Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = silicon carbide-on-insulator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3708 KB  
Article
Impact of BN Buffer Layer Thickness on Interfacial Structure and Band Alignment of a-BN/4H-SiC Heterojunctions
by Yang-Chao Liu, Wen-Jie Chen, Man Luo, Zimo Zhou, Lin Gu, Yi Shen, Xin Qi, Hong-Ping Ma and Qing-Chun Zhang
Coatings 2025, 15(10), 1224; https://doi.org/10.3390/coatings15101224 - 18 Oct 2025
Viewed by 362
Abstract
This study provides a comprehensive investigation into the growth behavior of boron nitride (BN) buffer layers on Silicon carbide (SiC) substrates and their influence on interfacial band alignment. BN layers were deposited on semi-insulating SiC by RF magnetron sputtering with deposition times of [...] Read more.
This study provides a comprehensive investigation into the growth behavior of boron nitride (BN) buffer layers on Silicon carbide (SiC) substrates and their influence on interfacial band alignment. BN layers were deposited on semi-insulating SiC by RF magnetron sputtering with deposition times of 2.5, 5, and 7.5 min (these deposition times are specific experimental parameters to adjust the thickness of the amorphous BN layer, not intrinsic material properties of BN). Atomic force microscopy revealed that the surface roughness of the BN layers initially decreased and then increased with thickness, indicating an evolution from nucleation to continuous film formation, followed by surface coarsening. Transmission electron microscopy confirmed the BN thicknesses of approximately 3.25, 4.91, and 7.57 nm, showing that the layers gradually became uniform and compact, thereby improving the structural integrity of the BN/SiC interface. Band alignment was analyzed using the Kraut method, yielding a valence band offset of ~0.36 eV and a conduction band offset of ~2.34 eV for the BN/SiC heterojunction. This alignment indicates that the BN buffer layer introduces a pronounced electron barrier, effectively suppressing leakage, while the relatively small VBO facilitates hole transport across the interface. These findings demonstrate that the BN buffer layer enhances interfacial bonding, reduces defect states, and enables band structure engineering, offering a promising strategy for improving the performance of wide-bandgap semiconductor devices. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

22 pages, 6940 KB  
Article
Research on the Preparation of Porous Ceramics from Gold Tailings and the Thermal Insulation and Heat Resistance Properties
by Haoyu Zhao, Hongzhi Yue, Jianping Zhu, Laijun Ma, Jiayi Zhong, Wenjuan Jiao, Yan Wang and Zhiyang Chang
Materials 2025, 18(20), 4764; https://doi.org/10.3390/ma18204764 - 17 Oct 2025
Viewed by 354
Abstract
This study demonstrates a high-value pathway for fabricating porous ceramics by utilizing gold tailings (GT) as the principal raw material, with silicon carbide (SiC) as a high-temperature foaming agent. The microstructure, mechanical strength, and thermal conductivity were tailored by adjusting GT content, sintering [...] Read more.
This study demonstrates a high-value pathway for fabricating porous ceramics by utilizing gold tailings (GT) as the principal raw material, with silicon carbide (SiC) as a high-temperature foaming agent. The microstructure, mechanical strength, and thermal conductivity were tailored by adjusting GT content, sintering temperature, raw material particle size, and foaming agent dosage. The optimized ceramics exhibit a total porosity of 60.1–83.7%, a compressive strength of 3.25–7.18 MPa, and a thermal conductivity of 0.15–0.32 W·m−1·K−1. These properties not only meet, but in fact exceed the key requirements specified in the Chinese National Standard GB/T 16533-1996 for porous thermal insulation ceramics. Notably, the materials achieve an optimal balance between high porosity and adequate mechanical strength. The findings confirm that gold tailings can be effectively valorized to produce standardized, porous ceramics suitable for industrial thermal insulation applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

18 pages, 5708 KB  
Article
Directly Heated Solid Media Thermal Energy Storage System for Heat Supply in Battery Electric Vehicles: A Holistic Evaluation
by Thorsten Ott and Volker Dreißigacker
Energies 2025, 18(20), 5354; https://doi.org/10.3390/en18205354 - 11 Oct 2025
Viewed by 363
Abstract
Battery electric vehicles (BEVs) play a key role in reducing CO2 emissions and enabling a climate-neutral economy. However, they suffer from reduced range in cold conditions due to electric cabin heating. Electrically heated thermal energy storage (TES) systems can decouple heat generation [...] Read more.
Battery electric vehicles (BEVs) play a key role in reducing CO2 emissions and enabling a climate-neutral economy. However, they suffer from reduced range in cold conditions due to electric cabin heating. Electrically heated thermal energy storage (TES) systems can decouple heat generation from demand, thereby preventing a loss of range. For this purpose, a novel concept based on a directly electrically heated ceramic solid media TES is investigated, aiming to achieve high storage density while enabling both high charging and discharging powers. To assess the feasibility of the proposed TES concept in BEVs, a holistic evaluation of central aspects is conducted, including experimental characterization for material selection, experimental investigations on electrical contacting, and simulations of the electrothermal charging and thermal discharging processes under vehicle-relevant conditions. As a result of the material characterization, a promising material—a silicon carbide-based composite—was identified, which meets the electrothermal requirements under typical household charging conditions and allows reliable operation with silver-metallized electrodes. Design studies with this material show gravimetric energy densities—including thermal insulation demand—exceeding 100 Wh/kg, storage utilization of up to 90%, and fast charging within 25 min, while offering 5 kW at flexible temperature levels for cabin heating during thermal discharging. These results show that the basic prerequisites for such storage systems are met, while further development—particularly in terms of material improvements—remains necessary. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

18 pages, 2289 KB  
Article
GaN/InN HEMT-Based UV Photodetector on SiC with Hexagonal Boron Nitride Passivation
by Mustafa Kilin and Firat Yasar
Photonics 2025, 12(10), 950; https://doi.org/10.3390/photonics12100950 - 24 Sep 2025
Cited by 1 | Viewed by 505
Abstract
This work presents a novel Gallium Nitride (GaN) high-electron-mobility transistor (HEMT)-based ultraviolet (UV) photodetector architecture that integrates advanced material and structural design strategies to enhance detection performance and stability under room-temperature operation. This study is conducted as a fully numerical simulation using the [...] Read more.
This work presents a novel Gallium Nitride (GaN) high-electron-mobility transistor (HEMT)-based ultraviolet (UV) photodetector architecture that integrates advanced material and structural design strategies to enhance detection performance and stability under room-temperature operation. This study is conducted as a fully numerical simulation using the Silvaco Atlas platform, providing detailed electrothermal and optoelectronic analysis of the proposed device. The device is constructed on a high-thermal-conductivity silicon carbide (SiC) substrate and incorporates an n-GaN buffer, an indium nitride (InN) channel layer for improved electron mobility and two-dimensional electron gas (2DEG) confinement, and a dual-passivation scheme combining silicon nitride (SiN) and hexagonal boron nitride (h-BN). A p-GaN layer is embedded between the passivation interfaces to deplete the 2DEG in dark conditions. In the device architecture, the metal contacts consist of a 2 nm Nickel (Ni) adhesion layer followed by Gold (Au), employed as source and drain electrodes, while a recessed gate embedded within the substrate ensures improved electric field control and effective noise suppression. Numerical simulations demonstrate that the integration of a hexagonal boron nitride (h-BN) interlayer within the dual passivation stack effectively suppresses the gate leakage current from the typical literature values of the order of 108 A to approximately 1010 A, highlighting its critical role in enhancing interfacial insulation. In addition, consistent with previous reports, the use of a SiC substrate offers significantly improved thermal management over sapphire, enabling more stable operation under UV illumination. The device demonstrates strong photoresponse under 360 nm ultraviolet (UV) illumination, a high photo-to-dark current ratio (PDCR) found at approximately 106, and tunable performance via structural optimization of p-GaN width between 0.40 μm and 1.60 μm, doping concentration from 5×1016 cm3 to 5×1018 cm3, and embedding depth between 0.060 μm and 0.068 μm. The results underscore the proposed structure’s notable effectiveness in passivation quality, suppression of gate leakage, and thermal management, collectively establishing it as a robust and reliable platform for next-generation UV photodetectors operating under harsh environmental conditions. Full article
Show Figures

Figure 1

12 pages, 6232 KB  
Article
Effect of Nano-SiC Loading on Surface Discharge Performance of Polyimide at High-Frequency Electric Stress
by Ruoqing Hong, Qingmin Li, Huan Li and Qingming Xin
Polymers 2025, 17(18), 2526; https://doi.org/10.3390/polym17182526 - 18 Sep 2025
Viewed by 414
Abstract
This study targets insulation challenges in high-frequency power transformers (HFPTs), which are an integral part of the high-voltage, high-capacity isolated DC/DC converter under development for offshore renewable energy systems. We propose a nano-silicon carbide (SiC)-doped polyimide (PI) winding insulation strategy to enhance discharge [...] Read more.
This study targets insulation challenges in high-frequency power transformers (HFPTs), which are an integral part of the high-voltage, high-capacity isolated DC/DC converter under development for offshore renewable energy systems. We propose a nano-silicon carbide (SiC)-doped polyimide (PI) winding insulation strategy to enhance discharge resistance and thermal stability under high-frequency electric stress. Experimental results show that 10 wt% SiC doping significantly improves insulation performance, extending failure time from 17 to 50 min and reducing maximum discharge amplitude by 76%, owing to enhanced charge trapping and interfacial polarization suppression. Surface and volume resistivity measurements further confirmed the improvement; at 120 °C, the 10 wt% SiC composite maintained high surface resistivity 3.30 × 1014 Ω and volume resistivity 1.41 × 1015 Ω·cm, significantly outperforming pure PI. In contrast, 20 wt% SiC, though still resistive, showed reduced stability due to agglomeration and interfacial defects, with a surface resistivity of 2.07 × 1014 Ω and degraded dielectric performance. Dielectric analysis revealed that 10 wt% SiC suppressed dielectric constant and loss across the frequency range, while 20 wt% SiC exhibited increased values at high frequency. These results highlight 10 wt% SiC as an optimal formulation for HFPT winding insulation. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

18 pages, 5472 KB  
Article
Transparent Wood Fiber-Reinforced Epoxy-Resin Electromagnetic-Shielding Materials with Superior Mechanical Strength and Thermal Insulation Performance
by Jingshu Gao, Zhen Wu, Ling Zhu, Yue Gao, Liping Cai, Zunling Zhu and Yaoli Zhang
Materials 2025, 18(18), 4262; https://doi.org/10.3390/ma18184262 - 11 Sep 2025
Viewed by 486
Abstract
The development of electromagnetic-shielding materials that not only meet the requirements of electromagnetic shielding but also possess transparency and additional functionalities is a new trend in the field. In this study, delignified wood fibers were used as the base material, which were impregnated [...] Read more.
The development of electromagnetic-shielding materials that not only meet the requirements of electromagnetic shielding but also possess transparency and additional functionalities is a new trend in the field. In this study, delignified wood fibers were used as the base material, which were impregnated in epoxy resin and then reinforced with three types of electromagnetic-shielding fillers: chopped carbon fibers, silicon carbide particles, and nano-silica. The experimental results showed that the resulting wood fiber-reinforced epoxy-resin electromagnetic-shielding transparent material not only exhibited excellent mechanical strength and thermal insulation properties but also achieved high haze and effective electromagnetic-shielding efficiency (greater than 90%) while maintaining a transmittance of approximately 50%. Based on the orthogonal experimental results, the optimal performance of the wood fiber-reinforced epoxy-resin electromagnetic-shielding transparent material was obtained when chopped carbon fibers were used as the electromagnetic-shielding filler component, with an electromagnetic-shielding filler mass fraction of 0.3 wt% and a wood fiber mass fraction of 5.0 wt%. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

16 pages, 2036 KB  
Article
Scalable Chemical Vapor Deposition of Silicon Carbide Thin Films for Photonic Integrated Circuit Applications
by Souryaya Dutta, Alex Kaloyeros, Animesh Nanaware and Spyros Gallis
Appl. Sci. 2025, 15(15), 8603; https://doi.org/10.3390/app15158603 - 2 Aug 2025
Viewed by 1700
Abstract
Highly integrable silicon carbide (SiC) has emerged as a promising platform for photonic integrated circuits (PICs), offering a comprehensive set of material and optical properties that are ideal for the integration of nonlinear devices and solid-state quantum defects. However, despite significant progress in [...] Read more.
Highly integrable silicon carbide (SiC) has emerged as a promising platform for photonic integrated circuits (PICs), offering a comprehensive set of material and optical properties that are ideal for the integration of nonlinear devices and solid-state quantum defects. However, despite significant progress in nanofabrication technology, the development of SiC on an insulator (SiCOI)-based photonics faces challenges due to fabrication-induced material optical losses and complex processing steps. An alternative approach to mitigate these fabrication challenges is the direct deposition of amorphous SiC on an insulator (a-SiCOI). However, there is a lack of systematic studies aimed at producing high optical quality a-SiC thin films, and correspondingly, on evaluating and determining their optical properties in the telecom range. To this end, we have studied a single-source precursor, 1,3,5-trisilacyclohexane (TSCH, C3H12Si3), and chemical vapor deposition (CVD) processes for the deposition of SiC thin films in a low-temperature range (650–800 °C) on a multitude of different substrates. We have successfully demonstrated the fabrication of smooth, uniform, and stoichiometric a-SiCOI thin films of 20 nm to 600 nm with a highly controlled growth rate of ~0.5 Å/s and minimal surface roughness of ~5 Å. Spectroscopic ellipsometry and resonant micro-photoluminescence excitation spectroscopy and mapping reveal a high index of refraction (~2.7) and a minimal absorption coefficient (<200 cm−1) in the telecom C-band, demonstrating the high optical quality of the films. These findings establish a strong foundation for scalable production of high-quality a-SiCOI thin films, enabling their application in advanced chip-scale telecom PIC technologies. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

24 pages, 7077 KB  
Article
Manufacturing Process of Stealth Unmanned Aerial Vehicle Exhaust Nozzles Based on Carbon Fiber-Reinforced Silicon Carbide Matrix Composites
by Byeong-Joo Kim, Jae Won Kim, Man Young Lee, Jong Kyoo Park, Nam Choon Cho and Cheul Woo Baek
Aerospace 2025, 12(7), 600; https://doi.org/10.3390/aerospace12070600 - 1 Jul 2025
Viewed by 1003
Abstract
This study presents the development of a manufacturing process for a double-serpentine (DS) exhaust nozzle for unmanned aerial vehicles (UAVs) based on carbon fiber-reinforced silicon carbide matrix composites (C/SiCs). The DS nozzle is designed to reduce infrared emissions from hot exhaust plumes, a [...] Read more.
This study presents the development of a manufacturing process for a double-serpentine (DS) exhaust nozzle for unmanned aerial vehicles (UAVs) based on carbon fiber-reinforced silicon carbide matrix composites (C/SiCs). The DS nozzle is designed to reduce infrared emissions from hot exhaust plumes, a critical factor in enhancing stealth performance during UAV operations. The proposed nozzle structure was fabricated using a multilayer configuration consisting of an inner C/SiC layer for thermal and oxidation resistance, a silica–phenolic insulation layer to suppress heat transfer, and an outer carbon fiber-reinforced polymer matrix composite (CFRPMC) for mechanical reinforcement. The C/SiC layer was produced by liquid silicon infiltration, preceded by pyrolysis and densification of a phenolic-based CFRPMC preform. The final nozzle was assembled through precision machining and bonding of segmented components, followed by lamination of the insulation and outer layers. Mechanical and thermal property tests confirmed the structural integrity and performance under high-temperature conditions. Additionally, oxidation and ablation tests demonstrated the excellent durability of the developed C/SiC. The results indicate that the developed process is suitable for producing large-scale, complex-shaped, high-temperature composite structures for stealth UAV applications. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

12 pages, 16015 KB  
Article
Compact Nonvolatile Reconfigurable Mode Converter by Sb2S3 Embedded in 4H-Silicon-Carbide-on-Insulator Platform
by Danfeng Zhu, Junbo Chen, Shaobin Qiu, Dingnan Deng and Jinming Luo
Nanomaterials 2025, 15(9), 689; https://doi.org/10.3390/nano15090689 - 1 May 2025
Viewed by 568
Abstract
Nonvolatile switching is emerging and shows potential in integrated optics. A compact nonvolatile reconfigurable mode converter implemented on a 4H-silicon-carbide-on-insulator (4H-SiCOI) platform with a footprint of 0.5 × 1 × 1.8 μm3 is proposed in this study. The functional region features an [...] Read more.
Nonvolatile switching is emerging and shows potential in integrated optics. A compact nonvolatile reconfigurable mode converter implemented on a 4H-silicon-carbide-on-insulator (4H-SiCOI) platform with a footprint of 0.5 × 1 × 1.8 μm3 is proposed in this study. The functional region features an Sb2S3 film embedded in a 4H-SiC strip waveguide. The functionality is achieved through manipulating the phase state of the Sb2S3. The high refractive index contrast between the crystalline Sb2S3 and 4H-SiC enables high-efficiency mode conversion within a compact footprint. The incident TM0 mode is converted to the TM1 mode with a high transmittance (T) beyond 0.91 and a mode purity (MP) over 91.72% across the 1500–1600 nm waveband. Additionally, when the Sb2S3 transitions to its amorphous state, the diminished refractive index contrast efficiently mitigates the mode conversion effect. In this state, the TM0 mode propagates through the functional region with minimal perturbation, exhibiting T ≥ 0.99 and MPTM0 ≥ 97.65% within a 1500–1600 nm waveband. Furthermore, the device performances were investigated under partially crystallized states of Sb2S3. The proposed structure offers a broad range of transmittance differences (−16.42 dB ≤ ΔT ≤ 17.1 dB) and mode purity differences (−90.91% ≤ ΔMP ≤ 96.11%) between the TM0 mode and TM1 mode. The proposed device exhibits a high robustness within ±20 nm Δl and ±10 nm Δw. We believe that the proposed multi-level manipulation can facilitate a large communication capacity and that it can be deployed in neuromorphic optical computing. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

26 pages, 8945 KB  
Article
Comprehensive Modeling of SiC Inverter Driven Form Wound Motor Coil for Insights on Coil Insulation Stress
by Benjamin Sirizzotti, Emmanuel Agamloh, Annette von Jouanne and Alex Yokochi
Energies 2025, 18(5), 1262; https://doi.org/10.3390/en18051262 - 4 Mar 2025
Viewed by 1100
Abstract
This paper comprehensively presents an approach for modeling form wound coils of a motor driven by an inverter, with focus on the electric stresses on the coil insulation. A 10 kV SiC testbed for medium voltage form wound coils was developed to support [...] Read more.
This paper comprehensively presents an approach for modeling form wound coils of a motor driven by an inverter, with focus on the electric stresses on the coil insulation. A 10 kV SiC testbed for medium voltage form wound coils was developed to support and validate the modeling techniques discussed. A finite element analysis (FEA) model of the motor coil is presented using COMSOL 6.1. The FEA model was used to determine parameters for an electrical model based on the multi-conductor transmission line theory. The linking of these models allows for a rapid analysis of the electrical stresses the insulation can be exposed to. An experimental method for model validation using the empirical transfer function estimation (ETFE) approach to find the impedance response of the testbed for comparison to the proposed electrical model is presented and employed. The paper also uses the model to analyze the impact of insulation delamination and voids and to demonstrate the implementation of a metric called insulation state of health monitoring for both healthy and damaged coils. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

21 pages, 4175 KB  
Article
Dynamic Performance Evaluation of Bidirectional Bridgeless Interleaved Totem-Pole Power Factor Correction Boost Converter
by Hsien-Chie Cheng, Wen-You Jhu, Yu-Cheng Liu, Da-Wei Zheng, Yan-Cheng Liu and Tao-Chih Chang
Micromachines 2025, 16(2), 223; https://doi.org/10.3390/mi16020223 - 16 Feb 2025
Cited by 1 | Viewed by 2063
Abstract
This study aims to conduct an assessment of the dynamic characteristics of a proposed 6.6 kW bidirectional bridgeless three-leg interleaved totem-pole power factor correction (PFC) boost converter developed for the front-end stage of electric vehicle onboard charger applications during load cycles. This proposed [...] Read more.
This study aims to conduct an assessment of the dynamic characteristics of a proposed 6.6 kW bidirectional bridgeless three-leg interleaved totem-pole power factor correction (PFC) boost converter developed for the front-end stage of electric vehicle onboard charger applications during load cycles. This proposed PFC boost converter integrates the self-developed silicon carbide (SiC) power MOSFET modules for achieving high efficiency and high power density. To assess the switching transient behavior, power loss, and efficiency of the SiC MOSFET power modules, a fully integrated electromagnetic-circuit coupled simulation (ECCS) model that incorporates an electromagnetic model, an equivalent circuit model, and an SiC MOSFET characterization model are used. In this simulation model, the impact of parasitic effects on the system’s performance is considered. The accuracy of the ECCS model is confirmed through comparing the calculated results with the experimental data obtained through the double pulse test and the closed-loop converter operation. Furthermore, a comparative study between the interleaved and non-interleaved topologies is also performed in terms of power loss and efficiency. Additionally, the performance of the SiC MOSFET-based PFC boost converter is further compared with that of the silicon (Si) insulated gate bipolar transistor (IGBT)-based one. Finally, a parametric analysis is carried out to explore the impact of several operating conditions on the power loss of the proposed totem-pole PFC boost converter. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

15 pages, 3566 KB  
Review
A Detailed Review of Partial Discharge Detection Methods for SiC Power Modules Under Square-Wave Voltage Excitation
by Ghulam Akbar, Alessio Di Fatta, Giuseppe Rizzo, Guido Ala, Pietro Romano and Antonino Imburgia
Energies 2024, 17(22), 5793; https://doi.org/10.3390/en17225793 - 20 Nov 2024
Cited by 3 | Viewed by 3191
Abstract
Silicon carbide (SiC) power modules are increasingly being used in high-voltage and high-frequency applications due to their superior electrical and thermal qualities. However, the issue of the partial discharge (PD) phenomenon raises serious reliability difficulties resulting in insulation failure, performance degradation, and potential [...] Read more.
Silicon carbide (SiC) power modules are increasingly being used in high-voltage and high-frequency applications due to their superior electrical and thermal qualities. However, the issue of the partial discharge (PD) phenomenon raises serious reliability difficulties resulting in insulation failure, performance degradation, and potential device collapse. This paper provides a thorough assessment of the current PD detection strategies in SiC power modules. The issues provided by SiC devices’ distinct operational features, such as high switching frequencies and higher voltage stresses, which hinder PD detection and mitigation, are widely investigated. This review compares the effectiveness, benefits, and limitations of various detection methods, emphasizing the need for better strategies to ensure long-term reliability and performance. This study gives an in-depth overview of the numerous forms of PD phenomena that occur in power modules, including internal and surface discharges, as well as how they appear under various detection systems. It examines the performance of several methods for power module technologies such as SiC. To address these PD issues, this article proposes ways to improve reliability and detection accuracy. Full article
(This article belongs to the Section F6: High Voltage)
Show Figures

Figure 1

14 pages, 2483 KB  
Article
Enhanced Crystallinity of SrTiO3 Films on a Silicon Carbide Substrate: Structural and Microwave Characterization
by Andrei Tumarkin, Eugene Sapego, Alexey Bogdan, Artem Karamov, Igor Serenkov and Vladimir Sakharov
Appl. Sci. 2024, 14(21), 9672; https://doi.org/10.3390/app14219672 - 23 Oct 2024
Viewed by 3552
Abstract
Thin films of strontium titanate, which reveal high structure quality and tunable properties prospective for microwave applications at room temperature, were grown on a semi-insulating silicon carbide substrate using magnetron sputtering for the first time. The films’ growth mechanisms were studied using medium-energy [...] Read more.
Thin films of strontium titanate, which reveal high structure quality and tunable properties prospective for microwave applications at room temperature, were grown on a semi-insulating silicon carbide substrate using magnetron sputtering for the first time. The films’ growth mechanisms were studied using medium-energy ion scattering, and the films’ structures were investigated using X-ray diffraction. The electrical characteristics of planar capacitors based on strontium titanate films were measured at a frequency of 2 GHz using a high-precision resonance technique. It is shown that the tendency to improve the crystalline structure of strontium titanate film with an increase in the substrate temperature is most pronounced for films deposited at elevated working gas pressure under low supersaturation conditions. Planar capacitors formed on the basis of oriented SrTiO3 films on silicon carbide showed tunability n = 36%, with a loss tangent of 0.008–0.009 at a level of slow relaxation of capacitance, which is significantly lower than the data published currently regarding planar tunable ferroelectric elements. This is the first successful attempt to realize a planar SrTiO3 capacitor on a silicon carbide substrate, which exhibits a commutation quality factor more than 2500 at microwaves. Full article
Show Figures

Figure 1

26 pages, 11735 KB  
Review
Silicon Carbide Microring Resonators for Integrated Nonlinear and Quantum Photonics Based on Optical Nonlinearities
by Qianni Zhang, Jiantao Wang and Andrew W. Poon
Photonics 2024, 11(8), 701; https://doi.org/10.3390/photonics11080701 - 28 Jul 2024
Cited by 5 | Viewed by 3591
Abstract
Silicon carbide (SiC) electronics has seen a rapid development in industry over the last two decades due to its capabilities in handling high powers and high temperatures while offering a high saturated carrier mobility for power electronics applications. With the increased capacity in [...] Read more.
Silicon carbide (SiC) electronics has seen a rapid development in industry over the last two decades due to its capabilities in handling high powers and high temperatures while offering a high saturated carrier mobility for power electronics applications. With the increased capacity in producing large-size, single-crystalline SiC wafers, it has recently been attracting attention from academia and industry to exploit SiC for integrated photonics owing to its large bandgap energy, wide transparent window, and moderate second-order optical nonlinearity, which is absent in other centrosymmetric silicon-based material platforms. SiC with various polytypes exhibiting second- and third-order optical nonlinearities are promising for implementing nonlinear and quantum light sources in photonic integrated circuits. By optimizing the fabrication processes of the silicon carbide-on-insulator platforms, researchers have exploited the resulting high-quality-factor microring resonators for various nonlinear frequency conversions and spontaneous parametric down-conversion in photonic integrated circuits. In this paper, we review the fundamentals and applications of SiC-based microring resonators, including the material and optical properties, the device design for nonlinear and quantum light sources, the device fabrication processes, and nascent applications in integrated nonlinear and quantum photonics. Full article
(This article belongs to the Special Issue Progress in Integrated Photonics and Future Prospects)
Show Figures

Figure 1

14 pages, 1971 KB  
Review
A Review on Carrier Mobilities of Epitaxial Graphene on Silicon Carbide
by Wataru Norimatsu
Materials 2023, 16(24), 7668; https://doi.org/10.3390/ma16247668 - 15 Dec 2023
Cited by 6 | Viewed by 2976
Abstract
Graphene growth by thermal decomposition of silicon carbide (SiC) is a technique that produces wafer-scale, single-orientation graphene on an insulating substrate. It is often referred to as epigraphene, and has been thought to be suitable for electronics applications. In particular, high-frequency devices for [...] Read more.
Graphene growth by thermal decomposition of silicon carbide (SiC) is a technique that produces wafer-scale, single-orientation graphene on an insulating substrate. It is often referred to as epigraphene, and has been thought to be suitable for electronics applications. In particular, high-frequency devices for communication technology or large quantum Hall plateau for metrology applications using epigraphene are expected, which require high carrier mobility. However, the carrier mobility of as-grown epigraphene exhibit the relatively low values of about 1000 cm2/Vs. Fortunately, we can hope to improve this situation by controlling the electronic state of epigraphene by modifying the surface and interface structures. In this paper, the mobility of epigraphene and the factors that govern it will be described, followed by a discussion of attempts that have been made to improve mobility in this field. These understandings are of great importance for next-generation high-speed electronics using graphene. Full article
(This article belongs to the Special Issue Research Progress on Two-Dimensional Materials)
Show Figures

Figure 1

Back to TopTop