the mechanisms by which the spike S1 induces inflammation in THP-1 cells and supports the use of naturally occurring bioactive compounds, like luteolin, against inflammation-related SARS-CoV-2 infection. Full article
(This article belongs to the Special Issue Bioactive Substances, Oxidative Stress, and Inflammation)
Show Figures

Graphical abstract

16 pages, 2365 KiB  
Article
Optimizing Siglec-8-Directed Immunotherapy for Eosinophilic and Mast Cell Disorders
by Sheryl Y. T. Lim, Jenny Huo, George S. Laszlo, Frances M. Cole, Allie R. Kehret, Junyang Li, Margaret C. Lunn-Halbert, Jasmyn L. Persicke, Peter B. Rupert, Roland K. Strong and Roland B. Walter
Cancers 2024, 16(20), 3476; https://doi.org/10.3390/cancers16203476 - 14 Oct 2024
Viewed by 1437
Abstract
Background/Objective: Current treatments for eosinophilic and mast cell disorders are often ineffective. One promising target to improve outcomes is sialic acid-binding immunoglobulin-like lectin-8 (Siglec-8). As limitations, there are few Siglec-8 monoclonal antibodies (mAbs) available to date, and Siglec-8-directed treatments have so far primarily [...] Read more.
Background/Objective: Current treatments for eosinophilic and mast cell disorders are often ineffective. One promising target to improve outcomes is sialic acid-binding immunoglobulin-like lectin-8 (Siglec-8). As limitations, there are few Siglec-8 monoclonal antibodies (mAbs) available to date, and Siglec-8-directed treatments have so far primarily focused on unconjugated mAbs, which may be inadequate, especially against mast cells. Methods: Here, we used transgenic mice to raise a diverse panel of fully human mAbs that either recognize the V-set domain, membrane-distal C2-set domain, or membrane-proximal C2-set domain of full-length Siglec-8 as a basis for novel therapeutics. Results: All mAbs were efficiently internalized into Siglec-8-expressing cells, suggesting their potential to deliver cytotoxic payloads. Tool T cell-engaging bispecific antibodies (BiAbs) and chimeric antigen receptor (CAR)-modified natural killer (NK) cells using single-chain variable fragments from Siglec-8 mAbs showed highly potent cytolytic activity against Siglec-8-positive cells even in cases of very low target antigen abundance, whereas they elicited no cytolytic activity against Siglec-8-negative target cells. Siglec-8V-set-directed T cell-engaging BiAbs and Siglec-8V-set-directed CAR-modified NK cells induced substantially greater cytotoxicity against cells expressing an artificial smaller Siglec-8 variant containing only the V-set domain than cells expressing full-length Siglec-8, consistent with the notion that targeting membrane-proximal epitopes enhances effector functions of Siglec-8 antibody-based therapeutics. Indeed, unconjugated Siglec-8C2-set mAbs, Siglec-8C2-set-directed T cell-engaging BiAbs, and Siglec-8C2-set-directed CAR-modified NK cells showed high antigen-specific cytolytic activity against Siglec-8-positive human cell lines and primary patient eosinophils. Conclusions: Together, these data demonstrate Siglec-8-directed immunotherapies can be highly potent, supporting their further development for eosinophilic and mast cell disorders. Full article
(This article belongs to the Special Issue Feature Paper in Section “Cancer Therapy” in 2024)
Show Figures

Figure 1

16 pages, 9975 KiB  
Article
Pinpointing Novel Plasma and Brain Proteins for Common Ocular Diseases: A Comprehensive Cross-Omics Integration Analysis
by Qinyou Mo, Xinyu Liu, Weiming Gong, Yunzhuang Wang, Zhongshang Yuan, Xiubin Sun and Shukang Wang
Int. J. Mol. Sci. 2024, 25(19), 10236; https://doi.org/10.3390/ijms251910236 - 24 Sep 2024
Viewed by 1883
Abstract
The pathogenesis of ocular diseases (ODs) remains unclear, although genome-wide association studies (GWAS) have identified numerous associated genetic risk loci. We integrated protein quantitative trait loci (pQTL) datasets and five large-scale GWAS summary statistics of ODs under a cutting-edge systematic analytic framework. Proteome-wide [...] Read more.
The pathogenesis of ocular diseases (ODs) remains unclear, although genome-wide association studies (GWAS) have identified numerous associated genetic risk loci. We integrated protein quantitative trait loci (pQTL) datasets and five large-scale GWAS summary statistics of ODs under a cutting-edge systematic analytic framework. Proteome-wide association studies (PWAS) identified plasma and brain proteins associated with ODs, and 11 plasma proteins were identified by Mendelian randomization (MR) and colocalization (COLOC) analyses as being potentially causally associated with ODs. Five of these proteins (protein-coding genes ECI1, LCT, and NPTXR for glaucoma, WARS1 for age-related macular degeneration (AMD), and SIGLEC14 for diabetic retinopathy (DR)) are newly reported. Twenty brain-protein–OD pairs were identified by COLOC analysis. Eight pairs (protein-coding genes TOM1L2, MXRA7, RHPN2, and HINT1 for senile cataract, WARS1 and TDRD7 for AMD, STAT6 for myopia, and TPPP3 for DR) are newly reported in this study. Phenotype-disease mapping analysis revealed 10 genes related to the eye/vision phenotype or ODs. Combined with a drug exploration analysis, we found that the drugs related to C3 and TXN have been used for the treatment of ODs, and another eight genes (GSTM3 for senile cataract, IGFBP7 and CFHR1 for AMD, PTPMT1 for glaucoma, EFEMP1 and ACP1 for myopia, SIRPG and CTSH for DR) are promising targets for pharmacological interventions. Our study highlights the role played by proteins in ODs, in which brain proteins were taken into account due to the deepening of eye–brain connection studies. The potential pathogenic proteins finally identified provide a more reliable reference range for subsequent medical studies. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop