Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = sodium trimetaphosphate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2696 KB  
Article
Effect of Ultrasound and Chemical Cross-Linking on the Structural and Physicochemical Properties of Malanga (Colocasia esculenta) Starch
by Ana Sofía Martínez-Cigarroa, Guadalupe del Carmen Rodríguez-Jimenes, Alejandro Aparicio-Saguilán, Violeta Carpintero-Tepole, Miguel Ángel García-Alvarado, Ceferino Carrera, Gerardo Fernández Barbero, Mercedes Vázquez-Espinosa and Lucio Abel Vázquez-León
Foods 2025, 14(15), 2609; https://doi.org/10.3390/foods14152609 - 25 Jul 2025
Viewed by 566
Abstract
Starch extracted from malanga (Colocasia esculenta) is a biopolymer with considerable industrial potential thanks to its high starch content (70–80% on a dry basis) and small granule size, which give it distinctive functional properties. To expand its applications in advanced processes [...] Read more.
Starch extracted from malanga (Colocasia esculenta) is a biopolymer with considerable industrial potential thanks to its high starch content (70–80% on a dry basis) and small granule size, which give it distinctive functional properties. To expand its applications in advanced processes such as encapsulation, it is necessary to modify its structural and physicochemical characteristics. This study evaluated the effects of ultrasound (US) and chemical cross-linking (CL) on the properties of this starch. US was applied at various times and amplitudes, while CL was performed using sodium trimetaphosphate and sodium tripolyphosphate, with sodium sulfate as a catalyst. US treatment reduced particle size and increased amylose content, resulting in lower viscosity and gelatinization temperature, without affecting granule morphology. Meanwhile, CL induced phosphate linkages between starch chains, promoting aggregation and reducing amylose content and enthalpy, but increasing the gelatinization temperature. The modified starches exhibited low syneresis, making them potentially suitable for products such as pastas, baby foods, and jams. Additionally, ultrasound modification enabled the production of fine starch microparticles, which could be applied in the microencapsulation of bioactive compounds in the food and pharmaceutical industries. These findings suggest that modified malanga starch can serve as a functional and sustainable alternative in industrial applications. Full article
Show Figures

Graphical abstract

13 pages, 1748 KB  
Article
In Situ Cross-Linked Porous Starch Microencapsulation Enhances the Colonization of Lactobacillus In Vivo
by Xiaojun Zhang, Ying Liang, Hao Bai, Quanhua Huang, Dongming Liu, Guanglei Ma and Xiangrui Liu
Foods 2025, 14(12), 2031; https://doi.org/10.3390/foods14122031 - 9 Jun 2025
Cited by 1 | Viewed by 635
Abstract
In this study, we developed novel porous starch (PS)/Lactobacillus (LS) microcapsules via in situ cross-linking with sodium trimetaphosphate (STMP), using Lactobacillus johnsonii (LJ), Lactobacillus acidophilus (LA), and Lactobacillus rhamnosus GG (LGG) as representative strains. Scanning electron microscopy (SEM) revealed that the cross-linked [...] Read more.
In this study, we developed novel porous starch (PS)/Lactobacillus (LS) microcapsules via in situ cross-linking with sodium trimetaphosphate (STMP), using Lactobacillus johnsonii (LJ), Lactobacillus acidophilus (LA), and Lactobacillus rhamnosus GG (LGG) as representative strains. Scanning electron microscopy (SEM) revealed that the cross-linked microcapsules (designated as PS/LS-CL: PS/LJ-CL, PS/LA-CL, PS/LGG-CL) formed aggregated structures with denser microarchitecture compared to uncross-linked porous starch/Lactobacillus microcapsules (designated as PS/LS: PS/LJ, PS/LA, PS/LGG). The encapsulation efficiencies of PS/LJ-CL, PS/LA-CL, and PS/LGG-CL (79.56%, 78.49%, and 55.96%, respectively) significantly surpassed those of their uncross-linked counterparts (67.92%, 58.68%, and 47.71%, p < 0.05). In addition, the cross-linked porous starch microcapsules improved the survival rate of Lactobacillus during simulated gastrointestinal digestion and long-time storage. Importantly, the oral gavage of PS/LS-CL, PS/LA-CL, and PS/LGG-CL significantly increased the amount of Lactobacillus. The colonization efficiency of all the tested Lactobacillus in mice was detected by both gradient dilution plate counting and quantitative real-time PCR (qRT-PCR). These findings indicate the potential function of the in situ cross-linked porous starch microcapsules as a robust delivery system to enhance the colonization of probiotics in vivo. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

24 pages, 3118 KB  
Article
Sago-Starch-Derived Sodium Starch Glycolate: An Effective Superdisintegrant to Enhance Formulation Performance
by Okta Nama Putra, Ida Musfiroh, Derina Paramitasari, Karjawan Pudjianto, Emmy Hainida Khairul Ikram, Chaidir Chaidir and Muchtaridi Muchtaridi
Polymers 2025, 17(9), 1208; https://doi.org/10.3390/polym17091208 - 28 Apr 2025
Cited by 1 | Viewed by 797
Abstract
This study focused on optimizing sago-starch-derived sodium starch glycolate (SSG) as a superdisintegrant using a Response Surface Methodology (RSM). The aim was to enhance the formulation performance by achieving an optimal degree of substitution (DS) in the synthesis of SSG from sago starch [...] Read more.
This study focused on optimizing sago-starch-derived sodium starch glycolate (SSG) as a superdisintegrant using a Response Surface Methodology (RSM). The aim was to enhance the formulation performance by achieving an optimal degree of substitution (DS) in the synthesis of SSG from sago starch and evaluating its performance in mefenamic acid tablet formulation. The SSG was synthesized using an organic solvent slurry method, which involves crosslinking starch with sodium trimetaphosphate (STMP) and substituting it with sodium monochloroacetate (SMCA). The reaction conditions, including the temperature, SMCA ratio, and reaction time, were optimized using the RSM. The optimal conditions were identified as a temperature range of 45–55 °C, an SMCA ratio of 0.75–1.5, and a reaction time of 120–240 min. The maximum predicted DS value was 0.24, with a validated DS value of 0.246 ± 0.021. The SSG-containing mefenamic acid formulation met USP standards and showed a superior disintegration time compared to the existing SSG. The optimized SSG derived from sago starch can be effectively used as a superdisintegrant in pharmaceutical formulations, offering a sustainable and economically viable alternative source of SSG. This contributes to the development of more effective drug delivery systems and promotes sustainable agriculture in Indonesia. Full article
(This article belongs to the Special Issue Advanced Polymer Materials: Synthesis, Structure, and Properties)
Show Figures

Figure 1

17 pages, 1677 KB  
Systematic Review
Nanotechnology and Its Application in Dentistry: A Systematic Review of Recent Advances and Innovations
by Gianna Dipalma, Alessio Danilo Inchingolo, Mariafrancesca Guglielmo, Roberta Morolla, Irene Palumbo, Lilla Riccaldo, Antonio Mancini, Andrea Palermo, Giuseppina Malcangi, Angelo Michele Inchingolo and Francesco Inchingolo
J. Clin. Med. 2024, 13(17), 5268; https://doi.org/10.3390/jcm13175268 - 5 Sep 2024
Cited by 11 | Viewed by 4679
Abstract
Background: This study looks at the clinical applications of nanotechnology in dentistry, with an emphasis on implantology, preventive care, orthodontics, restorative dentistry, and endodontics. Methods: Following PRISMA criteria and registered in PROSPERO (ID: CRD 564245), a PubMed, Scopus, and Web of Science search [...] Read more.
Background: This study looks at the clinical applications of nanotechnology in dentistry, with an emphasis on implantology, preventive care, orthodontics, restorative dentistry, and endodontics. Methods: Following PRISMA criteria and registered in PROSPERO (ID: CRD 564245), a PubMed, Scopus, and Web of Science search was conducted for studies from January 2014 to April 2024. The criteria were English-language research on nanotechnology in dental coatings, with a focus on clinical trials and observational studies. The electronic database search yielded 8881 publications. Following the screening process, 17 records were selected for qualitative analysis. Results: Nanotechnology has revolutionized dentistry. In orthodontics, nanoparticles improve antibacterial characteristics, durability, and biocompatibility, lowering bacterial colonization and plaque. In preventative care, Casein Phosphopeptide-Amorphous Calcium Phosphate (CPP-ACP) combined with stannous fluoride (SnF2) and nano-sized sodium trimetaphosphate (TMPnano) substantially remineralizes enamel. Nanostructured surfaces in dental implants, particularly those containing calcium, improve osseointegration and stability. Nanoparticles in restorative dentistry improve composite and adhesive strength, aesthetics, and longevity. Conclusions: Nanotechnology improves dental materials and equipment, resulting in better treatment outcomes and increased patient comfort. Its integration provides more effective treatments, which improves dental care and patient outcomes. More research is needed to overcome present problems and expand nanotechnology’s medicinal applications. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

18 pages, 7919 KB  
Article
Cross-Linked Starch as Media for Crystal Violet Elimination from Water: Modeling Batch Adsorption with Fuzzy Regression
by Mehdi Bahrami, Mohammad Javad Amiri, Rosa Busquets and Mohammad Javad Nematollahi
Molecules 2024, 29(16), 3894; https://doi.org/10.3390/molecules29163894 - 17 Aug 2024
Cited by 2 | Viewed by 1466
Abstract
A scalable and cost-effective solution for removing pollutants from water is to use biodegradable and eco-friendly sorbents that are readily available such as starch. The current research explored the removal of crystal violet (CV) dye from water using chemically modified potato starch. The [...] Read more.
A scalable and cost-effective solution for removing pollutants from water is to use biodegradable and eco-friendly sorbents that are readily available such as starch. The current research explored the removal of crystal violet (CV) dye from water using chemically modified potato starch. The adsorbent was prepared by cross-linking potato starch with sodium trimetaphosphate (STMP). The impact of various operating factors including pH, temperature, contact time, initial CV concentration, and adsorbent dosage on the removal of CV were investigated using batch experiments. The adsorption data were analyzed using a fuzzy regression approach, which provided a range-based representation of the model’s output. The cross-linked starch adsorbent was mesoporous, with a mean pore diameter of 9.8 nm and a specific surface area of 2.7 m2/g. The adsorption of CV by the STMP cross-linked potato starch was primarily influenced by the adsorbent dosage, followed by the solution pH, temperature, initial CV concentration, and contact time. The fuzzy regression model accurately predicted the independent experimental data of CV removal with an R2 of 0.985, demonstrating its value as a tool for the continuous monitoring of CV removal as well as optimizing water treatment conditions. Full article
(This article belongs to the Topic Advances in Organic Solid Waste and Wastewater Management)
Show Figures

Figure 1

9 pages, 717 KB  
Article
Activity of Fluoride Varnishes Containing Micrometric or Nanosized Sodium Trimetaphosphate against Early Enamel Erosive Lesions In Vitro
by Liliana Carolina Báez-Quintero, Juliano Pelim Pessan, Mariana Emi Nagata, Luigi Pedrini Guisso, Alberto Carlos Botazzo Delbem, Daniela Rios, Caio Sampaio and Thayse Yumi Hosida
Coatings 2024, 14(7), 855; https://doi.org/10.3390/coatings14070855 - 8 Jul 2024
Viewed by 1335
Abstract
This study aimed to assess the effects of fluoridated varnishes supplemented with micrometric or nanosized sodium trimetaphosphate (TMPmicro or TMPnano, respectively) against enamel softening in an early erosive model in vitro. Bovine enamel blocks (with mean surface hardness [SH] between 330.0 and [...] Read more.
This study aimed to assess the effects of fluoridated varnishes supplemented with micrometric or nanosized sodium trimetaphosphate (TMPmicro or TMPnano, respectively) against enamel softening in an early erosive model in vitro. Bovine enamel blocks (with mean surface hardness [SH] between 330.0 and 380.0 kgf/mm2) were selected and randomly assigned according to their SH (n = 8) into the following groups: Placebo (no fluoride/TMP; negative control), 5% NaF (positive control), 5% NaF + 5%TMPmicro, 5% NaF + 2.5%TMPnano and 5% NaF + 5%TMPnano. Blocks received a single application of the varnishes and were immersed in artificial saliva (6 h). Thereafter, the varnishes were removed and the blocks were subjected to four individual erosive challenges (1 min, citric acid, 0.75%, pH = 3.5, under agitation); SH was determined after each challenge. Data were subjected to ANOVA and Student–Newman–Keuls’ test (p < 0.05). Overall, the highest %SH loss was observed for the Placebo, followed by 5% NaF, 5% NaF + 5% TMPmicro, and both varnishes containing TMPnano, without significant differences between 2.5% and 5% TMPnano. It was concluded that TMP enhanced the effects of a 5% NaF varnish against enamel softening in an early erosive model in vitro, with an additional benefit from the use of nanoparticles over microparticles. Full article
(This article belongs to the Special Issue Advanced Alloy Degradation and Implants, 2nd Edition)
Show Figures

Figure 1

14 pages, 4485 KB  
Article
Film Coating of Phosphorylated Mandua Starch on Matrix Tablets for pH-Sensitive Release of Mesalamine
by Mayank Kumar Malik, Vipin Kumar, Vinoth Kumarasamy, Om Prakash Singh, Mukesh Kumar, Raghav Dixit, Vetriselvan Subramaniyan and Jaspal Singh
Molecules 2024, 29(13), 3208; https://doi.org/10.3390/molecules29133208 - 5 Jul 2024
Cited by 1 | Viewed by 1704
Abstract
Chemically modified mandua starch was successfully synthesized and applied to coat mesalamine-loaded matrix tablets. The coating material was an aqueous dispersion of mandua starch modified by sodium trimetaphosphate and sodium tripolyphosphate. To investigate the colon-targeting release competence, chemically modified mandua starch film-coated mesalamine [...] Read more.
Chemically modified mandua starch was successfully synthesized and applied to coat mesalamine-loaded matrix tablets. The coating material was an aqueous dispersion of mandua starch modified by sodium trimetaphosphate and sodium tripolyphosphate. To investigate the colon-targeting release competence, chemically modified mandua starch film-coated mesalamine tablets were produced using the wet granulation method followed by dip coating. The effect of the coating on the colon-targeted release of the resultant delivery system was inspected in healthy human volunteers and rabbits using roentgenography. The results show that drug release was controlled when the coating level was 10% w/w. The release percentage in the upper gastric phase (pH 1.2, simulated gastric fluid) was less than 6% and reached up to 59.51% w/w after 14 h in simulated colonic fluid. In addition to in vivo roentgenographic studies in healthy rabbits, human volunteer studies proved the colon targeting efficiency of the formulation. These results clearly demonstrated that chemically modified mandua starch has high effectiveness as a novel aqueous coating material for controlled release or colon targeting. Full article
(This article belongs to the Special Issue Polysaccharide-Based Biopolymer: Recent Development and Applications)
Show Figures

Figure 1

15 pages, 3273 KB  
Article
Formation of Microcapsules of Pullulan by Emulsion Template Mechanism: Evaluation as Vitamin C Delivery Systems
by Esther Santamaría, Naroa Lizarreta, Susana Vílchez, Carme González and Alicia Maestro
Gels 2024, 10(6), 355; https://doi.org/10.3390/gels10060355 - 21 May 2024
Cited by 2 | Viewed by 2025
Abstract
Pullulan is a polysaccharide that has attracted the attention of scientists in recent times as a former of edible films. On the other hand, its use for the preparation of hydrogels needs more study, as well as the formation of pullulan microcapsules as [...] Read more.
Pullulan is a polysaccharide that has attracted the attention of scientists in recent times as a former of edible films. On the other hand, its use for the preparation of hydrogels needs more study, as well as the formation of pullulan microcapsules as active ingredient release systems for the food industry. Due to the slow gelation kinetics of pullulan with sodium trimetaphosphate (STMP), capsules cannot be formed through the conventional method of dropping into a solution of the gelling agent, as with other polysaccharides, since the pullulan chains migrate to the medium before the capsules can form by gelation. Pullulan microcapsules have been obtained by using inverse water-in-oil emulsions as templates. The emulsion that acts as a template has been characterized by monitoring its stability and by optical microscopy, and the size of the emulsion droplets has been correlated with the size of the microcapsules obtained, demonstrating that it is a good technique for their production. Although some flocs of droplets form, these remain dispersed during the gelation process and two capsule size distributions are obtained: those of the non-flocculated droplets and the flocculated droplets. The microcapsules have been evaluated as vitamin C release systems, showing zero-order release kinetics for acidic pH and Fickian mechanism for neutral pH. On the other hand, the microcapsules offer good protection of vitamin C against oxidation during an evaluation period of 14 days. Full article
(This article belongs to the Special Issue Food Hydrogels: Synthesis, Characterization and Applications)
Show Figures

Figure 1

14 pages, 3696 KB  
Article
Fabrication of Sodium Trimetaphosphate-Based PEDOT:PSS Conductive Hydrogels
by Madelyn Reynolds, Lindsay M. Stoy, Jindi Sun, Prince Emmanuel Opoku Amponsah, Lin Li, Misael Soto and Shang Song
Gels 2024, 10(2), 115; https://doi.org/10.3390/gels10020115 - 1 Feb 2024
Cited by 10 | Viewed by 3246
Abstract
Conductive hydrogels are highly attractive for biomedical applications due to their ability to mimic the electrophysiological environment of biological tissues. Although conducting polymer polythiophene-poly-(3,4-ethylenedioxythiophene) (PEDOT) and polystyrene sulfonate (PSS) alone exhibit high conductivity, the addition of other chemical compositions could further improve the [...] Read more.
Conductive hydrogels are highly attractive for biomedical applications due to their ability to mimic the electrophysiological environment of biological tissues. Although conducting polymer polythiophene-poly-(3,4-ethylenedioxythiophene) (PEDOT) and polystyrene sulfonate (PSS) alone exhibit high conductivity, the addition of other chemical compositions could further improve the electrical and mechanical properties of PEDOT:PSS, providing a more promising interface with biological tissues. Here we study the effects of incorporating crosslinking additives, such as glycerol and sodium trimetaphosphate (STMP), in developing interpenetrating PEDOT:PSS-based conductive hydrogels. The addition of glycerol at a low concentration maintained the PEDOT:PSS conductivity with enhanced wettability but decreased the mechanical stiffness. Increasing the concentration of STMP allowed sufficient physical crosslinking with PEDOT:PSS, resulting in improved hydrogel conductivity, wettability, and rheological properties without glycerol. The STMP-based PEDOT:PSS conductive hydrogels also exhibited shear-thinning behaviors, which are potentially favorable for extrusion-based 3D bioprinting applications. We demonstrate an interpenetrating conducting polymer hydrogel with tunable electrical and mechanical properties for cellular interactions and future tissue engineering applications. Full article
(This article belongs to the Special Issue Engineering Advanced Hydrogels for Biomedical Applications)
Show Figures

Graphical abstract

17 pages, 2961 KB  
Article
From Fruit Waste to Hydrogels for Agricultural Applications
by Akhmad Adi Sulianto, Ilham Putra Adiyaksa, Yusuf Wibisono, Elena Khan, Aleksei Ivanov, Aleksandr Drannikov, Kadir Ozaltin and Antonio Di Martino
Clean Technol. 2024, 6(1), 1-17; https://doi.org/10.3390/cleantechnol6010001 - 27 Dec 2023
Cited by 7 | Viewed by 7734
Abstract
Here, we describe and assess a method for reusing specific food waste to make hydrogels, which can be employed to improve the efficacy of agrochemicals and water. It represents an approach for tackling current challenges, such as food waste, water management, and pesticide [...] Read more.
Here, we describe and assess a method for reusing specific food waste to make hydrogels, which can be employed to improve the efficacy of agrochemicals and water. It represents an approach for tackling current challenges, such as food waste, water management, and pesticide optimization. Depending on the formulation, the hydrogels were created by crosslinking pectin and starch with CaCl2 or sodium trimetaphosphate. FTIR and SEM were employed to investigate the methylation degree of the extracted pectin, as well as the surface morphology and interior structure of the hydrogels. The swelling behavior and water retention in sandy soil have been investigated. In addition to the hydrogels’ potential to control and reduce pesticide loss, the herbicide Picloram is a model compound. The results show that the hydrogels have important swelling, up to 300%, and a capacity to retain water, preserve, and increase the water content in sandy soil up to 12 days. Picloram experiments show that hydrogels can limit herbicide mobility for up to 30 days under controlled conditions. The conversion of food wastes to highly valuable materials is a promising approach to optimize the water consumption and the loss of agrochemicals regarding sustainable agriculture. Full article
Show Figures

Figure 1

12 pages, 1677 KB  
Article
Sodium Trimetaphosphate Crosslinked Starch Films Reinforced with Montmorillonite
by Konstantinos Noulis, Theofilos Frangopoulos, Athanasia Arampatzidou, Lazaros Tsekmes, Anna Marinopoulou, Athanasios Goulas and Vassilis Karageorgiou
Polymers 2023, 15(17), 3540; https://doi.org/10.3390/polym15173540 - 25 Aug 2023
Cited by 6 | Viewed by 3346
Abstract
Synthetic polymers are the main food packaging material, although they are nonbiodegradable and their recycling process is expensive. A biodegradable, eco-friendly material, with high availability and low cost, such as starch, is a promising solution for the production of films for food packaging. [...] Read more.
Synthetic polymers are the main food packaging material, although they are nonbiodegradable and their recycling process is expensive. A biodegradable, eco-friendly material, with high availability and low cost, such as starch, is a promising solution for the production of films for food packaging. To enhance starch film mechanical and barrier properties, nanoclays have been incorporated within the film matrix. Crosslinking is a well-established method to modify starch properties, but it has not been investigated in combination with nanoclay addition. In the present study, films were developed with starch that was crosslinked through the addition of 5, 15, and 40% wt. sodium trimetaphosphate (STMP) based on dry starch weight. To investigate the interaction between crosslinking and nanoclay addition, montmorillonite (MMT) was added at a 10.5% wt. concentration based on dry starch weight. Experimental data revealed a synergistic effect between STMP crosslinking and MMT addition regarding film thickness, elongation at break, color properties, and opacity. Regarding barrier properties, MMT addition negated the effect of STMP crosslinking, while, in the case of moisture content, it did not alter the effect of STMP crosslinking. Finally, in the case of tensile strength, a synergistic effect followed by a negative interaction was observed. In conclusion, the addition of MMT can potentially enhance, alongside crosslinking, some properties of the films, while other properties are not affected any more than just by crosslinking. Full article
(This article belongs to the Special Issue Application of Starch-Based Polymers)
Show Figures

Graphical abstract

14 pages, 2382 KB  
Article
Antimicrobial Effect of Low-Fluoride Toothpastes Containing Polyphosphate and Polyols: An In Vitro Assessment of Inhibition Zones
by Igor Zen, Alberto Carlos Botazzo Delbem, Thayse Yumi Hosida, Caio Sampaio, Leonardo Antônio de Morais, Tamires Passadori Martins, Douglas Roberto Monteiro and Juliano Pelim Pessan
Antibiotics 2023, 12(8), 1333; https://doi.org/10.3390/antibiotics12081333 - 18 Aug 2023
Cited by 5 | Viewed by 2889
Abstract
This study evaluated the antimicrobial effect of toothpastes containing 200 ppm fluoride (200F), xylitol (X, 16%), erythritol (E, 4%), and sodium trimetaphosphate (TMP, 0.25%), alone or in different associations, against Streptococcus mutans (SM), Lactobacillus casei (LC), Actinomyces israelii (AI), and Candida albicans (CA). [...] Read more.
This study evaluated the antimicrobial effect of toothpastes containing 200 ppm fluoride (200F), xylitol (X, 16%), erythritol (E, 4%), and sodium trimetaphosphate (TMP, 0.25%), alone or in different associations, against Streptococcus mutans (SM), Lactobacillus casei (LC), Actinomyces israelii (AI), and Candida albicans (CA). Suspensions of the micro-organisms were added to a BHI Agar medium. Five wells were made on each plate to receive toothpaste suspensions at different dilutions. Toothpastes containing no actives (placebo) or 1100 ppm F (1100F) were used as negative and positive controls. Two-way ANOVA and Tukey’s HDS test were used (p < 0.05). For SM, the largest halo was for 200F+TMP at all dilutions, followed by the 200F+X+E toothpaste (p < 0.001). For LC, the overall trend showed that the polyols effectively inhibited microbial growth, and the association with the other compounds enhanced such effects (p < 0.001). For AI, a less-defined trend was observed. For CA, the experimental toothpaste (200F+X+E+TMP) was consistently more effective than the other treatments, followed by 200F+X+E (p < 0.001). The association of polyols and TMP in a low-fluoride toothpaste effectively reduced the growth of cariogenic micro-organisms (SM, CA, and LC), suggesting that this formulation could be an interesting alternative for children due to its low fluoride content. Full article
(This article belongs to the Special Issue Synthesis and Biological Activity of Antimicrobial Agents, 2nd Volume)
Show Figures

Figure 1

10 pages, 817 KB  
Article
Evaluation of Solutions Containing Fluoride, Sodium Trimetaphosphate, Xylitol, and Erythritol, Alone or in Different Associations, on Dual-Species Biofilms
by Igor Zen, Alberto Carlos Botazzo Delbem, Tamires Passadori Martins, Leonardo Antônio de Morais, Caio Sampaio, Thayse Yumi Hosida, Douglas Roberto Monteiro and Juliano Pelim Pessan
Int. J. Mol. Sci. 2023, 24(16), 12910; https://doi.org/10.3390/ijms241612910 - 18 Aug 2023
Cited by 2 | Viewed by 1684
Abstract
Although the association of polyols/polyphosphates/fluoride has been demonstrated to promote remarkable effects on dental enamel, little is known on their combined effects on biofilms. This study assessed the effects of solutions containing fluoride/sodium trimetaphosphate (TMP)/xylitol/erythritol on dual-species biofilms of Streptococcus mutans and Candida [...] Read more.
Although the association of polyols/polyphosphates/fluoride has been demonstrated to promote remarkable effects on dental enamel, little is known on their combined effects on biofilms. This study assessed the effects of solutions containing fluoride/sodium trimetaphosphate (TMP)/xylitol/erythritol on dual-species biofilms of Streptococcus mutans and Candida albicans. Biofilms were grown in the continuous presence of these actives alone or in different associations. Quantification of viable plate counts, metabolic activity, biofilm biomass, and extracellular matrix components were evaluated. Overall, fluoride and TMP were the main actives that significantly influenced most of the variables analyzed, with a synergistic effect between them for S. mutans CFUs, biofilm biomass, and protein content of the extracellular matrix (p < 0.05). A similar trend was observed for biofilm metabolic activity and carbohydrate concentrations of the extracellular matrix, although without statistical significance. Regarding the polyols, despite their modest effects on most of the parameters analyzed when administered alone, their co-administration with fluoride and TMP led to a greater reduction in S. mutans CFUs and biofilm biomass compared with fluoride alone at the same concentration. It can be concluded that fluoride and TMP act synergistically on important biofilm parameters, and their co-administration with xylitol/erythritol significantly impacts S. mutans CFUs and biomass reduction. Full article
(This article belongs to the Special Issue Novel Bioinorganic Materials)
Show Figures

Figure 1

17 pages, 1558 KB  
Review
Remineralization of Dentinal Lesions Using Biomimetic Agents: A Systematic Review and Meta-Analysis
by Ali Azhar Dawasaz, Rafi Ahmad Togoo, Zuliani Mahmood, Azlina Ahmad and Kannan Thirumulu Ponnuraj
Biomimetics 2023, 8(2), 159; https://doi.org/10.3390/biomimetics8020159 - 15 Apr 2023
Cited by 15 | Viewed by 4569
Abstract
The objective of this article was to systematically provide an up-to-date review on the different methods of remineralizing human dentine using different biomimetic agents. The authors performed a systematic search within PubMed, Scopus, and Web of Science in addition to the grey literature [...] Read more.
The objective of this article was to systematically provide an up-to-date review on the different methods of remineralizing human dentine using different biomimetic agents. The authors performed a systematic search within PubMed, Scopus, and Web of Science in addition to the grey literature in Google Scholar® using MeSH terms. The PICO question was P: human teeth dentinal sections; I: application of biomimetic remineralizing agents; C: other non-biomimetic approaches; O: extent of remineralization and physical properties of remineralized dentine. The initially identified studies were screened for titles and abstracts. Non-English articles, reviews, animal studies, studies involving the resin–dentine interface, and other irrelevant articles were then excluded. The other remaining full-text articles were retrieved. Bibliographies of the remaining articles were searched for relevant studies that could be included. A total of 4741 articles were found, and finally, 39 full-text articles were incorporated in the current systematic review. From these, twenty-six research studies used non-collagenous protein (NCP) analogs to biomineralize dentine, six studies used bioactive materials derived from natural sources, six studies used zinc hydroxyapatite, and one study used amelogenin peptide to induce hydroxyapatite formation on the surface of demineralized dentine. Additive effects of triclosan and epigenin were assessed when combined with commonly available NCPs. Overall, a moderate risk of bias was observed and, hence, the findings of the included studies could be acceptable. A meta-analysis of some similar studies was performed to assess the depth of remineralization and elastic modulus. Despite having high heterogeneity (I2 > 90), all the studies showed a significant improvement in biomimetic remineralization efficacy as compared to the control. All the included studies carried out a functional remineralization assessment and found a 90–98% efficacy in the extent of remineralization while the elastic modulus reached 88.78 ± 8.35 GPa, which is close to natural dentine. It is pertinent to note the limitations of these studies that have been carried out in vitro under controlled settings, which lack the effects of a natural oral environment. To conclude, the authors suggest that the biomimetic remineralization of dentine using NCP analogs, bioactive materials, and natural products carries significant potential in treating dentinal lesions; however, more long-term studies are needed to assess their clinical applications in vivo. Full article
(This article belongs to the Special Issue Biomimetic Remineralization on Enamel and Dentin)
Show Figures

Figure 1

12 pages, 1683 KB  
Article
Activity of Sodium Trimetaphosphate Nanoparticles on Cariogenic-Related Biofilms In Vitro
by Viviane de Oliveira Zequini Amarante, Alberto Carlos Botazzo Delbem, Caio Sampaio, Leonardo Antônio de Morais, Emerson Rodrigues de Camargo, Douglas Roberto Monteiro, Juliano Pelim Pessan and Thayse Yumi Hosida
Nanomaterials 2023, 13(1), 170; https://doi.org/10.3390/nano13010170 - 30 Dec 2022
Cited by 3 | Viewed by 1934
Abstract
In light of the promising effect of sodium trimetaphosphate nanoparticles (TMPn) on dental enamel, in addition to the scarce evidence of the effects of these nanoparticles on biofilms, this study evaluated the activity of TMPn with/without fluoride (F) on the pH, inorganic composition [...] Read more.
In light of the promising effect of sodium trimetaphosphate nanoparticles (TMPn) on dental enamel, in addition to the scarce evidence of the effects of these nanoparticles on biofilms, this study evaluated the activity of TMPn with/without fluoride (F) on the pH, inorganic composition and extracellular matrix (ECM) components of dual-species biofilms of Streptococcus mutans and Candida albicans. The biofilms were cultivated in artificial saliva in microtiter plates and treated with solutions containing 1% or 3% conventional/microparticulate TMP (TMPm) or TMPn, with or without F. After the last treatment, the protein and carbohydrate content of the ECM was analyzed, and the pH and F, calcium (Ca), phosphorus (P), and TMP concentrations of the biofilms were determined. In another set of experiments, after the last treatment, the biofilms were exposed to a 20% sucrose solution, and their matrix composition, pH, and inorganic component contents were evaluated. 3% TMPn/F significantly reduced ECM carbohydrate and increased biofilm pH (after sucrose exposure) than other treatments. Also, it significantly increased P and F levels before sucrose exposure in comparison to 3% TMPm/F. In conclusion, 3% TMPn/F affected the biofilm ECM and pH, besides influencing inorganic biofilm composition by increasing P and F levels in the biofilm fluid. Full article
(This article belongs to the Special Issue Recent Advances in Antibacterial Nanoengineered Materials)
Show Figures

Figure 1

Back to TopTop