Processing math: 45%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = strong (non-perturbative) QCD

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 724 KiB  
Article
Non-Perturbative Quantum Yang–Mills at Finite Temperature Beyond Lattice: A Dyson–Schwinger Approach
by Marco Frasca, Anish Ghoshal and Stefan Groote
Symmetry 2025, 17(4), 543; https://doi.org/10.3390/sym17040543 - 2 Apr 2025
Viewed by 66
Abstract
Using a Dyson–Schwinger approach, we perform an analysis of the non-trivial ground state of thermal SU(N) Yang–Mills theory in the non-perturbative regime where chiral symmetry is dynamically broken by a mass gap. Basic thermodynamic observables such as energy density [...] Read more.
Using a Dyson–Schwinger approach, we perform an analysis of the non-trivial ground state of thermal SU(N) Yang–Mills theory in the non-perturbative regime where chiral symmetry is dynamically broken by a mass gap. Basic thermodynamic observables such as energy density and pressure are derived analytically, using Jacobi elliptic functions. The results are compared with the lattice results. Good agreement is found at low temperatures, providing a viable scenario for a gas of massive glue states populating higher levels of the spectrum of the theory. At high temperatures, a scenario without glue states consistent with a massive scalar field is observed, showing an interesting agreement with lattice data. The possibility is discussed that the results derived in this analysis open up a novel pathway beyond lattice to precision studies of phase transitions with false vacuum and cosmological relics that depend on the equations of state in strong coupled gauge theories of the type of Quantum Chromodynamics (QCD). Full article
(This article belongs to the Special Issue The Benefits That Physics Derives from the Concept of Symmetry)
Show Figures

Figure 1

9 pages, 260 KiB  
Article
A New Solution to the Strong CP Problem
by Sergey A. Larin
Symmetry 2023, 15(12), 2194; https://doi.org/10.3390/sym15122194 - 13 Dec 2023
Viewed by 2652
Abstract
We suggest a new solution to the strong CP problem. The solution is based on the proper use of the boundary conditions for the QCD-generating functional integral. We expand the perturbative boundary conditions to both perturbative and nonperturbative fields integrated into the QCD-generating [...] Read more.
We suggest a new solution to the strong CP problem. The solution is based on the proper use of the boundary conditions for the QCD-generating functional integral. We expand the perturbative boundary conditions to both perturbative and nonperturbative fields integrated into the QCD-generating functional integral. It allows us to nullify the CP odd term in the QCD Lagrangian and, thus, to solve the strong CP problem. The presently popular solution to the strong CP problem of introducing axions violates the principle of renormalizability of the Quantum Field Theory, which is very successful phenomenologically. Our solution obeys the principle of renormalizability of the Quantum Field Theory and does not involve new exotic particles like axions. Full article
(This article belongs to the Section Physics)
24 pages, 7008 KiB  
Review
Nucleon Resonance Electroexcitation Amplitudes and Emergent Hadron Mass
by Daniel S. Carman, Ralf W. Gothe, Victor I. Mokeev and Craig D. Roberts
Particles 2023, 6(1), 416-439; https://doi.org/10.3390/particles6010023 - 15 Mar 2023
Cited by 23 | Viewed by 2731
Abstract
Understanding the strong interaction dynamics that govern the emergence of hadron mass (EHM) represents a challenging open problem in the Standard Model. In this paper we describe new opportunities for gaining insight into EHM from results on nucleon resonance (N*) [...] Read more.
Understanding the strong interaction dynamics that govern the emergence of hadron mass (EHM) represents a challenging open problem in the Standard Model. In this paper we describe new opportunities for gaining insight into EHM from results on nucleon resonance (N*) electroexcitation amplitudes (i.e., γvpN* electrocouplings) in the mass range up to 1.8 GeV for virtual photon four-momentum squared (i.e., photon virtualities Q2) up to 7.5 GeV2 available from exclusive meson electroproduction data acquired during the 6-GeV era of experiments at Jefferson Laboratory (JLab). These results, combined with achievements in the use of continuum Schwinger function methods (CSMs), offer new opportunities for charting the momentum dependence of the dressed quark mass from results on the Q2-evolution of the γvpN* electrocouplings. This mass function is one of the three pillars of EHM and its behavior expresses influences of the other two, viz. the running gluon mass and momentum-dependent effective charge. A successful description of the Δ(1232)3/2+ and N(1440)1/2+ electrocouplings has been achieved using CSMs with, in both cases, common momentum-dependent mass functions for the dressed quarks, for the gluons, and the same momentum-dependent strong coupling. The properties of these functions have been inferred from nonperturbative studies of QCD and confirmed, e.g., in the description of nucleon and pion elastic electromagnetic form factors. Parameter-free CSM predictions for the electrocouplings of the Δ(1600)3/2+ became available in 2019. The experimental results obtained in the first half of 2022 have confirmed the CSM predictions. We also discuss prospects for these studies during the 12-GeV era at JLab using the CLAS12 detector, with experiments that are currently in progress, and canvass the physics motivation for continued studies in this area with a possible increase of the JLab electron beam energy up to 22 GeV. Such an upgrade would finally enable mapping of the dressed quark mass over the full range of distances (i.e., quark momenta) where the dominant part of hadron mass and N* structure emerge in the transition from the strongly coupled to perturbative QCD regimes. Full article
Show Figures

Figure 1

14 pages, 671 KiB  
Article
QCD Matter and Phase Transitions under Extreme Conditions
by Mei Huang and Pengfei Zhuang
Symmetry 2023, 15(2), 541; https://doi.org/10.3390/sym15020541 - 17 Feb 2023
Cited by 7 | Viewed by 2707
Abstract
The interplay of chiral dynamics and gluodynamics plays an essential role in the nonperturbative QCD region, and the chiral phase transition and deconfinement phase transition are the main topics of QCD phase transitions under extreme conditions, e.g., finite temperature and/or baryon density, strong [...] Read more.
The interplay of chiral dynamics and gluodynamics plays an essential role in the nonperturbative QCD region, and the chiral phase transition and deconfinement phase transition are the main topics of QCD phase transitions under extreme conditions, e.g., finite temperature and/or baryon density, strong magnetic fields, and fast rotation. We briefly introduce our own recent progress from the theoretical side on QCD phase transitions and phase diagrams under extreme conditions related to the early universe, compact stars, and heavy-ion collisions. Full article
(This article belongs to the Special Issue Heavy-Ion Collisions and Multiparticle Production)
Show Figures

Figure 1

9 pages, 357 KiB  
Article
Experimental Determination of the QCD Effective Charge αg1(Q)
by Alexandre Deur, Volker Burkert, Jian-Ping Chen and Wolfgang Korsch
Particles 2022, 5(2), 171-179; https://doi.org/10.3390/particles5020015 - 31 May 2022
Cited by 25 | Viewed by 9238
Abstract
The QCD effective charge αg1(Q) is an observable that characterizes the magnitude of the strong interaction. At high momentum Q, it coincides with the QCD running coupling αs(Q). At low Q, [...] Read more.
The QCD effective charge αg1(Q) is an observable that characterizes the magnitude of the strong interaction. At high momentum Q, it coincides with the QCD running coupling αs(Q). At low Q, it offers a nonperturbative definition of the running coupling. We have extracted αg1(Q) from measurements carried out at Jefferson Lab that span the very low to moderately high Q domain, 0.14Q2.18 GeV. The precision of the new results is much improved over the previous extractions and the reach in Q at the lower end is significantly expanded. The data show that αg1(Q) becomes Q-independent at very low Q. They compare well with two recent predictions of the QCD effective charge based on Dyson–Schwinger equations and on the AdS/CFT duality. Full article
Show Figures

Figure 1

46 pages, 3860 KiB  
Review
Mining for Gluon Saturation at Colliders
by Astrid Morreale and Farid Salazar
Universe 2021, 7(8), 312; https://doi.org/10.3390/universe7080312 - 23 Aug 2021
Cited by 107 | Viewed by 3700
Abstract
Quantum chromodynamics (QCD) is the theory of strong interactions of quarks and gluons collectively called partons, the basic constituents of all nuclear matter. Its non-abelian character manifests in nature in the form of two remarkable properties: color confinement and asymptotic freedom. At high [...] Read more.
Quantum chromodynamics (QCD) is the theory of strong interactions of quarks and gluons collectively called partons, the basic constituents of all nuclear matter. Its non-abelian character manifests in nature in the form of two remarkable properties: color confinement and asymptotic freedom. At high energies, perturbation theory can result in the growth and dominance of very gluon densities at small-x. If left uncontrolled, this growth can result in gluons eternally growing violating a number of mathematical bounds. The resolution to this problem lies by balancing gluon emissions by recombinating gluons at high energies: phenomena of gluon saturation. High energy nuclear and particle physics experiments have spent the past decades quantifying the structure of protons and nuclei in terms of their fundamental constituents confirming predicted extraordinary behavior of matter at extreme density and pressure conditions. In the process they have also measured seemingly unexpected phenomena. We will give a state of the art review of the underlying theoretical and experimental tools and measurements pertinent to gluon saturation physics. We will argue for the need of high energy electron-proton/ion colliders such as the proposed EIC (USA) and LHeC (Europe) to consolidate our knowledge of QCD knowledge in the small x kinematic domains. Full article
(This article belongs to the Special Issue Advances in Nuclear Physics)
Show Figures

Figure 1

35 pages, 2694 KiB  
Article
Empirical Consequences of Emergent Mass
by Craig D. Roberts
Symmetry 2020, 12(9), 1468; https://doi.org/10.3390/sym12091468 - 7 Sep 2020
Cited by 75 | Viewed by 4627
Abstract
The Lagrangian that defines quantum chromodynamics (QCD), the strong interaction piece of the Standard Model, appears very simple. Nevertheless, it is responsible for an astonishing array of high-level phenomena with enormous apparent complexity, e.g., the existence, number and structure of atomic nuclei. The [...] Read more.
The Lagrangian that defines quantum chromodynamics (QCD), the strong interaction piece of the Standard Model, appears very simple. Nevertheless, it is responsible for an astonishing array of high-level phenomena with enormous apparent complexity, e.g., the existence, number and structure of atomic nuclei. The source of all these things can be traced to emergent mass, which might itself be QCD’s self-stabilising mechanism. A background to this perspective is provided, presenting, inter alia, a discussion of the gluon mass and QCD’s process-independent effective charge and highlighting an array of observable expressions of emergent mass, ranging from its manifestations in pion parton distributions to those in nucleon electromagnetic form factors. Full article
(This article belongs to the Special Issue Chiral Symmetry in Physics)
Show Figures

Figure 1

Back to TopTop