Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = soybean seed vigor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 498 KB  
Article
Synergistic Effect of PGPR and Nutrient Complex on Soybean Seed Germination and Initial Seedling Growth
by Jelena Marinković, Dragana Miljaković, Janko Červenski, Marjana Vasiljević, Vuk Đorđević, Gordana Tamindžić and Jegor Miladinović
Agriculture 2025, 15(19), 2022; https://doi.org/10.3390/agriculture15192022 - 26 Sep 2025
Abstract
Biostimulants based on Bradyrhizobium japonicum are commonly used in soybean production. However, the effect of nitrogen-fixing bacteria in consortia with other plant growth-promoting rhizobacteria (PGPR) and their integration with mineral nutrients on soybean seed quality has not been explored. The study aimed to [...] Read more.
Biostimulants based on Bradyrhizobium japonicum are commonly used in soybean production. However, the effect of nitrogen-fixing bacteria in consortia with other plant growth-promoting rhizobacteria (PGPR) and their integration with mineral nutrients on soybean seed quality has not been explored. The study aimed to examine the effects of five treatments on seed germination and initial seedling growth of two soybean cultivars (‘NS Apolo’, ‘NS Rubin’): control (untreated seeds); Br. japonicum (BJ), BJ and nutrient complex (NC), BJ, Azotobacter chroococcum (AC), Bacillus subtilis (BS), and NC; BJ, AC, Bacillus megaterium (BM), and NC. Seed treatments significantly enhanced germination energy, seedling vigor index, root length, fresh shoot weight, fresh root weight, dry shoot weight, and dry root weight of both cultivars, as well as final germination, shoot length, and shoot elongation rate of ‘NS Rubin’, as compared to the control. The highest effect on the investigated parameters was achieved by integrated use of PGPR and nutrients (BJ + BM + AC + NC), indicating that integration of PGPR with a targeted NC represents an innovative approach with practical implications for improving early soybean establishment and field performance. Full article
(This article belongs to the Section Seed Science and Technology)
Show Figures

Figure 1

14 pages, 6531 KB  
Article
Validation of Management Zones, Variability, and Spatial Distribution of the Physiological Quality of Soybean Seeds
by Maurício Alves de Oliveira Filho, Ana Laura Costa Santos, Ricardo Ferreira Domingues, Gabriela Mariano Melazzo, Brenda Santos Pontes, Rafael Jacinto da Silva, Sandro Manuel Carmelino Hurtado and Hugo César Rodrigues Moreira Catão
Plants 2025, 14(12), 1856; https://doi.org/10.3390/plants14121856 - 16 Jun 2025
Viewed by 684
Abstract
Precision agriculture facilitates improved management by studying the spatial and temporal variability of soil attributes. Soybean (Glycine max (L.) Merrill) seeds may exhibit distinct quality when produced in different management zones. This study aimed to validate management zones during seed production and [...] Read more.
Precision agriculture facilitates improved management by studying the spatial and temporal variability of soil attributes. Soybean (Glycine max (L.) Merrill) seeds may exhibit distinct quality when produced in different management zones. This study aimed to validate management zones during seed production and identify the variability and spatial distribution of soybean seed physiological quality using geostatistical tools. Management zones were defined based on interpolated maps of soil and vegetation attributes using the Smart Map Plugin (SMP) within the QGIS environment. Post-harvest, the variability of physiological seed quality across different management zones was assessed. Germination, accelerated aging, dry weight, emergence, electrical conductivity, and tetrazolium tests were conducted in a completely randomized design. Soil attributes, initial plant stand, and soybean seed productivity validated the management zones. Physiological seed quality varies across the production field, particularly in terms of vigor, thereby enhancing diagnostics through map interpolation. Geostatistics enable determination of the spatial distribution of soybean seed physiological quality in seed production areas, facilitating decision-making regarding harvest zones. Full article
(This article belongs to the Special Issue Precision Agriculture in Crop Production)
Show Figures

Figure 1

17 pages, 1473 KB  
Article
Phosphite Compounds Suppress Anthracnose in Soybean Seeds Infected by Colletotrichum truncatum and Stimulate Growth and Defense Mechanisms
by Manoel Batista da Silva Júnior, Mário Lúcio Vilela de Resende, Edson Ampélio Pozza, Alexandre Ribeiro Maia de Resende, Gustavo César Dias Silveira, Jayne Deboni da Veiga, Júlia Marques Oliveira and André Costa da Silva
Plants 2025, 14(10), 1494; https://doi.org/10.3390/plants14101494 - 16 May 2025
Viewed by 809
Abstract
Soybean is one of the main agricultural commodities, and its productivity is limited by several diseases, such as anthracnose, which is caused by a complex of fungal species, with Colletotrichum truncatum being the most prevalent. Management is mainly carried out through chemical seed [...] Read more.
Soybean is one of the main agricultural commodities, and its productivity is limited by several diseases, such as anthracnose, which is caused by a complex of fungal species, with Colletotrichum truncatum being the most prevalent. Management is mainly carried out through chemical seed treatment. However, a reduction in the sensitivity of C. truncatum to fungicides was observed. Therefore, it is extremely important to search for products that are effective in controlling the disease. The objectives of this study were to evaluate the efficacy of commercial formulations of copper, potassium, manganese, and zinc phosphites in the treatment of soybean seeds infected by C. truncatum, as well as their direct fungitoxicity and ability to induce soybean defense mechanisms. For this purpose, seeds inoculated with C. truncatum were subjected to phosphites and a fungicide (carbendazim + thiram). The seeds were exposed to germination, health, and vigor tests. Fungal toxicity and the ability of phosphites to induce defense through the activities of catalase, peroxidase, and superoxide dismutase enzymes, as well as the levels of lignin and total soluble phenols, were also evaluated. Mn and Zn phosphites showed direct toxicity to C. truncatum and were as effective as the fungicide (carbendazim + thiram) in treating soybean seeds infected by the fungus. Mn phosphite induced the production of catalase (CAT), peroxidase (POX) and lignin, while Zn phosphite increased the production of CAT and POX. These results demonstrate the efficacy of Mn and Zn phosphites in controlling C. truncatum in infected soybean seeds, their direct toxic action, and their ability to induce resistance. Full article
Show Figures

Figure 1

16 pages, 1714 KB  
Article
A Comprehensive Evaluation of Soybean Germplasm Resources for Salt Tolerance During Germination
by Lei Han, Lerong Ge, Lin Fei, Chengwei Huang, Yilin Li, Wentan Fan, Dan Zhu and Longgang Zhao
Plants 2025, 14(5), 791; https://doi.org/10.3390/plants14050791 - 4 Mar 2025
Cited by 2 | Viewed by 1185
Abstract
Salt stress impedes normal development, compromises plant quality, and reduces crop yield. The germination phase in soybean marks the initial stage of its growth cycle. Characterizing salt tolerance during this period can help stimulate soybean growth in natural environments and aid the rapid [...] Read more.
Salt stress impedes normal development, compromises plant quality, and reduces crop yield. The germination phase in soybean marks the initial stage of its growth cycle. Characterizing salt tolerance during this period can help stimulate soybean growth in natural environments and aid the rapid screening of salt-tolerant soybean varieties. Our study characterized the salt tolerance of 36 soybean germplasms in culture dishes during the germination period. Soybeans were subjected to varying concentrations (0, 60, 120, and 180 mmol/L) of NaCl solution to simulate diverse levels of salt stress, and parameters such as germination energy, germination rate, and root length were measured. Statistical techniques such as analysis of variance, membership function, cluster analysis, and quadratic regression equations were used, and the salt tolerance of these 36 soybean germplasms was determined. The critical indicators and the most effective screening concentration for assessing the germination salt tolerance of soybean were identified. Soybeans tolerated low salt concentrations; however, salt concentrations greater than 120 mmol/L significantly inhibited germination indicators. The germination rate, germination vigor, vitality index, seed germination index, total fresh weight, and total dry weight could be used to identify salt tolerance. The semi-lethal concentration of soybean was 155.4 mmol/L, and the coefficient of variation was 20.00%, indicating that it could be used as a screening concentration for evaluating salt tolerance during soybean germination. A total of 36 soybean varieties were classified into four salt tolerance levels through cluster analysis. QN-27, QN-35, and QN-36 were highly salt-resistant materials, and QN-2, QN-17, and QN-19 were salt-sensitive materials. Characterizing salt tolerance during soybean germination can facilitate the selection and breeding of salt-tolerant soybean varieties. Future research utilizing this approach can aid in the selection of soybean varieties with salinity tolerance. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants)
Show Figures

Figure 1

18 pages, 874 KB  
Article
Identification of Subtle Differences in the Physiological Quality of Commercial Soybean Seed Lots Using Shotgun Proteomics During Germination
by Fellipe Ramos Sampaio, Irma Yuliana Mora-Ocampo, Fredy Davi Albuquerque Silva, Kevein Ruas Oliveira, Carlos Priminho Pirovani and Rafael Marani Barbosa
Agronomy 2025, 15(3), 609; https://doi.org/10.3390/agronomy15030609 - 28 Feb 2025
Cited by 1 | Viewed by 831
Abstract
Soybean seeds with similar germination rates may exhibit subtle differences in physiological quality, influencing field performance and storage longevity. This study used a shotgun proteomics approach to characterize the proteomic profile of two commercial soybean seed lots (higher- and lower-quality) during germination, aiming [...] Read more.
Soybean seeds with similar germination rates may exhibit subtle differences in physiological quality, influencing field performance and storage longevity. This study used a shotgun proteomics approach to characterize the proteomic profile of two commercial soybean seed lots (higher- and lower-quality) during germination, aiming to identify biomarkers associated with vigor and deterioration. Proteins were analyzed across three germination phases: imbibition (Phase I, 0.5 h), metabolic activation (Phase II, 20 h), and radicle protrusion (Phase III, 51 h). A total of 777 proteins were identified, and of these differentially abundant proteins (DAPs), the following totals were detected: 12 in Phase I, 17 in Phase II, and 28 in Phase III. In Phase I, ribosomal proteins were more abundant in high-quality seeds, indicating efficient translation and preparation for germination. Conversely, in Phase III, low-quality seeds showed increased levels of storage proteins and stress-response proteins, including alcohol dehydrogenase (ADH), heat shock proteins, and annexins, reflecting delayed germination and more deterioration. These findings highlight the dynamic nature of protein expression during germination and demonstrate the potential of proteomics to detect subtle differences in physiological quality. The identified biomarkers provide insights for seed quality assessment and offer practical applications for improving classification and management of commercial soybean seed lots. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

16 pages, 918 KB  
Article
Changes in the Stress Response and Fitness of Hybrids Between Transgenic Soybean and Wild-Type Plants Under Heat Stress
by Li Zhang, Qi Yu, Xin Yin, Laipan Liu, Zhentao Ren, Zhixiang Fang, Wenjing Shen, Shengnan Liu and Biao Liu
Plants 2025, 14(4), 622; https://doi.org/10.3390/plants14040622 - 19 Feb 2025
Cited by 1 | Viewed by 1115
Abstract
Understanding the ability of hybrids of genetically modified (GM) soybean and wild soybean to survive and reproduce under unfavorable conditions is critical for answering questions regarding risk assessment and the existence of transgenes in the environment. To investigate the effects of high-temperature stress [...] Read more.
Understanding the ability of hybrids of genetically modified (GM) soybean and wild soybean to survive and reproduce under unfavorable conditions is critical for answering questions regarding risk assessment and the existence of transgenes in the environment. To investigate the effects of high-temperature stress on soybean growth and competitive ability, the GM soybean DBN8002, which expresses the VIP3Aa and PAT proteins, and F2 generations derived from a cross between GM soybean and NJW (wild soybean) were placed in a greenhouse with an elevated temperature (38/32 °C) for 14 days, and the plant agronomic performance and foreign protein levels of hybrid soybean were evaluated to observe their responses to high temperature. The results revealed that the VIP3Aa and PAT protein levels in F2 and GM were not influenced by high-temperature stress. In contrast, the pollen germination, pod number, hundred-seed weight, and seed vigor of the F2 hybrid and parent soybean plants decreased after high-temperature stress. However, except for the number of fully filled seeds per plant, the above parameters of the F2 hybrid were similar to or slightly lower than those of wild soybean, and no significant difference in fitness was observed between the F2 hybrid and wild soybean, indicating that the growth and competitive ability of the hybrid were similar to those of its female parent under heat stress conditions, resulting in the transgenes persisting and spreading within agricultural ecosystems. Our results enhance the understanding of the GM soybean plant’s response to heat stress, lay the foundation for breeding heat-resistant soybean varieties, and provide new insights and advanced information on the ecological risks arising from the escape of transgenes. Full article
Show Figures

Figure 1

14 pages, 4118 KB  
Article
Differentiation of Soybean Genotypes Concerning Seed Physiological Quality Using Hyperspectral Bands
by Izabela Cristina de Oliveira, Dthenifer Cordeiro Santana, Victoria Toledo Romancini, Ana Carina da Silva Cândido Seron, Charline Zaratin Alves, Paulo Carteri Coradi, Carlos Antônio da Silva Júnior, Regimar Garcia dos Santos, Fábio Henrique Rojo Baio, Paulo Eduardo Teodoro and Larissa Ribeiro Teodoro
AgriEngineering 2024, 6(4), 4752-4765; https://doi.org/10.3390/agriengineering6040272 - 9 Dec 2024
Viewed by 1188
Abstract
The use of summarized spectral data in bands obtained by hyperspectral sensors can make it possible to obtain biochemical information about seeds and, thus, relate the results to seed viability and vigor. Thus, the hypothesis of this work is based on the possibility [...] Read more.
The use of summarized spectral data in bands obtained by hyperspectral sensors can make it possible to obtain biochemical information about seeds and, thus, relate the results to seed viability and vigor. Thus, the hypothesis of this work is based on the possibility of obtaining information about the physiological quality of seeds through hyperspectral bands and distinguishing seed lots regarding their quality through wavelengths. The objective was then to evaluate the possibility of differentiating soybean genotypes regarding the physiological quality of seeds using spectral data. The experiment was conducted during the 2021/2022 harvest at the Federal University of Mato Grosso do Sul in a randomized block design with four replicates and 10 F3 soybean populations (G1, G8, G12, G15, G19, G21, G24, G27, G31, and G36). After the maturation of each genotype, seeds were harvested from the central rows of each plot, which consisted of five one-meter rows. Seed samples from each experimental unit were placed in a Petri dish to collect spectral data. Readings were performed in the laboratory at a temperature of 26 °C and using two 60 W halogen lamps as the light source, positioned 15 cm between the sensor and the sample. The sensor used was the Ocean Optics (Florida, USA) model STS-VIS-L-50-400-SMA, which captured the reflectance of the seed sample at wavelengths between 450 and 824 nm. After readings from the hyperspectral sensor, the seeds were subjected to tests for water content, germination, first germination count, electrical conductivity, and tetrazolium. The data obtained were subjected to an analysis of variance and the means were compared by the Scott–Knott test at 5% probability, analyzed using R software version 4.2.3 (Auckland, New Zealand). The data on the physiological quality of the seeds of the soybean genotypes were subjected to principal component analysis (PCA) and associated with the K-means algorithm to form groups according to the similarity and distinction between the genetic materials. After the formation of these groups, spectral curve graphs were constructed for each soybean genotype and for the groups that were formed. The physiological quality of the soybean genotypes can be differentiated using hyperspectral bands. The spectral bands, therefore, provide important information about the physiological quality of soybean seeds. Through the use of hyperspectral sensors and the observation of specific bands, it is possible to differentiate genotypes in terms of seed quality, complementing and/or replacing traditional tests in a fast, accurate, and non-destructive way, reducing the time and investment spent on obtaining information on seed viability and vigor. The results found in this study are promising, and further research is needed in future studies with other species and genotypes. The interval between 450 and 649 nm was the main spectrum band that contributed to the differentiation between soybean genotypes of superior and inferior physiological quality. Full article
Show Figures

Figure 1

18 pages, 6011 KB  
Article
Identification of Candidate Genes for Soybean Storability via GWAS and WGCNA Approaches
by Xu Wu, Yuhe Wang, Jiapei Xie, Zhenhong Yang, Haiyan Li, Yongguang Li, Weili Teng, Xue Zhao, Yuhang Zhan and Yingpeng Han
Agronomy 2024, 14(11), 2457; https://doi.org/10.3390/agronomy14112457 - 22 Oct 2024
Cited by 1 | Viewed by 1513
Abstract
Soybean (Glycine max (L.) Merr.) is an important crop for both food and feed, playing a significant role in agricultural production and the human diet. During long-term storage, soybean seeds often exhibit reduced quality, decreased germination, and lower seedling vigor, ultimately leading [...] Read more.
Soybean (Glycine max (L.) Merr.) is an important crop for both food and feed, playing a significant role in agricultural production and the human diet. During long-term storage, soybean seeds often exhibit reduced quality, decreased germination, and lower seedling vigor, ultimately leading to significant yield reductions in soybean crops. Seed storage tolerance is a complex quantitative trait controlled by multiple genes and is also influenced by environmental factors during seed formation, harvest, and storage. This study aimed to evaluate soybean germplasms for their storage tolerance, identify quantitative trait nucleotides (QTNs) associated with seed storage tolerance traits, and screen for candidate genes. The storage tolerance of 168 soybean germplasms was evaluated, and 23,156 high-quality single nucleotide polymorphism (SNP) markers were screened and analyzed through a genome-wide association study (GWAS). Ultimately, 14 QTNs were identified as being associated with seed storage tolerance and were distributed across the eight chromosomes of soybean, with five QTNs (rs25887810, rs27941858, rs33981296, rs44713950, and rs18610980) being newly reported loci in this study. In the linkage disequilibrium regions of these SNPs, 256 genes were identified. By combining GWAS and weighted gene co-expression network analysis (WGCNA), eight hub genes (Glyma.03G058300, Glyma.04G1921100, Glyma.04G192600, Glyma.04G192900, Glyma.07G002000, Glyma.08G329400, Glyma.16G074600, Glyma.16G091400) were jointly identified. Through the analysis of expression patterns, two candidate genes (Glyma.03G058300, Glyma.16G074600) potentially involved in seed storage tolerance were ultimately identified. Additionally, haplotype analysis revealed that natural variations in Glyma.03G058300 could affect seed storage tolerance. The findings of this research provide a theoretical foundation for understanding the regulatory mechanism underlying soybean storage. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

18 pages, 339 KB  
Article
Impact of Simultaneous Nutrient Priming and Biopriming on Soybean Seed Quality and Health
by Gordana Tamindžić, Dragana Miljaković, Maja Ignjatov, Jegor Miladinović, Vuk Đorđević, Dragana Milošević, Dušica Jovičić, Slobodan Vlajić, Dragana Budakov and Mila Grahovac
Plants 2024, 13(18), 2557; https://doi.org/10.3390/plants13182557 - 11 Sep 2024
Cited by 6 | Viewed by 2036
Abstract
In soybean production, numerous strategies are utilized to enhance seed quality and mitigate the effects of biotic and abiotic stressors. Zn-based nutrient priming has been shown to be effective for field crops, and biopriming is a strategy that is becoming increasingly important for [...] Read more.
In soybean production, numerous strategies are utilized to enhance seed quality and mitigate the effects of biotic and abiotic stressors. Zn-based nutrient priming has been shown to be effective for field crops, and biopriming is a strategy that is becoming increasingly important for sustainable agriculture. On the other hand, there is a lack of information about the effect of comprehensive nutrient priming and biopriming techniques on soybean seed quality and viability and seed health. This study was performed to assess the benefits of nutrient priming with Zn, biopriming with Bacillus megaterium and Bradyrhizobium japonicum (single and co-inoculation), and combination of nutrient priming and biopriming on the seed quality and viability, as well as seed infection caused by Alternaria spp. and Fusarium spp. Three different laboratory tests were employed: germination test, accelerated aging test, and seed health test. The results revealed that all tested priming treatments have a beneficial effect on seed germination, initial plant growth, and reduction of seed infection in normal and aged seeds. Additionally, comprehensive priming with Zn, Bacillus megaterium, and Bradyrhizobium japonicum reduced the occurrence of Alternaria spp. (−84% and −75%) and Fusarium spp. (−91% and −88%) on soybean seeds in the germination and accelerated aging tests, respectively, as compared to the control, which proved to be the most effective treatment in both optimal and stressful conditions. Full article
(This article belongs to the Special Issue Mechanisms of Seed Dormancy and Germination)
13 pages, 1469 KB  
Article
The Biostimulant Potential of Clove Essential Oil for Treating Soybean Seeds
by Joao Paulo Costa, Vinícius Guimarães Nasser, Willian Rodrigues Macedo, Mario Ferreira Conceição Santos and Geraldo Humberto Silva
Agriculture 2024, 14(7), 1202; https://doi.org/10.3390/agriculture14071202 - 22 Jul 2024
Cited by 1 | Viewed by 2006
Abstract
Increasing soybean productivity can be achieved by treating seeds with biostimulants. To this end, an investigation was conducted into the potential of a formulation prepared with clove es-sential oil (CEO) diluted in soybean oil for seed treatment. Soybean seeds were treated with CEO [...] Read more.
Increasing soybean productivity can be achieved by treating seeds with biostimulants. To this end, an investigation was conducted into the potential of a formulation prepared with clove es-sential oil (CEO) diluted in soybean oil for seed treatment. Soybean seeds were treated with CEO concentrations between 0.5 to 3.0 mL/L, and subjected to germination, vigor, and sanity analyses. The CEO at 1.6 mL/L exhibited favorable outcomes regarding germination, root length, and re-duced fungal infection. In this way, a two-crop field experiment evaluated soybean seeds treated with CEO at 1.6 mL/L. Soybean seeds treated with CEO in the field in 2021/2022 were not different from the controls. However, in 2019/2020, there was a higher percentage of emergence, nodulation, and production of 749 kg/ha more than in the industrial treatment. These results highlight the potential use of CEO as a biostimulant. Full article
Show Figures

Figure 1

19 pages, 4865 KB  
Article
Impact Assessment of Nematode Infestation on Soybean Crop Production Using Aerial Multispectral Imagery and Machine Learning
by Pius Jjagwe, Abhilash K. Chandel and David B. Langston
Appl. Sci. 2024, 14(13), 5482; https://doi.org/10.3390/app14135482 - 24 Jun 2024
Cited by 2 | Viewed by 1882
Abstract
Accurate and prompt estimation of geospatial soybean yield (SY) is critical for the producers to determine key factors influencing crop growth for improved precision management decisions. This study aims to quantify the impacts of soybean cyst nematode (SCN) infestation on soybean production and [...] Read more.
Accurate and prompt estimation of geospatial soybean yield (SY) is critical for the producers to determine key factors influencing crop growth for improved precision management decisions. This study aims to quantify the impacts of soybean cyst nematode (SCN) infestation on soybean production and the yield of susceptible and resistant seed varieties. Susceptible varieties showed lower yield and crop vigor recovery, and high SCN population (20 to 1080) compared to resistant varieties (SCN populations: 0 to 340). High-resolution (1.3 cm/pixel) aerial multispectral imagery showed the blue band reflectance (r = 0.58) and Green Normalized Difference Vegetation Index (GNDVI, r = −0.6) have the best correlation with the SCN populations. While GDNVI, Green Chlorophyll Index (GCI), and Normalized Difference Red Edge Index (NDRE) were the best differentiators of plant vigor and had the highest correlation with SY (r = 0.59–0.75). Reflectance (REF) and VIs were then used for SY estimation using two statistical and four machine learning (ML) models at 10 different train–test data split ratios (50:50–95:5). The ML models and train–test data split ratio had significant impacts on SY estimation accuracy. Random forest (RF) was the best and consistently performing model (r: 0.84–0.97, rRMSE: 8.72–20%), while a higher train–test split ratio lowered the performances of the ML models. The 95:5 train–test ratio showed the best performance across all the models, which may be a suitable ratio for modeling over smaller or medium-sized datasets. Such insights derived using high spatial resolution data can be utilized to implement precision crop protective operations for enhanced soybean yield and productivity. Full article
Show Figures

Figure 1

17 pages, 4604 KB  
Article
Chitosan-GSNO Nanoparticles and Silicon Priming Enhance the Germination and Seedling Growth of Soybean (Glycine max L.)
by Senabulya Steven, Mohammad Shafiqul Islam, Amit Ghimire, Nusrat Jahan Methela, Eun-Hae Kwon, Byung-Wook Yun, In-Jung Lee, Seong-Hoon Kim and Yoonha Kim
Plants 2024, 13(10), 1290; https://doi.org/10.3390/plants13101290 - 7 May 2024
Cited by 10 | Viewed by 2623
Abstract
Soybean, a major legume crop, has seen a decline in its production owing to challenges in seed germination and the development of seedlings. Thus, in this study, we systematically investigated the influence of various chitosan–S-nitrosoglutathione (chitosan-GSNO) nanoparticle (0, 25, 50, and 100 µM) [...] Read more.
Soybean, a major legume crop, has seen a decline in its production owing to challenges in seed germination and the development of seedlings. Thus, in this study, we systematically investigated the influence of various chitosan–S-nitrosoglutathione (chitosan-GSNO) nanoparticle (0, 25, 50, and 100 µM) and Si (0, 0.5, and 1 mM) priming concentrations on soybean seed germination and seedling growth over five different priming durations (range: 1–5 h at each concentration). Significant differences were observed in all parameters, except seedling diameter, with both treatments. Seed germination was significantly enhanced after 3 h of priming in both treatments. The final germination percentage (FGP), peak germination percentage (PGP), vigor index (VI), seedling biomass (SB), hypocotyl length (HL), and radical length (RL) of 100 μM chitosan-GSNO-nanoparticle-primed seeds increased by 20.3%, 41.3%, 78.9%, 25.2%, 15.7%, and 65.9%, respectively, compared with those of the control; however, the mean germination time (MGT) decreased by 18.43%. Si priming at 0.5 mM increased the FGP, PGP, VI, SB, HL, and RL by 13.9%, 55.17%, 39.2%, 6.5%, 22.5%, and 25.1%, respectively, but reduced the MGT by 12.29% compared with the control treatment. Chitosan-GSNO and Si treatment up-regulated the relative expression of gibberellic acid (GA)-related genes (GmGA3ox3 and GmGA2ox1) and down-regulated that of abscisic acid (ABA)-related genes (GmABA2, GmAAO3, and GmNCED5). Chitosan-GSNO and Si application increased bioactive GA4 levels and simultaneously reduced ABA content. Hence, the use of exogenous chitosan-GSNO nanoparticles and Si as priming agents had a beneficial effect on seed germination and seedling growth because of the up-regulation in the expression of GA and down-regulation in the expression of ABA. Additional research is needed to understand the combined impact of Si and chitosan-GSNO nanoparticles, including their effects on the expression levels of other hormones and genes even in the later growth stage of the crop. Full article
Show Figures

Figure 1

16 pages, 1689 KB  
Review
Soybean Seed Coat Cracks and Green Seeds—Predisposing Conditions, Identification and Management
by Ernane Miranda Lemes and Hugo César Rodrigues Moreira Catão
Seeds 2024, 3(1), 133-148; https://doi.org/10.3390/seeds3010011 - 12 Mar 2024
Cited by 5 | Viewed by 3904
Abstract
Seed coat cracking and green seeds threaten soybean crop production. Seed coat cracking results from a complex interplay of genetic factors, environmental stresses, and crop management practices. Green seeds, linked to water deficit, nutritional deficiencies, and environmental stresses, exhibit reduced quality and viability. [...] Read more.
Seed coat cracking and green seeds threaten soybean crop production. Seed coat cracking results from a complex interplay of genetic factors, environmental stresses, and crop management practices. Green seeds, linked to water deficit, nutritional deficiencies, and environmental stresses, exhibit reduced quality and viability. The intricate relationships between seed coat integrity and seed permeability, influenced by the lignin content, porosity, and color, play a pivotal role in seed germination, storage potential, and resistance to field stresses. These issues reverberate through the soybean agricultural supply chain. Strategic interventions are crucial to address these abnormalities and ensure soybean productivity. Seed germination and vigor are reduced due to seed coat cracking and green seeds, undermining food security and necessitating additional resources for disease management. The occurrence and identification of green seeds and seeds with cracks in the seed coat were also reported by identifying the genes and QTLs (quantitative trait loci) associated with these characteristics. Herbicides, commonly used in weed management, may offer a strategic approach to mitigating seed coat cracking and green seed occurrence. Understanding the complex interactions between the genetics, environmental factors, and management practices influencing seed abnormalities is essential as global climate change intensifies. This review emphasizes the need for integrated strategies, balanced plant nutrition, and cohesive phytosanitary management to mainly alleviate seed coat cracking and greenish occurrences in soybeans and other plant species. Full article
Show Figures

Figure 1

11 pages, 985 KB  
Article
Utilizing Remote Sensing to Quantify the Performance of Soybean Insecticide Seed Treatments
by Jeffrey M. Hegstad, Hua Mo, Adam P. Gaspar and Dwain Rule
Agronomy 2024, 14(2), 340; https://doi.org/10.3390/agronomy14020340 - 7 Feb 2024
Cited by 1 | Viewed by 1668
Abstract
Soybean (Glycine max) is one of the most important oilseed crops grown in North America and a key contributor to the global protein supply. Insect feeding by a major soybean pest, the bean leaf beetle (BLB; Cerotoma trifurcata), can result [...] Read more.
Soybean (Glycine max) is one of the most important oilseed crops grown in North America and a key contributor to the global protein supply. Insect feeding by a major soybean pest, the bean leaf beetle (BLB; Cerotoma trifurcata), can result in economic yield loss if not controlled. The objective of this research was to use unmanned aerial vehicle (UAV) image analysis to compare the agronomic and efficacy traits of two soybean insecticide seed treatments (IST) in locations with BLB feeding. Across the 2018–2023 field trial locations, 29 had low BLB feeding pressure (less than 25% feeding damage to no IST plots) and 31 had high BLB feeding pressure (greater than 25% feeding damage to no IST plots). In low BLB pressure locations, cyantraniliprole and imidacloprid seed treatments had significantly higher BLB efficacy, significantly higher UAV greenness, and significantly higher final yield as compared to no IST. In high BLB pressure locations, cyantraniliprole and imidacloprid seed treatments were significantly better compared to no IST for BLB efficacy, UAV emergence, UAV vigor, UAV greenness, and final yield. In high BLB pressure locations, cyantraniliprole had significantly higher BLB efficacy, significantly better UAV emergence, and significantly higher yield compared to imidacloprid. The cyantraniliprole treatment had a +254.5 kg/ha increase compared to no IST in low BLB pressure locations and a +213.7 kg/ha increase in high BLB pressure locations. The imidacloprid treatment had a +163.4 kg/ha yield increase compared to no IST in low BLB pressure locations and a +121.4 kg/ha yield increase in high BLB pressure locations. The use of UAV image analysis enabled quantification of the effect of BLB feeding on early-season agronomic traits and, when combined with efficacy and final yield data, successfully differentiated the performance of two soybean ISTs in environments with low or high insect pressure. Full article
Show Figures

Figure 1

17 pages, 4630 KB  
Article
Identifications of Seed Vigor-Related QTLs and Candidate Genes Combined Cultivated Soybean with Wild Soybean
by Shengnan Ma, Haojie Feng, Yiran Sun, Lin Yu, Chunshuang Tang, Yanqiang Zhao, Liansong Xue, Jinhui Wang, Chunyan Liu, Dawei Xin, Qingshan Chen and Mingliang Yang
Agronomy 2024, 14(2), 332; https://doi.org/10.3390/agronomy14020332 - 6 Feb 2024
Cited by 3 | Viewed by 2325
Abstract
Soybean (Glycine max) is an economically important cash crop and food source that serves as a key source of high-quality plant-derived protein and oil. Seed vigor is an important trait that influences the growth and development of soybean plants in an [...] Read more.
Soybean (Glycine max) is an economically important cash crop and food source that serves as a key source of high-quality plant-derived protein and oil. Seed vigor is an important trait that influences the growth and development of soybean plants in an agricultural setting, underscoring a need for research focused on identifying seed vigor-related genetic loci and candidate genes. In this study, a population consisting of 207 chromosome segment substitution lines (CSSLs) derived from the crossing and continuous backcrossing of the Suinong14 (improved cultivar, recurrent parent) and ZYD00006 (wild soybean, donor parent) soybean varieties was leveraged to identify quantitative trait loci (QTLs) related to seed vigor. The candidate genes detected using this approach were then validated through RNA-seq, whole-genome resequencing, and qPCR approaches, while the relationship between specific haplotypes and seed vigor was evaluated through haplotype analyses of candidate genes. Phenotypic characterization revealed that the seed vigor of Suinong14 was superior to that of ZYD00006, and 20 total QTLs were identified using the selected CSSLs. Glyma.03G256700 was also established as a seed vigor-related gene that was upregulated in high-vigor seeds during germination, with haplotypes for this candidate gene also remaining consistent with observed soybean seed vigor. The QTLs identified herein can serve as a foundation for future marker-assisted and convergent breeding efforts aimed at improving seed vigor. In addition, future molecular and functional research focused on Glyma.03G256700 has the potential to elucidate the signaling network and key regulatory mechanisms that govern seed germination in soybean plants. Full article
(This article belongs to the Special Issue Functional Genomics and Molecular Breeding of Soybeans)
Show Figures

Figure 1

Back to TopTop