Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = submicron pore size

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8695 KB  
Article
Ordered Mesoporous Silica Prepared with Biodegradable Gemini Surfactants as Templates for Environmental Applications
by Sarvarjon Kurbonov, Martin Pisárčik, Miloš Lukáč, Zsolt Czigány, Zoltán Kovács, István Tolnai, Manfred Kriechbaum, Vasyl Ryukhtin, Viktor Petrenko, Mikhail V. Avdeev, Qiang Tian, Ana-Maria Lacrămă and László Almásy
Materials 2025, 18(4), 773; https://doi.org/10.3390/ma18040773 - 10 Feb 2025
Cited by 1 | Viewed by 1153
Abstract
Mesoporous silica sieves have been prepared through sol–gel synthesis using diester gemini surfactants as pore templates, aiming to obtain new materials with potential use for water remediation. A series of mesoporous spherical silica particles of submicron size have been prepared in an alkali-catalyzed [...] Read more.
Mesoporous silica sieves have been prepared through sol–gel synthesis using diester gemini surfactants as pore templates, aiming to obtain new materials with potential use for water remediation. A series of mesoporous spherical silica particles of submicron size have been prepared in an alkali-catalyzed reaction, using a tetraethyl orthosilicate precursor and bis-quaternary ammonium gemini surfactants with diester spacers of varied lengths as pore-forming agents. The effect of the spacer length on the particle morphology was studied using nitrogen porosimetry, small-angle X-ray scattering (SAXS), ultra-small-angle neutron scattering, scanning, and transmission electron microscopy (SEM, TEM). The results revealed that for all spacer lengths, a long-range hexagonal pore ordering developed in the materials. The silica particles were nearly spherical, with sizes below 1 micrometer, and a weak dependence of the mean particle size on the spacer length could be observed. The template removal procedure had a strong influence on the porosity: calcination caused a moderate shrinkage of the pores while retaining the hexagonal structure, whereas treatment with acidified ethanol resulted in only partial removal of the surfactants; however, the hexagonal structure was severely destroyed. The applicability of the obtained calcined materials as adsorbents for heavy metal ions from water was studied with the example of Pb(II). A high sorption capacity of 110 mg/g was obtained in batch experiments, at pH 5 and 4 h contact time. Full article
Show Figures

Figure 1

21 pages, 11571 KB  
Article
Characteristics of Micropore-Throat Structures in Tight Oil Reservoirs: A Case Study of the Jiufotang Formation in the Houhe Region, NE China
by Guolong Zhang and Chenglong Ma
Minerals 2024, 14(9), 918; https://doi.org/10.3390/min14090918 - 6 Sep 2024
Viewed by 1086
Abstract
In order to examine further the characteristics of micropore-throat structures of the tight oil reservoir in the Jiufotang Formation in the Houhe region, this study used whole rock X-ray diffraction, routine physical property analysis, and routine thin section observations to analyze the material [...] Read more.
In order to examine further the characteristics of micropore-throat structures of the tight oil reservoir in the Jiufotang Formation in the Houhe region, this study used whole rock X-ray diffraction, routine physical property analysis, and routine thin section observations to analyze the material composition and physical properties of the tight oil reservoir. CT scanning, high-pressure mercury infiltration, and other test methods were employed to analyze the characteristics of the pore-throat structures in the tight oil reservoir. In addition, the Pearson correlation coefficients quantified the relationships between nine parameters and pore-throat structures. The parameters with high correlations were optimized for analysis, and a comprehensive classification scheme for micropore-throat structures in the tight oil reservoir in the study area was established. The results show that the reservoir in the Jiufotang Formation in the Houhe region is composed of feldspathic and lithic arkosic sandstone, with feldspar and clast pore dissolution pores as the main type of reservoir pore space. The tight oil reservoir has small pore-throat radius, complex structures, poor connectivity, and high heterogeneity. It generally contains micron-sized pores with submicron to nanometer throat widths and small- and medium-sized pores to fine micropore-throat structures. Porosity, permeability, coefficient of variation, skewness coefficient, and average pore-throat radius, were selected for k-means cluster analysis. The micropore-throat structures of the tight oil reservoir were divided into three categories: classes I, II, and III. The study area is dominated by class II pore throats, accounting for 58%. Diagenesis mainly controls the pore-throat structure. These results provide an effective reference for the identification and evaluation of favorable sweet spots in tight oil reservoirs in similar blocks in China. Full article
(This article belongs to the Topic Petroleum Geology and Geochemistry of Sedimentary Basins)
Show Figures

Figure 1

17 pages, 6415 KB  
Article
Impact of Pore Structure on Seepage Capacity in Tight Reservoir Intervals in Shahejie Formation, Bohai Bay Basin
by Shaogong Zhu, Yudong Cao, Qiangtai Huang, Haotong Yu, Weiyan Chen, Yujie Zhong and Wenchao Chen
J. Mar. Sci. Eng. 2024, 12(9), 1496; https://doi.org/10.3390/jmse12091496 - 29 Aug 2024
Cited by 2 | Viewed by 1169
Abstract
The exploration and development of conventional oil and gas resources are becoming more difficult, and the proportion of low-permeability reservoirs in newly discovered reservoir resources has expanded to 45%. As the main focus of the oil industry, the global average recovery rate of [...] Read more.
The exploration and development of conventional oil and gas resources are becoming more difficult, and the proportion of low-permeability reservoirs in newly discovered reservoir resources has expanded to 45%. As the main focus of the oil industry, the global average recovery rate of low-permeability reservoir resources is only 20%, and most crude oil is still unavailable, so our understanding of such reservoirs needs to be deepened. The microscopic pore structure of low-permeability reservoir rocks exhibits significant complexity and variability; reservoir evaluation is more difficult. For elucidating the internal distribution of storage space and the mechanisms influencing seepage, we focus on the low-permeability sandstone reservoir of the Shahejie Formation, located on the northern slope of the Chenjiazhuang uplift, Bohai Bay. Employing a suite of advanced analytical techniques, including helium expansion, pressure pulse, high-pressure mercury intrusion (HPMI), and micro-computed tomography (micro-CT) scanning, we examined the main pore–throat size affecting reservoir storage and seepage in the reservoir at both the micrometer and nanometer scales. The results reveal that pores with diameters exceeding 40 μm are sparsely developed within the low-permeability reservoir rocks of the study area. However, pores ranging from 0 to 20 μm predominate, exhibiting an uneven distribution and a clustered structure in the three-dimensional pore structure model. The pore volume showed a unimodal and bimodal distribution, thus significantly contributing to the storage space. The main sizes of the reservoir in this study area are 40–80 μm and 200–400 μm. Micron-sized pores, while present, are not the primary determinants of the reservoir’s seepage capacity. Instead, coarser submicron and nano-pores exert a more substantial influence on the permeability of the rock. Additionally, the presence of micro-fractures is found to enhance the reservoir’s seepage capacity markedly. The critical pore–throat size range impacting the permeability of the reservoir in the study area is identified to be between 0.025 and 0.4 μm. Full article
Show Figures

Figure 1

18 pages, 7591 KB  
Article
3D Printing of High-Porosity Membranes with Submicron Pores for Microfluidics
by Julia K. Hoskins and Min Zou
Nanomanufacturing 2024, 4(3), 120-137; https://doi.org/10.3390/nanomanufacturing4030009 - 27 Jun 2024
Cited by 5 | Viewed by 2257
Abstract
In this study, we investigate the potential of two-photon lithography (2PL) as a solution to the challenges encountered in conventional membrane fabrication techniques, aiming to fabricate tailor-made membranes with high-resolution submicron pore structures suitable for advanced applications. This approach led to the development [...] Read more.
In this study, we investigate the potential of two-photon lithography (2PL) as a solution to the challenges encountered in conventional membrane fabrication techniques, aiming to fabricate tailor-made membranes with high-resolution submicron pore structures suitable for advanced applications. This approach led to the development of fabrication techniques and printed membranes that can be adapted to various lab-on-a-chip (LOC) devices. Membranes were fabricated with pore diameters as small as 0.57 µm and porosities of 4.5%, as well as with larger pores of approximately 3.73 µm in diameter and very high porosities that reached up to 60%. Direct 3D printing of membranes offers a pathway for fabricating structures tailored to specific applications in microfluidics, enabling more efficient separation processes at miniature scales. This research represents a significant step towards bridging the gap between membrane technology and microfluidics, promising enhanced capabilities for a wide array of applications in biotechnology, chemical analysis, and beyond. Full article
Show Figures

Figure 1

13 pages, 9232 KB  
Article
Impact of Lime Saturation Factor on Alite-Ye’Elimite Cement Synthesis and Hydration
by Xiaodong Li, Bing Ma, Wenqian Ji, Shang Dou, Hao Zhou, Houhu Zhang, Jiaqing Wang, Yueyang Hu and Xiaodong Shen
Materials 2024, 17(12), 3035; https://doi.org/10.3390/ma17123035 - 20 Jun 2024
Cited by 1 | Viewed by 4254
Abstract
Alite(C3S)-Ye’elimite(C4A3$) cement is a high cementitious material that incorporates a precise proportion of ye’elimite into the ordinary Portland cement. The synthesis and hydration behavior of Alite-Ye’elimite clinker with different lime saturation factors were investigated. The clinkers were [...] Read more.
Alite(C3S)-Ye’elimite(C4A3$) cement is a high cementitious material that incorporates a precise proportion of ye’elimite into the ordinary Portland cement. The synthesis and hydration behavior of Alite-Ye’elimite clinker with different lime saturation factors were investigated. The clinkers were synthesized using a secondary thermal treatment process, and their compositions were characterized. The hydrated pastes were analyzed for their hydration products, pore structure, mechanical strength, and microstructure. The clinkers and hydration products were characterized using XRD, TG-DSC, SEM, and MIP analysis. The results showed that the Alite-Ye’elimite cement clinker with a lime saturation factor (KH) of 0.93, prepared through secondary heat treatment, contained 64.88% C3S and 2.06% C4A3$. At this composition, the Alite-Ye’elimite cement clinker demonstrated the highest 28-day strength. The addition of SO3 to the clinkers decreased the content of tricalcium aluminate (C3A) and the ratio of Alite/Belite (C3S/C2S), resulting in a preference for belite formation. The pore structure of the hydrated pastes was also investigated, revealing a distribution of pore sizes ranging from 0.01 to 10 μm, with two peaks on each differential distribution curve corresponding to micron and sub-micron pores. The pore volume decreased from 0.22 ± 0.03 to 0.15 ± 0.18 cm3 g−1, and the main peak of pore distribution shifted towards smaller sizes with increasing hydration time. Full article
Show Figures

Figure 1

24 pages, 66960 KB  
Article
Morphostructural, Chemical and Genetic Features of Native Gold in Brown Coals from the Yerkovetsky Deposit, Far East Russia
by Veronika I. Rozhdestvina and Galina A. Palyanova
Minerals 2024, 14(5), 503; https://doi.org/10.3390/min14050503 - 10 May 2024
Viewed by 1612
Abstract
We studied the morphostructural features and chemical composition of micron and submicron particles of native gold from brown coals and overcoal sediments of the Yerkovetsky deposit (Zeya-Bureya sedimentary basin, Far East Russia). The samples of coal and host rocks in the form of [...] Read more.
We studied the morphostructural features and chemical composition of micron and submicron particles of native gold from brown coals and overcoal sediments of the Yerkovetsky deposit (Zeya-Bureya sedimentary basin, Far East Russia). The samples of coal and host rocks in the form of thin sections, as well as coal particles and grains of native gold obtained during the process of dispersion and the fractionation of loose and crushed samples divided according to size and density, were analyzed using scanning electron microscopy in combination with X-ray microanalysis, involving various visualization modes. It was revealed that native gold is syngenetic with the mineralization of brown coals, and microphases dispersed in the minerals of overcoal loose and sandy-clay sediments were the source of native gold. In coal, gold is accumulated at the stages of formation (alluvial and eolian, including terrigenous and ionogenic subtypes) and the diagenesis of coal deposits (ground-infiltration subtype). A significant part of the mineralization process of coals and the formation of microparticles of native gold was contributed to by the descending water infiltration of polycomponent colloid solutions. During the dehydration of hydroxysiliconized iron-based hydrogels, mineral phases have an unstable composition and floccular structure and contain submicron gold particles. The coatings of all gold microparticles have identical origin and composition. Coal beds that border host rocks are an open system with a constant inflow of the substance, which leads to the gradual formation of polycomponent aggregated particles in micro cavities. Part of the gold in coals occurs as sulfur-bearing complexes dissolved in pore water. The key factor in the migration and deposition of gold in coals is the inorganic substances involved in the processes of coal mineralization. Organic substances play a more passive role and have medium-forming, fractionating (colloid, molecular, and ionic sieves), and accumulation functions. Full article
Show Figures

Figure 1

25 pages, 12537 KB  
Review
Porous Hydrogels for Immunomodulatory Applications
by Cuifang Wu, Honghong Zhang, Yangyang Guo, Xiaomin Sun, Zuquan Hu, Lijing Teng and Zhu Zeng
Int. J. Mol. Sci. 2024, 25(10), 5152; https://doi.org/10.3390/ijms25105152 - 9 May 2024
Cited by 8 | Viewed by 2768
Abstract
Cancer immunotherapy relies on the insight that the immune system can be used to defend against malignant cells. The aim of cancer immunotherapy is to utilize, modulate, activate, and train the immune system to amplify antitumor T-cell immunity. In parallel, the immune system [...] Read more.
Cancer immunotherapy relies on the insight that the immune system can be used to defend against malignant cells. The aim of cancer immunotherapy is to utilize, modulate, activate, and train the immune system to amplify antitumor T-cell immunity. In parallel, the immune system response to damaged tissue is also crucial in determining the success or failure of an implant. Due to their extracellular matrix mimetics and tunable chemical or physical performance, hydrogels are promising platforms for building immunomodulatory microenvironments for realizing cancer therapy and tissue regeneration. However, submicron or nanosized pore structures within hydrogels are not favorable for modulating immune cell function, such as cell invasion, migration, and immunophenotype. In contrast, hydrogels with a porous structure not only allow for nutrient transportation and metabolite discharge but also offer more space for realizing cell function. In this review, the design strategies and influencing factors of porous hydrogels for cancer therapy and tissue regeneration are first discussed. Second, the immunomodulatory effects and therapeutic outcomes of different porous hydrogels for cancer immunotherapy and tissue regeneration are highlighted. Beyond that, this review highlights the effects of pore size on immune function and potential signal transduction. Finally, the remaining challenges and perspectives of immunomodulatory porous hydrogels are discussed. Full article
(This article belongs to the Special Issue Functional Polymeric Materials: From Synthesis to Applications)
Show Figures

Figure 1

15 pages, 9865 KB  
Article
Reconstruction of Segmental Bone Defect in Canine Tibia Model Utilizing Bi-Phasic Scaffold: Pilot Study
by Dae-Won Haam, Chun-Sik Bae, Jong-Min Kim, Sung-Yun Hann, Chang-Min Richard Yim, Hong-Seok Moon and Daniel S. Oh
Int. J. Mol. Sci. 2024, 25(9), 4604; https://doi.org/10.3390/ijms25094604 - 23 Apr 2024
Cited by 1 | Viewed by 2284
Abstract
The reunion and restoration of large segmental bone defects pose significant clinical challenges. Conventional strategies primarily involve the combination of bone scaffolds with seeded cells and/or growth factors to regulate osteogenesis and angiogenesis. However, these therapies face inherent issues related to immunogenicity, tumorigenesis, [...] Read more.
The reunion and restoration of large segmental bone defects pose significant clinical challenges. Conventional strategies primarily involve the combination of bone scaffolds with seeded cells and/or growth factors to regulate osteogenesis and angiogenesis. However, these therapies face inherent issues related to immunogenicity, tumorigenesis, bioactivity, and off-the-shelf transplantation. The biogenic micro-environment created by implanted bone grafts plays a crucial role in initiating the bone regeneration cascade. To address this, a highly porous bi-phasic ceramic synthetic bone graft, composed of hydroxyapatite (HA) and alumina (Al), was developed. This graft was employed to repair critical segmental defects, involving the creation of a 2 cm segmental defect in a canine tibia. The assessment of bone regeneration within the synthetic bone graft post-healing was conducted using scintigraphy, micro-CT, histology, and dynamic histomorphometry. The technique yielded pore sizes in the range of 230–430 μm as primary pores, 40–70 μm as secondary inner microchannels, and 200–400 nm as tertiary submicron surface holes. These three components are designed to mimic trabecular bone networks and to provide body fluid adsorption, diffusion, a nutritional supply, communication around the cells, and cell anchorage. The overall porosity was measured at 82.61 ± 1.28%. Both micro-CT imaging and histological analysis provided substantial evidence of robust bone formation and the successful reunion of the critical defect. Furthermore, an histology revealed the presence of vascularization within the newly formed bone area, clearly demonstrating trabecular and cortical bone formation at the 8-week mark post-implantation. Full article
(This article belongs to the Special Issue Recent Development in Scaffolds for Tissue Engineering)
Show Figures

Figure 1

10 pages, 4895 KB  
Article
Design and Preparation of Bending-Resistant Flexible All-Solid Dye-Sensitized Solar Cells
by Yan Li, Yu-Xuan Hou, Wei-Wu Dang, Li Liu, Jian-Hua Chen and Xian Gu
Coatings 2024, 14(4), 504; https://doi.org/10.3390/coatings14040504 - 18 Apr 2024
Viewed by 1808
Abstract
All-solid-state flexible dye-sensitized solar cells will not only expand the application scenarios of solar cells but also significantly extend the lifetime of solar cells. However, improving their bending-resistant ability is still a great challenge. In this study, a bending-resistant flexible all-solid dye-sensitized solar [...] Read more.
All-solid-state flexible dye-sensitized solar cells will not only expand the application scenarios of solar cells but also significantly extend the lifetime of solar cells. However, improving their bending-resistant ability is still a great challenge. In this study, a bending-resistant flexible all-solid dye-sensitized solar cell was designed and prepared. Firstly, for the preparation of TiO2 photoanode, the traditional nano-sized film has been replaced by dual-porous film with both nano and submicron pores, which can not only benefit the filling of the electrolyte but also supply the space for stress release. Secondly, for the filling of the Poly(vinylidene fluoride)/Poly(ethylene oxide)-based electrolyte, the solvent is removed by a vacuum method, and the electrolyte fibers forming in the submicron pores also show the potential for stress release. Lastly, combined with the advantages of the dual-porous TiO2 film and the fast evaporation of the polymer electrolyte, the conversion efficiency of the solar cells remains constant after the 20,000 bending times. The study supplies a demonstration for the development of all-solid-state flexible dye-sensitized solar cells. Full article
(This article belongs to the Special Issue Advanced Polymer and Thin Film for Sustainable Energy Harvesting)
Show Figures

Figure 1

19 pages, 6483 KB  
Article
Comparing the Aging Processes of PLA and PE: The Impact of UV Irradiation and Water
by Xucheng Wang, Jinxin Chen, Wenhao Jia, Kaibo Huang and Yini Ma
Processes 2024, 12(4), 635; https://doi.org/10.3390/pr12040635 - 22 Mar 2024
Cited by 16 | Viewed by 6004
Abstract
The aging processes of microplastics (MPs) are prevalent in natural environments. Understanding the aging mechanisms of MPs is crucial for assessing their environmental behavior and potential risks. In this study, we selected polylactic acid (PLA) and polyethylene (PE) as representatives of biodegradable and [...] Read more.
The aging processes of microplastics (MPs) are prevalent in natural environments. Understanding the aging mechanisms of MPs is crucial for assessing their environmental behavior and potential risks. In this study, we selected polylactic acid (PLA) and polyethylene (PE) as representatives of biodegradable and conventional plastics, respectively, to examine changes in their physicochemical properties induced by water and UV light exposure. Laboratory aging resulted in significant fragmentation, characterized by cracks and pores on the surfaces, for both types of MPs, with PLA MPs exhibiting more severe changes, particularly under combined UV and water exposure. Notably, PLA MPs tended to become progressively smaller after aging, whereas PE MPs did not show significant size changes. Chemical analyses of aged MPs using micro-Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) revealed a substantial increase in the carbonyl index (CI) and oxygen content for PE, suggesting surface oxidation during photo-oxidation. Conversely, PLA MPs displayed a CI decrease, along with an oxygen content increase, indicating the breakdown of ester linkages in PLA and the formation of other oxidation products. Furthermore, we developed and optimized pyrolysis–gas chromatography–mass spectrometry (Py–GC–MS) methods to identify potential chemical degradation products of PE and PLA, considering their differing thermal stabilities. We observed a distinct trend regarding the peaks in the chromatogram of aged MPs and identified the typical oxidation and crosslinking products for PLA. Additionally, after the aging process, both PE and PLA exhibited a significant increase in organic carbon content, with the eluate containing submicron/nano-sized particles. This study provides a scientific foundation for a deeper understanding of the environmental aging mechanisms of various MPs, particularly in regards to the effects of UV irradiation and water exposure. Full article
(This article belongs to the Special Issue Advances in Remediation of Contaminated Sites: 2nd Edition)
Show Figures

Figure 1

15 pages, 10854 KB  
Article
Micro and Macro Flooding Mechanism and Law of a Gel Particle System in Strong Heterogeneous Reservoirs
by Rongjun Ye, Lei Wang, Wenjun Xu, Jianpeng Zhang and Zhengbang Chen
Gels 2024, 10(2), 151; https://doi.org/10.3390/gels10020151 - 19 Feb 2024
Cited by 1 | Viewed by 1993
Abstract
To address the issue of ineffective injection resulting from the consistent channeling of injected water through highly permeable channels in ultra-deep, high-temperature, high-salinity, and strongly heterogeneous reservoirs during the production process, a gel particle profile control agent suitable for high-temperature and high-salinity conditions [...] Read more.
To address the issue of ineffective injection resulting from the consistent channeling of injected water through highly permeable channels in ultra-deep, high-temperature, high-salinity, and strongly heterogeneous reservoirs during the production process, a gel particle profile control agent suitable for high-temperature and high-salinity conditions was chosen. With the help of the glass etching visual microscopic model and the heterogeneous long core model, the formation mechanism of a water flooding channeling path and the distribution law of the remaining oil were explored, the microscopic profile control mechanism of the different parameters was clarified, and the profile control effect of macroscopic core displacement was analyzed. The research shows that the formation mechanism of a water flooding channeling path is dominated by the distribution law of the permeability section and the connection mode between different penetration zones. The remaining oil types after water flooding are mainly contiguous block, parallel throats, and multi-branch clusters. The profile control effect of gel particles on reservoir vertical heterogeneity is better than that of reservoir lateral heterogeneity. It was found that 10 wt% submicron particles with a median diameter of 600 nm play a good role in profiling and plugging pores of 5–20 μm. In addition, 10 wt% micron-sized particles with a median diameter of 2.63 μm mainly play a strong plugging role in the pores of 20–30 μm, and 5 wt% micron-sized particles with a median diameter of 2.63 μm mainly form a weak plugging effect on the pores of 10–20 μm. The overall profile control effect of 10 wt% submicro particles is the best, and changes in concentration parameters have a more significant effect on the profile control effect. In the macroscopic core profile control, enhanced oil recovery (EOR) can reach 16%, and the gel particles show plugging, deformation migration, and re-plugging. The research results provide theoretical guidance for tapping the potential of the remaining oil in strong heterogeneous reservoirs. To date, the gel particles have been applied in the Tahe oilfield and have produced an obvious profile control effect; the oil production has risen to the highest value of 26.4 t/d, and the comprehensive water content has fallen to the lowest percentage of 32.1%. Full article
(This article belongs to the Special Issue Gels for Oil and Gas Industry Applications (2nd Edition))
Show Figures

Figure 1

16 pages, 4539 KB  
Article
Microfluidically Assisted Synthesis of Calcium Carbonate Submicron Particles with Improved Loading Properties
by Alexey V. Ermakov, Sergei V. Chapek, Ekaterina V. Lengert, Petr V. Konarev, Vladimir V. Volkov, Vladimir V. Artemov, Mikhail A. Soldatov and Daria B. Trushina
Micromachines 2024, 15(1), 16; https://doi.org/10.3390/mi15010016 - 21 Dec 2023
Cited by 8 | Viewed by 2520
Abstract
The development of advanced methods for the synthesis of nano- and microparticles in the field of biomedicine is of high interest due to a range of reasons. The current synthesis methods may have limitations in terms of efficiency, scalability, and uniformity of the [...] Read more.
The development of advanced methods for the synthesis of nano- and microparticles in the field of biomedicine is of high interest due to a range of reasons. The current synthesis methods may have limitations in terms of efficiency, scalability, and uniformity of the particles. Here, we investigate the synthesis of submicron calcium carbonate using a microfluidic chip with a T-shaped oil supply for droplet-based synthesis to facilitate control over the formation of submicron calcium carbonate particles. The design of the chip allowed for the precise manipulation of reaction parameters, resulting in improved porosity while maintaining an efficient synthesis rate. The pore size distribution within calcium carbonate particles was estimated via small-angle X-ray scattering. This study showed that the high porosity and reduced size of the particles facilitated the higher loading of a model peptide: 16 vs. 9 mass.% for the particles synthesized in a microfluidic device and in bulk, correspondingly. The biosafety of the developed particles in the concentration range of 0.08–0.8 mg per plate was established by the results of the cytotoxicity study using mouse fibroblasts. This innovative approach of microfluidically assisted synthesis provides a promising avenue for future research in the field of particle synthesis and drug delivery systems. Full article
(This article belongs to the Special Issue Droplet Microfluidics: Fundamentals and Its Advanced Applications)
Show Figures

Figure 1

19 pages, 5124 KB  
Article
Automated Liquid–Liquid Displacement Porometry (LLDP) for the Non-Destructive Characterization of Ultrapure Water Purification Filtration Devices
by René I. Peinador, Daniel Darbouret, Christophe Paragot and José I. Calvo
Membranes 2023, 13(7), 660; https://doi.org/10.3390/membranes13070660 - 11 Jul 2023
Cited by 5 | Viewed by 2559
Abstract
This scientific publication presents a novel modification of the liquid–liquid displacement porosimetry (LLDP) method, aiming for the non-destructive automated analysis of water purification membrane filtration devices in the microfiltration (MF) and ultrafiltration (UF) range. The technical adaptation of LLDP enables the direct in-line [...] Read more.
This scientific publication presents a novel modification of the liquid–liquid displacement porosimetry (LLDP) method, aiming for the non-destructive automated analysis of water purification membrane filtration devices in the microfiltration (MF) and ultrafiltration (UF) range. The technical adaptation of LLDP enables the direct in-line porosimetric analysis of commercial filtration devices, avoiding the filtration devices’ destruction. Six commercially available filtration devices with polyethersulfone (PES) and polysulfone (PS) membranes were studied using an improved device developed by the IFTS, which was based on a commercial LLDP instrument. The filtration devices were evaluated in three different configurations: flat disks, hollow fibers, and pleated membranes. The results obtained using the proposed method were compared with other characterization techniques, including submicronic efficiency retention, image analysis of scanning electron microscopy (SEM), and gas–liquid displacement porosimetry (GLDP). The comparison of the results demonstrated that the proposed method accurately determined the porosimetric characteristics of the filters. It proved to be a precise technique for the non-destructive in-line evaluation of filter performance, as well as for periodic quality control and the fouling degree assessment of commercial filtration devices. This modified LLDP approach offers significant potential for the advanced characterization and quality assessment of water purification membrane filtration devices, contributing to improved understanding and optimization of their performance. Full article
Show Figures

Figure 1

15 pages, 3231 KB  
Article
A Submicron-Scale Plugging Agent for Oil-Based Drilling Fluid Synthesized Using the Inverse Emulsion Polymerization Method
by Zhiquan Zhang, Baimei Dai and Peng Xu
Polymers 2023, 15(13), 2815; https://doi.org/10.3390/polym15132815 - 26 Jun 2023
Cited by 12 | Viewed by 2400
Abstract
Due to the increasing difficulty of drilling in the later stages of oil and gas field development, the development of micro-pores and micro-fractures is becoming common. Conventional plugging agents have relatively large particle sizes. So, choosing the appropriate plugging agent can prevent leakages. [...] Read more.
Due to the increasing difficulty of drilling in the later stages of oil and gas field development, the development of micro-pores and micro-fractures is becoming common. Conventional plugging agents have relatively large particle sizes. So, choosing the appropriate plugging agent can prevent leakages. Using the inverse emulsion polymerization method, acrylamide, 2-acrylamide-2-methylpropane sulfonic acid and acrylic acid were selected to be the main reaction monomers, N,N′-methylenebisacrylamide was used as a crosslinking agent, sorbitan monostearate and polyoxyethylene sorbitan anhydride monostearate were used as emulsifiers, and 2,2′-azobis(2-methylpropionamidine) dihydrochloride was used as the initiator to synthesize a nano-scale plugging agent for oil-based drilling fluid. The plugging agent was characterized using infrared spectroscopy, scanning electron microscopy, and thermogravimetry analysis. The results showed that the plugging agent is spherical and uniform in size, with particles being in the submicron range. Additionally, it exhibited strong temperature resistance. Finally, the performance of the plugging agent was evaluated via experiments conducted under normal temperature and pressure, high-temperature and high-pressure, and core-plugging conditions. After adding the plugging agent to the oil-based drilling fluid, the basic rheological properties of the oil-based drilling fluid were not significantly affected. Furthermore, the filtration loss was significantly reduced under normal temperature and pressure, as well as under high-temperature and high-pressure conditions, after aging. When the plugging agent with 3% concentration was added, the reduction rate of pore core permeability reached 96.04%. Therefore, the plugging agent for the oil-based drilling fluid can effectively improve the wellbore stability and has a promising potential for field applications. Full article
Show Figures

Figure 1

13 pages, 4258 KB  
Article
Large-Scale Synthesis of Hierarchical Porous MOF Particles via a Gelation Process for High Areal Capacitance Supercapacitors
by Yujie Sun, Fei Shi, Bo Wang, Naien Shi, Zhen Ding, Linghai Xie, Jiadong Jiang and Min Han
Nanomaterials 2023, 13(10), 1691; https://doi.org/10.3390/nano13101691 - 21 May 2023
Cited by 1 | Viewed by 2492
Abstract
Metal–organic frameworks (MOFs) with hierarchical porous structures have been attracting intense interest currently due to their promising applications in catalysis, energy storage, drug delivery, and photocatalysis. Current fabrication methods usually employ template-assisted synthesis or thermal annealing at high temperatures. However, large-scale production of [...] Read more.
Metal–organic frameworks (MOFs) with hierarchical porous structures have been attracting intense interest currently due to their promising applications in catalysis, energy storage, drug delivery, and photocatalysis. Current fabrication methods usually employ template-assisted synthesis or thermal annealing at high temperatures. However, large-scale production of hierarchical porous metal–organic framework (MOF) particles with a simple procedure and mild condition is still a challenge, which hampers their application. To address this issue, we proposed a gelation-based production method and achieved hierarchical porous zeolitic imidazolate framework-67 (called HP-ZIF67-G thereafter) particles conveniently. This method is based on a metal–organic gelation process through a mechanically stimulated wet chemical reaction of metal ions and ligands. The interior of the gel system is composed of small nano and submicron ZIF-67 particles as well as the employed solvent. The relatively large pore size of the graded pore channels spontaneously formed during the growth process is conducive to the increased transfer rate of substances within the particles. It is proposed that the Brownian motion amplitude of the solute is greatly reduced in the gel state, which leads to porous defects inside the nanoparticles. Furthermore, HP-ZIF67-G nanoparticles interwoven with polyaniline (PANI) exhibited an exceptional electrochemical charge storage performance with an areal capacitance of 2500 mF cm−2, surpassing those of many MOF materials. This stimulates new studies on MOF-based gel systems to obtain hierarchical porous metal–organic frameworks which should benefit further applications in a wide spectrum of fields ranging from fundamental research to industrial applications. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Figure 1

Back to TopTop