ijms-logo

Journal Browser

Journal Browser

Recent Development in Scaffolds for Tissue Engineering

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Materials Science".

Deadline for manuscript submissions: 31 August 2024 | Viewed by 1310

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Experimental Medicine of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
Interests: scaffolds for tissue engineering

Special Issue Information

Dear Colleagues,

This Special Issue called “Recent Development in Scaffolds for Tissue Engineering” includes experimental research articles, commentaries, and review articles focused on the scaffolds, which, through specific bioactive molecules or drugs, stimulate cells to regenerate the tissue. Scaffolds are able to stimulate cells under specific culture conditions, using different mechanostimulations or electric/magnetic stimulation and bioreactors, as well as through the development of 3D in vitro tissue models that perform cell differentiation and specific protein synthesis within scaffold models. The scaffolds cover synthetic scaffolds or naturally derived scaffolds for both soft and hard tissues. In vivo experiments involving the developed scaffolds and studying the healing, inflammation, or immune reactions are welcome.

Dr. Eva Filova
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • hard tissues
  • soft tissues
  • scaffolds
  • mechanostimulation
  • electric stimulation
  • magnetic stimulation
  • bioactive molecules
  • drug delivery
  • in vitro model
  • inflammation

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 9865 KiB  
Article
Reconstruction of Segmental Bone Defect in Canine Tibia Model Utilizing Bi-Phasic Scaffold: Pilot Study
by Dae-Won Haam, Chun-Sik Bae, Jong-Min Kim, Sung-Yun Hann, Chang-Min Richard Yim, Hong-Seok Moon and Daniel S. Oh
Int. J. Mol. Sci. 2024, 25(9), 4604; https://doi.org/10.3390/ijms25094604 - 23 Apr 2024
Viewed by 299
Abstract
The reunion and restoration of large segmental bone defects pose significant clinical challenges. Conventional strategies primarily involve the combination of bone scaffolds with seeded cells and/or growth factors to regulate osteogenesis and angiogenesis. However, these therapies face inherent issues related to immunogenicity, tumorigenesis, [...] Read more.
The reunion and restoration of large segmental bone defects pose significant clinical challenges. Conventional strategies primarily involve the combination of bone scaffolds with seeded cells and/or growth factors to regulate osteogenesis and angiogenesis. However, these therapies face inherent issues related to immunogenicity, tumorigenesis, bioactivity, and off-the-shelf transplantation. The biogenic micro-environment created by implanted bone grafts plays a crucial role in initiating the bone regeneration cascade. To address this, a highly porous bi-phasic ceramic synthetic bone graft, composed of hydroxyapatite (HA) and alumina (Al), was developed. This graft was employed to repair critical segmental defects, involving the creation of a 2 cm segmental defect in a canine tibia. The assessment of bone regeneration within the synthetic bone graft post-healing was conducted using scintigraphy, micro-CT, histology, and dynamic histomorphometry. The technique yielded pore sizes in the range of 230–430 μm as primary pores, 40–70 μm as secondary inner microchannels, and 200–400 nm as tertiary submicron surface holes. These three components are designed to mimic trabecular bone networks and to provide body fluid adsorption, diffusion, a nutritional supply, communication around the cells, and cell anchorage. The overall porosity was measured at 82.61 ± 1.28%. Both micro-CT imaging and histological analysis provided substantial evidence of robust bone formation and the successful reunion of the critical defect. Furthermore, an histology revealed the presence of vascularization within the newly formed bone area, clearly demonstrating trabecular and cortical bone formation at the 8-week mark post-implantation. Full article
(This article belongs to the Special Issue Recent Development in Scaffolds for Tissue Engineering)
Show Figures

Figure 1

17 pages, 4400 KiB  
Article
Functionalization of Ceramic Scaffolds with Exosomes from Bone Marrow Mesenchymal Stromal Cells for Bone Tissue Engineering
by Ekaterina Maevskaia, Julien Guerrero, Chafik Ghayor, Indranil Bhattacharya and Franz E. Weber
Int. J. Mol. Sci. 2024, 25(7), 3826; https://doi.org/10.3390/ijms25073826 - 29 Mar 2024
Viewed by 657
Abstract
The functionalization of bone substitutes with exosomes appears to be a promising technique to enhance bone tissue formation. This study investigates the potential of exosomes derived from bone marrow mesenchymal stromal cells (BMSCs) to improve bone healing and bone augmentation when incorporated into [...] Read more.
The functionalization of bone substitutes with exosomes appears to be a promising technique to enhance bone tissue formation. This study investigates the potential of exosomes derived from bone marrow mesenchymal stromal cells (BMSCs) to improve bone healing and bone augmentation when incorporated into wide open-porous 3D-printed ceramic Gyroid scaffolds. We demonstrated the multipotent characteristics of BMSCs and characterized the extracted exosomes using nanoparticle tracking analysis and proteomic profiling. Through cell culture experimentation, we demonstrated that BMSC-derived exosomes possess the ability to attract cells and significantly facilitate their differentiation into the osteogenic lineage. Furthermore, we observed that scaffold architecture influences exosome release kinetics, with Gyroid scaffolds exhibiting slower release rates compared to Lattice scaffolds. Nevertheless, in vivo implantation did not show increased bone ingrowth in scaffolds loaded with exosomes, suggesting that the scaffold microarchitecture and material were already optimized for osteoconduction and bone augmentation. These findings highlight the lack of understanding about the optimal delivery of exosomes for osteoconduction and bone augmentation by advanced ceramic scaffolds. Full article
(This article belongs to the Special Issue Recent Development in Scaffolds for Tissue Engineering)
Show Figures

Figure 1

Back to TopTop