Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (87)

Search Parameters:
Keywords = starch particle size distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5623 KB  
Article
Effect of Acheta domesticus Powder Incorporation on Nutritional Composition, Technological Properties, and Sensory Acceptance of Wheat Bread
by Agnieszka Orkusz and Martyna Orkusz
Insects 2025, 16(9), 972; https://doi.org/10.3390/insects16090972 - 17 Sep 2025
Viewed by 675
Abstract
The fortification of bakery products with alternative protein sources, including edible insects, offers a promising approach to improving nutritional quality while addressing sustainability challenges. This study evaluated graded replacement of type 750 wheat flour with Acheta domesticus (house cricket) powder—together with an extreme [...] Read more.
The fortification of bakery products with alternative protein sources, including edible insects, offers a promising approach to improving nutritional quality while addressing sustainability challenges. This study evaluated graded replacement of type 750 wheat flour with Acheta domesticus (house cricket) powder—together with an extreme 100% cricket-powder formulation—on the nutritional composition, color, particle size distribution, fermentative properties, baking loss, crumb hardness, and sensory quality of bread. Fifteen baked variants were prepared: a 100% wheat flour control; thirteen wheat–cricket blends containing 5–90% cricket powder; and an extreme formulation with 100% cricket powder. Increasing cricket-powder levels significantly increased protein, fat, fiber, zinc, and riboflavin contents while decreasing carbohydrate and starch levels. Technologically, higher substitution levels resulted in darker crumb color, a shift toward coarser particle size distribution, reduced gas retention during proofing, and increased baking loss. Sensory analysis indicated that up to 15% inclusion maintained full consumer acceptability, while 20–25% was at the acceptance threshold. Above 35%, acceptability declined sharply due to intensified earthy flavors and textural changes. The findings highlight 15% inclusion as the optimal balance between enhanced nutritional value and sensory quality, with potential for higher incorporation if appropriate technological modifications are applied. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Insects)
27 pages, 8270 KB  
Article
Wild Yam (Dioscorea remotiflora) Tubers: An Alternative Source for Obtaining Starch Particles Chemically Modified After Extraction by Acid Hydrolysis and Ultrasound
by Rosa María Esparza-Merino, Yokiushirdhilgilmara Estrada-Girón, Ana María Puebla-Pérez, Víctor Vladimir Amílcar Fernández-Escamilla, Angelina Martín-del-Campo, Jorge Alonso Uribe-Calderón, Nancy Tepale and Israel Ceja
Polysaccharides 2025, 6(3), 69; https://doi.org/10.3390/polysaccharides6030069 - 7 Aug 2025
Viewed by 597
Abstract
Starch particles (SPs) were extracted from underutilized wild yam (Dioscorea remotiflora) tubers using two methods: (1) acid hydrolysis (AH) alone and (2) acid hydrolysis assisted by ultrasound (AH-US). The SPs were chemically modified through esterification (using acetic anhydride [AA] and lauroyl [...] Read more.
Starch particles (SPs) were extracted from underutilized wild yam (Dioscorea remotiflora) tubers using two methods: (1) acid hydrolysis (AH) alone and (2) acid hydrolysis assisted by ultrasound (AH-US). The SPs were chemically modified through esterification (using acetic anhydride [AA] and lauroyl chloride [LC]) and crosslinking (with citric acid [CA] and sodium hexametaphosphate [SHMP]). They were subsequently characterized by their yield, amylose content, and structural and physical properties. The yield of particles was 17.5–19.7%, and the residual amylose content was 2.8–3.2%. Particle sizes ranged from 0.46 to 0.55 µm, which exhibited mono-modal and bi-modal distributions for AH and AH-US treatments, respectively. Following chemical modification, yield notably increased, especially with substitution by LC (33.6–36.5%) and CA (32.6–38.7%). Modified SPs exhibited bi-modal particle distributions with micro- and nanoparticles and variable peak intensities depending on the chemical compound used. Unmodified SPs displayed irregular morphologies, showing disruptions (AH) or aggregation (AH-US). Chemical substitutions altered morphologies, leading to amorphous surfaces (CA: AH), clustering (LC), or fragmentation into smaller particles (SHMP) under AH-US treatment. FT-IR analysis indicated a decrease in hydroxyl groups’ peak area (A(-OH)), confirming the substitution of these groups in the starch structure. Crosslinking with CA resulted in the highest degree of substitution (AH: 0.43; AH-US: 0.44) and melting enthalpy (ΔHf: 343.0 J/g for AH-US), revealing stronger interactions between SPs from both methods. These findings demonstrate that the extraction treatment of D. remotiflora SPs and the type of chemical modifier significantly influence the properties of SPs, underscoring their potential applications as natural biocarriers. Full article
Show Figures

Graphical abstract

9 pages, 1521 KB  
Communication
Dynamic Behaviors of Concentrated Colloidal Silica Suspensions: Dancing, Bouncing, Solidifying, and Melting Under Vibration
by Motoyoshi Kobayashi, Takuya Sugimoto, Ryoichi Ishibashi and Shunsuke Sato
Liquids 2025, 5(3), 18; https://doi.org/10.3390/liquids5030018 - 11 Jul 2025
Viewed by 438
Abstract
Concentrated suspensions exhibit intriguing behaviors under external forces, including vibration and shear. While previous studies have focused primarily on cornstarch suspensions, this paper reports a novel observation that colloidal silica suspensions also exhibit dancing, bouncing, solidification, and melting under vertical vibration. Unlike cornstarch, [...] Read more.
Concentrated suspensions exhibit intriguing behaviors under external forces, including vibration and shear. While previous studies have focused primarily on cornstarch suspensions, this paper reports a novel observation that colloidal silica suspensions also exhibit dancing, bouncing, solidification, and melting under vertical vibration. Unlike cornstarch, silica particles offer high stability, controlled size distribution, and tunable surface properties, making them an ideal system for investigating these phenomena. The 70 wt.% aqueous suspensions of spherical silica particles with a diameter of 0.55 μm were subjected to controlled vertical vibration (60–100 Hz, 100–500 m/s2). High-speed video analysis revealed dynamic transitions, including melting, fingering, squirming, fragmentation, and jumping. The solidified suspension retained its shape after vibration ceased but melted upon weak vibration. This study demonstrates that such dynamic state transitions are not exclusive to starch-based suspensions but can also occur in well-defined colloidal suspensions. Our findings provide a new platform for investigating shear-thickening, jamming, and vibrational solidification in suspensions with controllable parameters. Further work is required to elucidate the underlying mechanisms. Full article
(This article belongs to the Section Physics of Liquids)
Show Figures

Figure 1

14 pages, 678 KB  
Article
Investigation of Gluten Contamination in Commercial Hydrated Cassava Starch and Its Physicochemical Properties
by Marina Magalhães Cardoso Malta, Giovanna Musco Twardowski Pinto, Isabela Caldas Castañon Guimarães, Lauro Melo, Ailton Cesar Lemes and Karen Signori Pereira
Appl. Sci. 2025, 15(13), 7510; https://doi.org/10.3390/app15137510 - 4 Jul 2025
Viewed by 561
Abstract
Hydrated cassava starch is widely consumed for its convenience and to appeal to health-conscious individuals, including those with celiac disease, due to its gluten-free nature. However, potential gluten contamination during processing and the lack of specific regulations underscores the need for careful monitoring [...] Read more.
Hydrated cassava starch is widely consumed for its convenience and to appeal to health-conscious individuals, including those with celiac disease, due to its gluten-free nature. However, potential gluten contamination during processing and the lack of specific regulations underscores the need for careful monitoring to ensure safety. Thus, this study aimed to evaluate the presence of gluten in different commercially available hydrated cassava starches and to partially characterize them regarding their physicochemical properties. Thirty-five samples of hydrated cassava starch from local markets in various regions of Brazil were analyzed. The samples underwent partial physicochemical characterization, including pH, moisture content, and particle size distribution. Additionally, gluten presence was assessed using a rapid detection kit. The hydrated cassava starch samples showed a wide pH range (3.4–4.6) and high moisture content (36.0–41.4%), indicating high perishability. Granulometry varied significantly, with samples above 39% moisture forming larger particles which result in irregular texture and inconsistency in tapioca production. Gluten contamination found in 5.71% of the 35 samples presents a risk to gluten-sensitive individuals, underscoring the urgent need for industry and regulatory agencies to implement routine gluten screening. Full article
(This article belongs to the Special Issue Advances in Safety Detection and Quality Control of Food)
Show Figures

Figure 1

21 pages, 3143 KB  
Article
The Effects of Milling Conditions on the Particle Size, Quality, and Noodle-Making Performance of Whole-Wheat Flour: A Mortar Mill Study
by Jeonghan Moon, Yujin Moon and Meera Kweon
Foods 2025, 14(9), 1609; https://doi.org/10.3390/foods14091609 - 1 May 2025
Viewed by 1099
Abstract
In this study, we investigated the effects of mortar milling conditions on the quality and noodle-processing suitability of whole-wheat flours (WWFs). The WWFs were milled at varying pestle speeds (50 and 130 rpm) and for varying durations (10, 20, 40, and 60 min) [...] Read more.
In this study, we investigated the effects of mortar milling conditions on the quality and noodle-processing suitability of whole-wheat flours (WWFs). The WWFs were milled at varying pestle speeds (50 and 130 rpm) and for varying durations (10, 20, 40, and 60 min) and analyzed to determine their particle size distribution, physicochemical properties, dough-mixing characteristics, antioxidant activities, and noodle-making performance. High pestle speed (Group H) produced significantly smaller particle sizes, higher flour temperatures, greater moisture loss, and increased starch damage compared to that produced at low pestle speeds (Group L). Compared with Group L, Group H exhibited higher water and sodium carbonate solvent-retention capacity (SRC) values, increased pasting viscosities, and greater gluten strength owing to finer particles. Total phenolic content increased with reduced particle size, whereas antioxidant activity (ABTS radical scavenging) exhibited inconsistent trends. Fresh noodle properties varied with milling conditions; finer WWF particles improved dough resistance but reduced extensibility when water was adjusted according to water SRC. Thus, WWF particle size strongly influences flour functionality and noodle quality, which highlights the need for precise milling control. This study demonstrates, for the first time, the applicability of a mortar-type mill for producing WWFs, with implications for enhancing WWF functionality. Full article
Show Figures

Figure 1

21 pages, 2878 KB  
Article
Upcycling Scented Pandan Leaf Waste into High-Value Cellulose Nanocrystals via Ultrasound-Assisted Extraction for Edible Film Reinforcement
by Benjamard Rattanamato, Nattapong Kanha, Prem Thongchai, Kanyasiri Rakariyatham, Wannaporn Klangpetch, Sukhuntha Osiriphun and Thunnop Laokuldilok
Foods 2025, 14(9), 1528; https://doi.org/10.3390/foods14091528 - 27 Apr 2025
Viewed by 1218
Abstract
This study aims to optimize the parameters for the ultrasound-assisted extraction of cellulose nanocrystals (CNCs) from scented pandan leaf waste and to enhance the properties of edible films reinforced with CNC. The CNC extraction conditions were optimized using response surface methodology (central composite [...] Read more.
This study aims to optimize the parameters for the ultrasound-assisted extraction of cellulose nanocrystals (CNCs) from scented pandan leaf waste and to enhance the properties of edible films reinforced with CNC. The CNC extraction conditions were optimized using response surface methodology (central composite design) by varying two independent variables, including amplitude (25.86% to 54.14%) and ultrasonication time (11.89 min to 33.11 min). The optimal extraction conditions were 50% amplitude and 30 min ultrasonication, providing CNCs with the highest extraction yield (29.85%), the smallest crystallite size (5.85 nm), and the highest crystallinity index (59.32%). The extracted CNCs showed favorable physicochemical properties, including a zeta potential of −33.95 mV, an average particle diameter of 91.81 nm, and a polydispersity index of 0.26. Moreover, sweet potato starch (SPS)-based films incorporating various CNC concentrations (0, 2, 4, 6, and 8%) were fabricated. Increasing CNC concentrations improved key film properties, including thickness, moisture content, water vapor permeability, tensile strength, light transmittance, and color. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) analyses confirmed hydrogen bonding, crystallinity, and uniform CNC distribution within the film as CNC content increased. These findings highlight ultrasound-assisted extraction as an efficient method for producing high-quality CNCs from pandan leaf waste, offering sustainable nanofillers to enhance biodegradable edible films. Full article
Show Figures

Figure 1

17 pages, 2035 KB  
Article
Physical and Functional Properties of Sweet Potato Flour: Influence of Variety and Drying Method
by Nelson Pereira, Ana Cristina Ramos, Marco Alves, Vítor D. Alves, Margarida Moldão and Marta Abreu
Molecules 2025, 30(8), 1846; https://doi.org/10.3390/molecules30081846 - 20 Apr 2025
Cited by 2 | Viewed by 2007
Abstract
Sweet potato (Ipomoea batatas (L.) Lam.; SP) flour enhances food nutrition and bioactivity while functioning as a thickening/gelling agent. This study investigated the impact of two drying methods [hot-air (75 °C/20 h) and freeze-drying (−41–30 °C/70 h)] on the physical–functional properties of [...] Read more.
Sweet potato (Ipomoea batatas (L.) Lam.; SP) flour enhances food nutrition and bioactivity while functioning as a thickening/gelling agent. This study investigated the impact of two drying methods [hot-air (75 °C/20 h) and freeze-drying (−41–30 °C/70 h)] on the physical–functional properties of flours from three SP varieties: Bonita (white-fleshed), Bellevue (orange-fleshed), and NP1648 (purple-fleshed). Particle size, morphology, water/oil absorption capacities (WAC/OAC), bulk density, swelling power (SwP), water solubility (WS), foaming/emulsifying properties, least gelation concentration (LGC), and gelatinisation temperature (GT) were analysed. Both the drying method and variety significantly influenced these properties. Hot-air-dried flours exhibited bimodal particle distribution, compact microstructure, and aggregated starch granules, yielding higher WAC (≈3.2 g/g) and SwP (≈3.6 g/g). Freeze-dried flours displayed smaller particles, porous microstructure, and fragmented granules, enhancing OAC (≈3.0 g/g) and foaming capacity (≈17.6%). GT was mainly variety-dependent, increasing as Bellevue (74.3 °C) < NP1648 (78.5 °C) < Bonita (82.8 °C), all exceeding commercial potato starch (68.7 °C). NP1648 required lower LGC (10% vs. 16% for others). All flours exhibited high WS (24–39.5%) and emulsifying capacity (≈44%). These results underscore the importance of selecting the appropriate drying method and variety to optimise SP flour functionality for targeted food applications. Freeze-dried flours might suit aerated/oil-retentive products, while hot-air-dried flours could be ideal for moisture-sensitive formulations. Full article
Show Figures

Figure 1

29 pages, 16112 KB  
Article
The Effect of the Addition of Crystalline Nanocellulose (CNC) and Radiation Treatment on the Properties of Edible Films Based on a Cornstarch–Poly(Vinyl Alcohol) System
by Krystyna Cieśla and Anna Abramowska
Coatings 2025, 15(4), 452; https://doi.org/10.3390/coatings15040452 - 11 Apr 2025
Cited by 1 | Viewed by 690
Abstract
This study concerns the effects of the addition of crystalline nanocellulose (CNC) and ionizing radiation on the properties of cornstarch–poly(vinyl alcohol) (PVA) films. Moreover, ESR spectroscopy and gas chromatography were used for a comparison of the reactivity of CNC and two micro-sized celluloses [...] Read more.
This study concerns the effects of the addition of crystalline nanocellulose (CNC) and ionizing radiation on the properties of cornstarch–poly(vinyl alcohol) (PVA) films. Moreover, ESR spectroscopy and gas chromatography were used for a comparison of the reactivity of CNC and two micro-sized celluloses (microfibrinal (MFC) and microcrystalline (MCC)) under the influence of irradiation. This showed that the highest reactivity of CNC was related to the lowest sizes of the particles (observed by SEM). A series of starch/PVA/CNC films characterized by a starch/PVA ratio equal to 40:60 and a CNC addition in a range from 0.5 wt% to 10.0 wt% with 30 wt% of glycerol were prepared by solution casting. The films were irradiated in a gamma chamber (in a vacuum) or in an e-beam (in the air) using a dose of 25 kGy. The mechanical properties, contact angle to water, swelling and solubility in water, moisture absorption in a humid atmosphere, and the gel content of the films were determined. The functional properties of the films strongly depended on the addition of CNC. The films formed with 1.0 wt% of CNC had the best mechanical properties and the lowest surface and bulk hydrophilicity, which could be improved further after irradiation. The results can be related to the increased homogeneity and modified distribution of the nanoparticles in the films after irradiation (as shown by SEM). Degradation is a predominant process that occurs due to irradiation; however, the crosslinking processes also have some role. The protective effect of CNC against degradation was discovered by diffuse reflectance spectroscopy. Full article
(This article belongs to the Special Issue Advances in Modified Atmosphere Packaging and Edible Coatings)
Show Figures

Figure 1

19 pages, 3197 KB  
Article
Utility Assessment of Isolated Starch and Extract from Thai Yam (Dioscorea hispida Dennst.) for Cosmetic via In Vitro and In Vivo Studies
by Suthinee Sangkanu, Jiraporn Khanansuk, Sathianpong Phoopha, Wandee Udomuksorn, Thitiporn Phupan, Jirapa Puntarat, Sucharat Tungsukruthai and Sukanya Dej-adisai
Life 2025, 15(2), 151; https://doi.org/10.3390/life15020151 - 22 Jan 2025
Cited by 1 | Viewed by 1790
Abstract
In Thailand, wild yam, or Dioscorea hispida Dennst., is a starchy crop that is usually underutilized in industry. The purpose of this study was to isolate the starch and extract the phytochemical from D. hispida and use them in cosmetics. Starch was used [...] Read more.
In Thailand, wild yam, or Dioscorea hispida Dennst., is a starchy crop that is usually underutilized in industry. The purpose of this study was to isolate the starch and extract the phytochemical from D. hispida and use them in cosmetics. Starch was used instead of talcum, which can cause pulmonary talcosis in dusting powder formulas (DP 1-5). GC-MS was used to identify the bioactive components present in the ethanolic extract of D. hispida. The main compounds were identified as 9,12-octadecadienoic acid (Z,Z)- (6.51%), stigmasta-5,22-dien-3-ol, (3.beta.,22E)- (6.41%), linoleic acid ethyl ester (5.72%), (Z,Z)-9,12-octadeca-dienoic acid, 2,3-dihydroxy-propyl (3.89%), and campesterol (3.40%). Then, the extract was used as an ingredient in facial sleeping mask gel formulas (SM 1–SM 5). Stability tests, physical characteristics, enzyme inhibitions, and sensitization dermal toxicity tests were used to evaluate the DP and SM formulations. The results showed that the fresh tubers of D. hispida showed a 12.5% w/w starch content. The findings demonstrated that starch powder had a restricted size distribution, ranging from 2 to 4 μm, and a smooth surface that was polygonal. Following stability testing, the color, odor, size, and flowability of all DP formulations did not significantly differ. The SEM investigation revealed that DP particles were homogenous. For the sensitization dermal toxicity test, DP denoted no erythema or skin irritation in the guinea pigs. After stability testing, the colors of the SM formulas were deeper, and their viscosity slightly increased. The pH did not significantly change. After the stability test, SM formulas that contained Glycyrrhiza glabra and D. hispida extracts exhibited stable tyrosinase and elastase inhibitory activities, respectively. In the sensitization dermal toxicity test, guinea pigs showed skin irritation at level 2 (not severe) from SM, indicating that redness developed. All of these findings indicate that D. hispida is a plant that has potential for use in the cosmetics industry. Furthermore, D. hispida starch can be made into a beauty dusting powder, and more research should be conducted to develop an effective remedy for patients or those with skin problems. Full article
(This article belongs to the Special Issue Advances in the Biomedical Applications of Plants and Plant Extracts)
Show Figures

Figure 1

15 pages, 6686 KB  
Article
Characterization and Comparison of Structure and Physicochemical Properties of Highland Barley Starch of Different Colors
by Mengru Han, Xiongying Zhang, Honglu Wang, Jiayue Zhou, Meijin Liu, Xirong Zhou, Aliaksandr Ivanistau, Qinghua Yang and Baili Feng
Foods 2025, 14(2), 186; https://doi.org/10.3390/foods14020186 - 9 Jan 2025
Cited by 2 | Viewed by 1429
Abstract
Domesticated highland barley is an important starch reserve and has differently colored grains, owing to different genotype backgrounds and cultivation environments. In this study, black, purple, blue, and yellow highland barley varieties were planted under the same cultivation conditions, and their starch distribution, [...] Read more.
Domesticated highland barley is an important starch reserve and has differently colored grains, owing to different genotype backgrounds and cultivation environments. In this study, black, purple, blue, and yellow highland barley varieties were planted under the same cultivation conditions, and their starch distribution, structural characteristics, and physicochemical properties were analyzed. The apparent amylose content was highest in the purple variety (20.26%) and lowest in the yellow variety (18.58%). The different varieties had three subgroups and A-type crystalline structures, but the particle size and relative crystallinity (25.67–27.59%) were significantly different. In addition, the weight average molecular weight (6.72 × 107 g/mol), area ratio of APs to APL (2.88), relative crystallinity (27.59%), and 1045/1022 (0.730 cm−1) of starch were higher in yellow highland barley (YHB), forming a stable particle structure and increasing the Tp and PV of its starch. A cluster heat map showed that starches from differently colored highland barley vary in fine structure, water solubility, swelling power, and thermal and pasting properties. This study provides a reference for the high-quality breeding of colored highland barley and its utilization in food and non-food industries. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

16 pages, 2879 KB  
Article
Impact of Wall Material Composition (Maltodextrin vs. Inulin vs. Nutriose) and Emulsion Preparation System (Nano- vs. Microemulsion) on Properties of Spray-Dried Linseed Oil
by Dorota Ogrodowska, Iwona Zofia Konopka, Grzegorz Dąbrowski, Beata Piłat, Józef Warechowski, Fabian Dajnowiec and Małgorzata Tańska
Molecules 2025, 30(1), 171; https://doi.org/10.3390/molecules30010171 - 4 Jan 2025
Cited by 1 | Viewed by 1866
Abstract
The aim of this study was to compare the functional properties of linseed oil powders made of three types of wall material (OSA starch + maltodextrin, OSA starch + nutriose, and OSA starch + inulin) and two types of emulsion phases (micro- and [...] Read more.
The aim of this study was to compare the functional properties of linseed oil powders made of three types of wall material (OSA starch + maltodextrin, OSA starch + nutriose, and OSA starch + inulin) and two types of emulsion phases (micro- and nanoemulsion). For these independent variables, the properties of the prepared emulsions (flow curves and viscosity) and the resulting powders (encapsulation efficiency, particle size distribution, water activity, bulk and tapped density, Carr’s index, color parameters, and thermal stability) were determined. The results showed that emulsion viscosity and most powder properties were affected by the emulsion type. All emulsions demonstrated Newtonian-like behavior, with viscosity values ranging from 29.07 to 48.26 mPa·s. The addition of nutriose induced the most significant variation in this parameter, with nanoemulsification leading to a 1.6-fold increase in viscosity compared to microemulsification. The application of nanoemulsification to prepare the emulsions prior to spray-drying resulted in powders with lower surface oil content (by 78.8–88.5%), tapped density (by 1.7–14.2%), and Carr’s index (by 7.6–14.0%), as well as higher encapsulation efficiency (by 5.9–17.0%). The decreased oxidative stability (by 30.9–51.1%) of powders obtained from nanoemulsified emulsions was related to 4.7–15.9-fold lower surface oil content. Powders produced using inulin as the wall material had the smallest and most uniform particle sizes, showing minimal variation between powders derived from nano- and microemulsified emulsions. Full article
Show Figures

Figure 1

19 pages, 18320 KB  
Article
Triboelectric Separation for Protein Enrichment of Wheat Flour Compared with Gluten–Starch Mixtures as a Benchmark
by Mine Ozcelik and Petra Foerst
Foods 2024, 13(24), 4075; https://doi.org/10.3390/foods13244075 - 17 Dec 2024
Viewed by 1959
Abstract
Triboelectric separation, a solvent-free method, was investigated as a tool for protein enrichment in wheat flour. Gluten–starch model mixtures, flour, and reground flour fractions were evaluated for their separation characteristics (selectivity and efficiency). Mass yield, protein content, particle size distribution, and SEM analysis [...] Read more.
Triboelectric separation, a solvent-free method, was investigated as a tool for protein enrichment in wheat flour. Gluten–starch model mixtures, flour, and reground flour fractions were evaluated for their separation characteristics (selectivity and efficiency). Mass yield, protein content, particle size distribution, and SEM analysis were used to assess performance. Selectivity and efficiency increased with gluten concentration, peaking at 63% for the 50% gluten mixture, but declined at higher concentrations. The 15% gluten benchmark demonstrated effective protein separation, with protein enrichment occurring in the ground electrode fraction and a corresponding depletion in the positive electrode fraction. In contrast, flour and reground flour fractions exhibited reduced separation efficiency, showing protein depletion in both electrode fractions due to agglomeration. The benchmark achieved the highest separation efficiency (47%), followed by reground flour (41%) and flour (7%). Finer particles in reground flour enhanced chargeability and GE deposition, while larger agglomerates in flour reduced efficiency, leading to material accumulation in the cups. Pre-milling helped detach protein and starch to some extent but also triggered re-agglomeration. Larger particles were influenced more by gravitational forces. These findings highlight the complexity of wheat flour fractionation and the need to optimize particle size and charge distribution to improve protein enrichment through triboelectric separation. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

13 pages, 1923 KB  
Article
Impact of Process and Machine Parameters in the Charging Section on the Triboelectric Separation of Wheat Flour in a Vertical Separator
by Xaver Miller, Martin Schugmann and Petra Foerst
Processes 2024, 12(12), 2721; https://doi.org/10.3390/pr12122721 - 2 Dec 2024
Viewed by 1229
Abstract
Triboelectric separation has recently been investigated as a novel process for dry enrichment and separation of protein of various crops like wheat flour. The triboelectric effect allows for the separation of starch and protein particles in an electric field based on their different [...] Read more.
Triboelectric separation has recently been investigated as a novel process for dry enrichment and separation of protein of various crops like wheat flour. The triboelectric effect allows for the separation of starch and protein particles in an electric field based on their different charging behavior despite having a similar density and size distribution. Particles are triboelectrically charged in a charging section before being separated in an electric field based on their polarity. While the charging section is crucial, the influence of process parameters remains largely unexplored. Thus, the influence of the charging sections’ dimensions and the particle concentration as process key parameters was investigated experimentally. Varying the length (0, 105, and 210 mm) showed that the protein shift increases with the length (max. 0.53%) during separation. Varying the diameter (6, 8, and 10 mm) influenced the charging behavior, resulting in an increase in protein accumulation on the negative electrode as the diameter decreased. Varying the mass flow of flour (40, 80, 160, and 320 g·h−1) also affected the separability, leading to a maximum protein shift of 0.61%. Based on the observed results, it is hypothesized that the electrostatic agglomeration behavior of oppositely charged particles is directly affected by alterations in machine parameters. These agglomerates have a charge-to-mass ratio that is too low for separation in the electric field. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

15 pages, 2763 KB  
Article
Comparison of Structure and Physicochemical Properties of Starches from Hybrid Foxtail Millets and Their Parental Lines
by Guiying Zhang, Yurong Guo, Wenjuan Du, Longbo Jiang, Zhenhua Wang, Gang Tian, Hong Liu, Xin Liu, Xiangyang Zheng, Jie Guo and Huixia Li
Agronomy 2024, 14(11), 2527; https://doi.org/10.3390/agronomy14112527 - 28 Oct 2024
Viewed by 1273
Abstract
The structure and physicochemical properties of starch were important factors to determine the quality of foxtail millet. While hybrid foxtail millet has made greater progress in yield, it has made slower progress in quality than conventional foxtail millet with a more complex genetic [...] Read more.
The structure and physicochemical properties of starch were important factors to determine the quality of foxtail millet. While hybrid foxtail millet has made greater progress in yield, it has made slower progress in quality than conventional foxtail millet with a more complex genetic base, which was jointly influenced by the parents. However, there were no reports on the comparison of the starch structure and physicochemical properties of hybrid foxtail millets and their parents. In this study, the amylose content, morphology structure, granule size distribution, X-ray diffraction, short-range ordered structure, pasting properties, and thermal characteristics of starches derived from Changzagu 466 (466), Changzagu 333 (333), Changzagu 2922 (2922) and their parent materials were analyzed. The results showed that compared with male parents, the starches from three hybrid foxtail millets and their female parents had larger average particle size, d(0.1), d(0.5), and gelatinization enthalpy (ΔH), while the amylose content values of three hybrid foxtail millets were 26.0%, 28.8%, and 28.9%, which were between the parents (25.8~27.1%, 25.4~28.8%, and 23.6~29.5%), with conclusion temperature (Tc) being higher than the parents and having a lower breakdown viscosity. The peak viscosity of Changzagu 466 (466) and Changzagu 2922 (2922) was 5235.5 cP and 5190.8 cP, respectively, lower than that of their parents (5321.0~6006.0 cP and 5257.0~5580.7 cP), while the peak viscosity of Changzagu 333 (333) was 5473.8 cP, falling between the parental values (5337.5~5639.5 cP). The cluster analysis results showed that the starch structure and physicochemical properties of hybrid foxtail millet were significantly different from those of female parents, which were mainly influenced by male parents. The findings of this study will establish a theoretical foundation for the enhancement and innovation of high-quality foxtail millet germplasm resources, as well as the development of high-quality hybrid foxtail millet combinations. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

20 pages, 6849 KB  
Article
Surface-Modified Iron Oxide Nanoparticles with Natural Biopolymers for Magnetic Hyperthermia: Effect of Reducing Agents and Type of Biopolymers
by Abdollah Hajalilou, Liliana P. Ferreira, M. E. Melo Jorge, César P. Reis and Maria Margarida Cruz
J. Compos. Sci. 2024, 8(10), 425; https://doi.org/10.3390/jcs8100425 - 14 Oct 2024
Cited by 16 | Viewed by 2179
Abstract
Magnetic fluid hyperthermia, a minimally invasive localized therapy that uses heat generated by magnetic nanoparticles under an AC magnetic field, is a complementary approach for cancer treatment that is excellent due to its advantages of being noninvasive and addressing only the affected region. [...] Read more.
Magnetic fluid hyperthermia, a minimally invasive localized therapy that uses heat generated by magnetic nanoparticles under an AC magnetic field, is a complementary approach for cancer treatment that is excellent due to its advantages of being noninvasive and addressing only the affected region. Still, its use as a stand-alone therapy is hindered by the simultaneous requirement of nanoparticle biocompatibility, good heating efficiency, and physiological safe dose. To overcome these limits, the biocompatible magnetic nanoparticles’ heating efficiency must be optimized. Iron oxide nanoparticles are accepted as the more biocompatible magnetic nanoparticles available. Therefore, in this work, superparamagnetic iron oxide nanoparticles were synthesized by a low-cost coprecipitation method and modified with starch and gum to increase their heating efficiency and compatibility with living tissues. Two different reducing agents, sodium hydroxide (NaOH) and ammonium hydroxide (NH4OH), were used to compare their influence. The X-ray diffraction results indicate the formation of a single magnetite/maghemite phase in all cases, with the particle size distribution depending on the coating and reducing agent. Citric acid functionalized water-based ferrofluids were also prepared to study the heating efficiency of the nanoparticles under a magnetic field with a 274 kHz frequency and a 14 kAm−1 amplitude. The samples prepared with NaOH display a higher specific loss power (SLP) compared to the ones prepared with NH4OH. The SLP value of 72 Wg−1 for the magnetic nanoparticles coated with a combination of starch and gum arabic, corresponding to an intrinsic loss power (ILP) of 2.60 nWg−1, indicates that they are potential materials for magnetic hyperthermia therapy. Full article
(This article belongs to the Section Polymer Composites)
Show Figures

Graphical abstract

Back to TopTop