Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = sulfadimidine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5848 KB  
Article
Molecularly Imprinted Electrochemical Sensor Based on MWCNTs/GQDs for the Detection of Sulfamethazine in Aquaculture Seawater
by Jianlei Chen, Tianruo Zhang, Yong Xu, Hao Li, Hongwu Cui, Xinguo Zhao, Yun Zhou, Keming Qu and Zhengguo Cui
Biosensors 2025, 15(3), 184; https://doi.org/10.3390/bios15030184 - 13 Mar 2025
Cited by 2 | Viewed by 1146
Abstract
In this work, a novel molecularly imprinted electrochemical sensor was proposed based on molecular imprinting technology for the detection of sulfamethazine. A glassy carbon electrode was modified with a composite material of carbon nanotubes and graphene quantum dots to effectively improve sensitivity. The [...] Read more.
In this work, a novel molecularly imprinted electrochemical sensor was proposed based on molecular imprinting technology for the detection of sulfamethazine. A glassy carbon electrode was modified with a composite material of carbon nanotubes and graphene quantum dots to effectively improve sensitivity. The molecularly imprinted electrochemical sensor was then prepared by electropolymerization using sulfamethazine as the template and o-phenylenediamine as the functional monomer on the modified electrode. Under optimal measurement conditions, electrochemical tests of different sulfamethazine concentrations (0.5 μM–200 μM) showed excellent linearity and a detection limit of 0.068 μM. In addition, the sensor demonstrated satisfactory selectivity, stability, and reusability. Furthermore, the sensor was applied to the spiked analysis of sulfamethazine in grouper aquaculture water, achieving recovery rates between 95.4% and 104.8%, with a relative standard deviation (RSD) of less than 4.14%. These results indicated that the developed method was effective for the analysis of sulfamethazine in aquaculture seawater, providing a new approach for the detection of antibiotic residues in seawater samples. Full article
(This article belongs to the Special Issue Application of Biosensors in Environmental Monitoring)
Show Figures

Figure 1

15 pages, 3393 KB  
Article
Continuous Manufacturing of Cocrystals Using 3D-Printed Microfluidic Chips Coupled with Spray Coating
by Aytug Kara, Dinesh Kumar, Anne Marie Healy, Aikaterini Lalatsa and Dolores R. Serrano
Pharmaceuticals 2023, 16(8), 1064; https://doi.org/10.3390/ph16081064 - 27 Jul 2023
Cited by 8 | Viewed by 2440
Abstract
Using cocrystals has emerged as a promising strategy to improve the physicochemical properties of active pharmaceutical ingredients (APIs) by forming a new crystalline phase from two or more components. Particle size and morphology control are key quality attributes for cocrystal medicinal products. The [...] Read more.
Using cocrystals has emerged as a promising strategy to improve the physicochemical properties of active pharmaceutical ingredients (APIs) by forming a new crystalline phase from two or more components. Particle size and morphology control are key quality attributes for cocrystal medicinal products. The needle-shaped morphology is often considered high-risk and complex in the manufacture of solid dosage forms. Cocrystal particle engineering requires advanced methodologies to ensure high-purity cocrystals with improved solubility and bioavailability and with optimal crystal habit for industrial manufacturing. In this study, 3D-printed microfluidic chips were used to control the cocrystal habit and polymorphism of the sulfadimidine (SDM): 4-aminosalicylic acid (4ASA) cocrystal. The addition of PVP in the aqueous phase during mixing resulted in a high-purity cocrystal (with no traces of the individual components), while it also inhibited the growth of needle-shaped crystals. When mixtures were prepared at the macroscale, PVP was not able to control the crystal habit and impurities of individual mixture components remained, indicating that the microfluidic device allowed for a more homogenous and rapid mixing process controlled by the flow rate and the high surface-to-volume ratios of the microchannels. Continuous manufacturing of SDM:4ASA cocrystals coated on beads was successfully implemented when the microfluidic chip was connected in line to a fluidized bed, allowing cocrystal formulation generation by mixing, coating, and drying in a single step. Full article
(This article belongs to the Special Issue Microfluidic Formulation for Biomedical Applications)
Show Figures

Graphical abstract

11 pages, 4359 KB  
Article
Trend of Antimicrobial Use in Food-Producing Animals from 2018 to 2020 in Nepal
by Nabin Upadhyaya, Surendra Karki, Sujan Rana, Ibrahim Elsohaby, Ramanandan Tiwari, Manoj Oli and Surya Paudel
Animals 2023, 13(8), 1377; https://doi.org/10.3390/ani13081377 - 17 Apr 2023
Cited by 6 | Viewed by 4274
Abstract
Antimicrobial resistance is a global public health problem and is primarily driven by the widespread overuse of antibiotics. However, antimicrobial use data in animals are not readily available due to the absence of a national database in many developing countries, including Nepal. This [...] Read more.
Antimicrobial resistance is a global public health problem and is primarily driven by the widespread overuse of antibiotics. However, antimicrobial use data in animals are not readily available due to the absence of a national database in many developing countries, including Nepal. This study was conducted to estimate the quantities of antimicrobials available in Nepal as an indicator of their use in food-producing animals between 2018 and 2020. Data were collected through surveys targeting major stakeholders: (i) the Department of Drug Administration (DDA), the Government of Nepal (GoN) for the authorized antimicrobials for veterinary use in Nepal, (ii) veterinary pharmaceuticals for antimicrobials produced in Nepal, (iii) the DDA and Veterinary Importers Association for antimicrobials bought by veterinary drug importers, and (iv) the Department of Customs, GoN, for antibiotics sourced through customs. Data showed that in the 3 years, a total of 96 trade names, comprising 35 genera of antibiotics representing 10 classes, were either produced or imported in Nepal. In total, 91,088 kg, 47,694 kg, and 45,671 kg of active ingredients of antimicrobials were available in 2018, 2019, and 2020, respectively. None of the antibiotics were intended for growth promotion, but were primarily for therapeutic purposes. Oxytetracycline, tilmicosin, and sulfadimidine were among the most-used antibiotics in Nepal in 2020. Oxytetracycline was primarily intended for parenteral application, whereas tilmicosin was solely for oral use. Sulfadimidine was available for oral use, except for a small proportion for injection purposes. Aminoglycosides, fluroquinolones, nitrofurans, sulfonamides, and tetracyclines were mostly produced locally, whereas cephalosporins, macrolides and “other” classes of antimicrobials were imported. Amphenicols and penicillins were exclusively imported and nitrofurans were produced locally only. In general, except for tetracyclines, the volume of antimicrobials produced locally and/or imported in 2020 was lower than that in 2018, which corresponded to a decreasing trend in total antimicrobials available. Furthermore, the subsequent years have seen a decrease in the use of critically important antibiotics, particularly class I antibiotics. Finally, this study has firstly established a benchmark for future monitoring of antimicrobial usage in food-producing animals in Nepal. These data are useful for risk analysis, planning, interpreting resistance surveillance data, and evaluating the effectiveness of prudent use, efforts, and mitigation strategies. Full article
Show Figures

Figure 1

15 pages, 3546 KB  
Article
Constructing an Intelligent Model Based on Support Vector Regression to Simulate the Solubility of Drugs in Polymeric Media
by Sait Senceroglu, Mohamed Arselene Ayari, Tahereh Rezaei, Fardad Faress, Amith Khandakar, Muhammad E. H. Chowdhury and Zanko Hassan Jawhar
Pharmaceuticals 2022, 15(11), 1405; https://doi.org/10.3390/ph15111405 - 14 Nov 2022
Cited by 8 | Viewed by 2323
Abstract
This study constructs a machine learning method to simultaneously analyze the thermodynamic behavior of many polymer–drug systems. The solubility temperature of Acetaminophen, Celecoxib, Chloramphenicol, D-Mannitol, Felodipine, Ibuprofen, Ibuprofen Sodium, Indomethacin, Itraconazole, Naproxen, Nifedipine, Paracetamol, Sulfadiazine, Sulfadimidine, Sulfamerazine, and Sulfathiazole in 1,3-bis[2-pyrrolidone-1-yl] butane, Polyvinyl [...] Read more.
This study constructs a machine learning method to simultaneously analyze the thermodynamic behavior of many polymer–drug systems. The solubility temperature of Acetaminophen, Celecoxib, Chloramphenicol, D-Mannitol, Felodipine, Ibuprofen, Ibuprofen Sodium, Indomethacin, Itraconazole, Naproxen, Nifedipine, Paracetamol, Sulfadiazine, Sulfadimidine, Sulfamerazine, and Sulfathiazole in 1,3-bis[2-pyrrolidone-1-yl] butane, Polyvinyl Acetate, Polyvinylpyrrolidone (PVP), PVP K12, PVP K15, PVP K17, PVP K25, PVP/VA, PVP/VA 335, PVP/VA 535, PVP/VA 635, PVP/VA 735, Soluplus analyzes from a modeling perspective. The least-squares support vector regression (LS-SVR) designs to approximate the solubility temperature of drugs in polymers from polymer and drug types and drug loading in polymers. The structure of this machine learning model is well-tuned by conducting trial and error on the kernel type (i.e., Gaussian, polynomial, and linear) and methods used for adjusting the LS-SVR coefficients (i.e., leave-one-out and 10-fold cross-validation scenarios). Results of the sensitivity analysis showed that the Gaussian kernel and 10-fold cross-validation is the best candidate for developing an LS-SVR for the given task. The built model yielded results consistent with 278 experimental samples reported in the literature. Indeed, the mean absolute relative deviation percent of 8.35 and 7.25 is achieved in the training and testing stages, respectively. The performance on the largest available dataset confirms its applicability. Such a reliable tool is essential for monitoring polymer–drug systems’ stability and deliverability, especially for poorly soluble drugs in polymers, which can be further validated by adopting it to an actual implementation in the future. Full article
Show Figures

Figure 1

12 pages, 1749 KB  
Article
Comparative Study on Synergistic Toxicity of Enrofloxacin Combined with Three Antibiotics on Proliferation of THLE-2 Cell
by Yehui Luan, Kexin Chen, Junjie Zhao and Linli Cheng
Antibiotics 2022, 11(3), 394; https://doi.org/10.3390/antibiotics11030394 - 16 Mar 2022
Cited by 11 | Viewed by 3919
Abstract
Little attention has been paid to the problem of the combined toxicity of accumulated antibiotics on humans from food and clinical treatments. Therefore, we used human hepatocytes to study the joint toxicity of four common antibiotics. The cytotoxicity of enrofloxacin (ENR), combined with [...] Read more.
Little attention has been paid to the problem of the combined toxicity of accumulated antibiotics on humans from food and clinical treatments. Therefore, we used human hepatocytes to study the joint toxicity of four common antibiotics. The cytotoxicity of enrofloxacin (ENR), combined with ciprofloxacin (CFX), florfenicol (FFC), or sulfadimidine (SMD) on THLE-2 cells was determined by CCK-8 assays; then their joint toxicity was evaluated using CalcuSyn 2.0. Dose–effect curves and median-effect plots established on large amounts of data and CI values were calculated to judge the nature of the combination’s interaction. ED50, ED75, and ED90 were predicted to elucidate the changing trend of the concentration on the toxicity of each drug pair. The ENR-CFX and ENR-FFC pairs exhibited synergistic toxicity only at special concentration rates, while ENR and SMD synergistically induced cytotoxicity at almost all the concentration rates studied. The mixed ratio was a significant factor for synergistic toxicity and should be evaluated in all combined effect studies. These results suggested that the combined toxicity of these four drugs should be taken into account in their risk assessment. Full article
(This article belongs to the Section Antibiotics in Animal Health)
Show Figures

Figure 1

11 pages, 499 KB  
Article
Detection of Antibiotic Residues in Blossom Honeys from Different Regions in Turkey by LC-MS/MS Method
by Buket Er Demirhan and Burak Demirhan
Antibiotics 2022, 11(3), 357; https://doi.org/10.3390/antibiotics11030357 - 8 Mar 2022
Cited by 24 | Viewed by 4319
Abstract
In the present study, a total of 80 commercial blossom honey samples were obtained from local markets in Ankara, Turkey. These honeys were analyzed for 35 important and risky antibiotics (sulfonamide, tetracycline, macrolide, cephalosporin, aminoglycoside, quinolone, nitrofuran, chloramphenicol, and anthelmintic groups) by the [...] Read more.
In the present study, a total of 80 commercial blossom honey samples were obtained from local markets in Ankara, Turkey. These honeys were analyzed for 35 important and risky antibiotics (sulfonamide, tetracycline, macrolide, cephalosporin, aminoglycoside, quinolone, nitrofuran, chloramphenicol, and anthelmintic groups) by the LC-MS/MS multi-antibiotic method. In addition to these analyses, pH measure, moisture, and electrical conductivity were determined in these honey samples. Finally, seven out of 35 antibiotic residues investigated in the honeys were positive. The most frequently detected antibiotics in the analyzed samples were dihydrostreptomycin, streptomycin, erythromycin, sulfadimidine (sulfamethazine), and enrofloxacin as 58.75%, 22.5%, 13.75%, 10%, and 2.5%, respectively. Tetracycline and doxycycline were detected in only one sample. The pH, moisture, and electrical conductivity values of the honey samples were determined as between pH 3.78 and 5.41, 17.48 and 18.03%, and 0.25 and 0.47 mS/cm, respectively. In terms of food safety and human health, it is very important to monitor the residues of these pharmacologically active substances with analytical methods. Full article
Show Figures

Figure 1

16 pages, 307 KB  
Article
Comparison of Antimicrobial Treatment Incidence Quantification Based on Detailed Field Data on Animal Level with the Standardized Methodology of the European Medicines Agency in Veal Calves, Switzerland, 2016–2018
by Jens Becker and Mireille Meylan
Antibiotics 2021, 10(7), 832; https://doi.org/10.3390/antibiotics10070832 - 8 Jul 2021
Cited by 3 | Viewed by 2009
Abstract
Precise quantification of antimicrobial treatment incidence (TI) is crucial for benchmarking. Two widespread methods for treatment incidence quantification were compared for agreement. Field data were obtained from 38 veal farms from 2016 to 2018 (1905 calves, 1864 treatments). Calculation of TIswiss for [...] Read more.
Precise quantification of antimicrobial treatment incidence (TI) is crucial for benchmarking. Two widespread methods for treatment incidence quantification were compared for agreement. Field data were obtained from 38 veal farms from 2016 to 2018 (1905 calves, 1864 treatments). Calculation of TIswiss for calves was based on detailed treatment records using pharmacokinetic values from the Swiss Veterinary Medicines Compendium. The method published by the European Medicines Agency was used to calculate TI in defined daily doses (TIDDD). For each calf and treatment, TIswiss and TIDDD were calculated on level of the antimicrobial class, drug, application route, and farm. The quotient (Q) of TIswiss and TIDDD was calculated. Divergence in results between the two methods of ≤25% was arbitrarily set as good agreement. The agreement between TIswiss and TIDDD was mostly good. On class level, good agreement was observed for treatments representing 71.5% of the TIDDD, and 74.5% of the total TIDDD on drug level. Poor agreement was mainly observed for tylosin and sulfadimidine. The agreement was better for parenteral than for oral treatments (81.6% vs. 72.3%). For practically orientated calculation on farm level, good agreement was observed (77.5% of the TIDDD). The TIDDD method showed mostly good agreement, especially for parenteral treatments. Full article
(This article belongs to the Section Antibiotics Use and Antimicrobial Stewardship)
11 pages, 1118 KB  
Article
Determination of Sulfonamide Residues in Food by Capillary Zone Electrophoresis with On-Line Chemiluminescence Detection Based on an Ag(III) Complex
by Tingting Dai, Jie Duan, Xinghua Li, Xiangdong Xu, Hongmei Shi and Weijun Kang
Int. J. Mol. Sci. 2017, 18(6), 1286; https://doi.org/10.3390/ijms18061286 - 16 Jun 2017
Cited by 40 | Viewed by 4838
Abstract
The presence of sulfonamide (SA) residues in foods is largely due to the raising of animals with sulfonamide antibiotics added or polluted feedstuff. In this paper, a sensitive method was developed for the determination of the residues of three sulfonamides in animal-derived food; [...] Read more.
The presence of sulfonamide (SA) residues in foods is largely due to the raising of animals with sulfonamide antibiotics added or polluted feedstuff. In this paper, a sensitive method was developed for the determination of the residues of three sulfonamides in animal-derived food; the SAs include sulfadimidine (SDD), sulfadiazine (SDZ), and sulfathiazole (STZ). The method is based on capillary zone electrophoresis (CE) with online chemiluminescence (CL) detection, using an Ag(III) complex as an oxidant. These SAs have an inhibiting effect on the Ag(III)–luminol CL reaction. The electrophoretic buffer is 12.0 mM sodium borate. Under a set of optimized conditions, the linear ranges for the detections were found to be 10.0–200 µg·mL−1 for SDD and SDZ, and 2.0–50.0 µg·mL−1 for STZ. The detection limits were 2.75, 3.14, and 0.65 µg·mL−1 for SDD, SDZ, and STZ, respectively. Relative standard deviations (RSD) for the peak heights were between 2.1% and 2.8% (n = 7). The proposed method was used in the analysis of the SAs in samples from pork meat, chicken meat, and milk, showing satisfactory detection results. A reaction mechanism was also proposed for the Ag(III)–luminol–SA CL reactions. The method has potential applications for the monitoring of residue levels of the three SAs in food, providing food safety data. Full article
(This article belongs to the Section Bioinorganic Chemistry)
Show Figures

Graphical abstract

12 pages, 1045 KB  
Article
Portable and Reusable Optofluidics-Based Biosensing Platform for Ultrasensitive Detection of Sulfadimidine in Dairy Products
by Xiu-Juan Hao, Xiao-Hong Zhou, Yan Zhang, Feng Long, Lei Song and Han-Chang Shi
Sensors 2015, 15(4), 8302-8313; https://doi.org/10.3390/s150408302 - 9 Apr 2015
Cited by 22 | Viewed by 6465
Abstract
Sulfadimidine (SM2) is a highly toxic and ubiquitous pollutant which requires rapid, sensitive and portable detection method for environmental and food monitoring. Herein, the use for the detection of SM2 of a portable optofluidics-based biosensing platform, which was used for [...] Read more.
Sulfadimidine (SM2) is a highly toxic and ubiquitous pollutant which requires rapid, sensitive and portable detection method for environmental and food monitoring. Herein, the use for the detection of SM2 of a portable optofluidics-based biosensing platform, which was used for the accurate detection of bisphenol A, atrazine and melamine, is reported for the first time. The proposed compact biosensing system combines the advantages of an evanescent wave immunosensor and microfluidic technology. Through the indirect competitive immunoassay, the detection limit of the proposed optofluidics-based biosensing platform for SM2 reaches 0.05 μg·L−1 at the concentration of Cy5.5-labeled antibody of 0.1 μg·mL−1. Linearity is obtained over a dynamic range from 0.17 μg·L−1 to 10.73 μg·L−1. The surface of the fiber probe can be regenerated more than 300 times by means of 0.5% sodium dodecyl sulfate solution (pH = 1.9) washes without losing sensitivity. This method, featuring high sensitivity, portability and acceptable reproducibility shows potential in the detection of SM2 in real milk and other dairy products. Full article
(This article belongs to the Special Issue Advances in Optical Biosensors)
Show Figures

Graphical abstract

Back to TopTop