Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = synaptic homeostasis hypothesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 1450 KB  
Review
Small-Molecule Inhibitors of Amyloid Beta: Insights from Molecular Dynamics—Part A: Endogenous Compounds and Repurposed Drugs
by Mariyana Atanasova
Pharmaceuticals 2025, 18(3), 306; https://doi.org/10.3390/ph18030306 - 23 Feb 2025
Viewed by 2409
Abstract
The amyloid hypothesis is the predominant model of Alzheimer’s disease (AD) pathogenesis, suggesting that amyloid beta (Aβ) peptide is the primary driver of neurotoxicity and a cascade of pathological events in the central nervous system. Aβ aggregation into oligomers and deposits triggers various [...] Read more.
The amyloid hypothesis is the predominant model of Alzheimer’s disease (AD) pathogenesis, suggesting that amyloid beta (Aβ) peptide is the primary driver of neurotoxicity and a cascade of pathological events in the central nervous system. Aβ aggregation into oligomers and deposits triggers various processes, such as vascular damage, inflammation-induced astrocyte and microglia activation, disrupted neuronal ionic homeostasis, oxidative stress, abnormal kinase and phosphatase activity, tau phosphorylation, neurofibrillary tangle formation, cognitive dysfunction, synaptic loss, cell death, and, ultimately, dementia. Molecular dynamics (MD) is a powerful structure-based drug design (SBDD) approach that aids in understanding the properties, functions, and mechanisms of action or inhibition of biomolecules. As the only method capable of simulating atomic-level internal motions, MD provides unique insights that cannot be obtained through other techniques. Integrating experimental data with MD simulations allows for a more comprehensive understanding of biological processes and molecular interactions. This review summarizes and evaluates MD studies from the past decade on small molecules, including endogenous compounds and repurposed drugs, that inhibit amyloid beta. Furthermore, it outlines key considerations for future MD simulations of amyloid inhibitors, offering a potential framework for studies aimed at elucidating the mechanisms of amyloid beta inhibition by small molecules. Full article
Show Figures

Figure 1

29 pages, 3069 KB  
Review
N-methyl-D-aspartate Receptors and Depression: Linking Psychopharmacology, Pathology and Physiology in a Unifying Hypothesis for the Epigenetic Code of Neural Plasticity
by Stefano Comai, Sara De Martin, Andrea Mattarei, Clotilde Guidetti, Marco Pappagallo, Franco Folli, Andrea Alimonti and Paolo L. Manfredi
Pharmaceuticals 2024, 17(12), 1618; https://doi.org/10.3390/ph17121618 - 30 Nov 2024
Cited by 3 | Viewed by 2400
Abstract
Uncompetitive NMDAR (N-methyl-D-aspartate receptor) antagonists restore impaired neural plasticity, reverse depressive-like behavior in animal models, and relieve major depressive disorder (MDD) in humans. This review integrates recent findings from in silico, in vitro, in vivo, and human studies of uncompetitive NMDAR antagonists into [...] Read more.
Uncompetitive NMDAR (N-methyl-D-aspartate receptor) antagonists restore impaired neural plasticity, reverse depressive-like behavior in animal models, and relieve major depressive disorder (MDD) in humans. This review integrates recent findings from in silico, in vitro, in vivo, and human studies of uncompetitive NMDAR antagonists into the extensive body of knowledge on NMDARs and neural plasticity. Uncompetitive NMDAR antagonists are activity-dependent channel blockers that preferentially target hyperactive GluN2D subtypes because these subtypes are most sensitive to activation by low concentrations of extracellular glutamate and are more likely activated by certain pathological agonists and allosteric modulators. Hyperactivity of GluN2D subtypes in specific neural circuits may underlie the pathophysiology of MDD. We hypothesize that neural plasticity is epigenetically regulated by precise Ca2+ quanta entering cells via NMDARs. Stimuli reach receptor cells (specialized cells that detect specific types of stimuli and convert them into electrical signals) and change their membrane potential, regulating glutamate release in the synaptic cleft. Free glutamate binds ionotropic glutamatergic receptors regulating NMDAR-mediated Ca2+ influx. Quanta of Ca2+ via NMDARs activate enzymatic pathways, epigenetically regulating synaptic protein homeostasis and synaptic receptor expression; thereby, Ca2+ quanta via NMDARs control the balance between long-term potentiation and long-term depression. This NMDAR Ca2+ quantal hypothesis for the epigenetic code of neural plasticity integrates recent psychopharmacology findings into established physiological and pathological mechanisms of brain function. Full article
(This article belongs to the Special Issue Recent Advances in Psychopharmacology)
Show Figures

Figure 1

17 pages, 2258 KB  
Article
Vagus Nerve Suppression in Ischemic Stroke by Carotid Artery Occlusion: Implications for Metabolic Regulation, Cognitive Function, and Gut Microbiome in a Gerbil Model
by Ting Zhang, Yu Yue, Chen Li, Xuangao Wu and Sunmin Park
Int. J. Mol. Sci. 2024, 25(14), 7831; https://doi.org/10.3390/ijms25147831 - 17 Jul 2024
Cited by 11 | Viewed by 2783
Abstract
The vagus nerve regulates metabolic homeostasis and mediates gut–brain communication. We hypothesized that vagus nerve dysfunction, induced by truncated vagotomy (VGX) or carotid artery occlusion (AO), would disrupt gut–brain communication and exacerbate metabolic dysregulation, neuroinflammation, and cognitive impairment. This study aimed to test [...] Read more.
The vagus nerve regulates metabolic homeostasis and mediates gut–brain communication. We hypothesized that vagus nerve dysfunction, induced by truncated vagotomy (VGX) or carotid artery occlusion (AO), would disrupt gut–brain communication and exacerbate metabolic dysregulation, neuroinflammation, and cognitive impairment. This study aimed to test the hypothesis in gerbils fed a high-fat diet. The gerbils were divided into four groups: AO with VGX (AO_VGX), AO without VGX (AO_NVGX), no AO with VGX (NAO_VGX), and no AO without VGX (NAO_NVGX). After 5 weeks on a high-fat diet, the neuronal cell death, neurological severity, hippocampal lipids and inflammation, energy/glucose metabolism, intestinal morphology, and fecal microbiome composition were assessed. AO and VGX increased the neuronal cell death and neurological severity scores associated with increased hippocampal lipid profiles and lipid peroxidation, as well as changes in the inflammatory cytokine expression and brain-derived neurotrophic factor (BDNF) levels. AO and VGX also increased the body weight, visceral fat mass, and insulin resistance and decreased the skeletal muscle mass. The intestinal morphology and microbiome composition were altered, with an increase in the abundance of Bifidobacterium and a decrease in Akkermansia and Ruminococcus. Microbial metagenome functions were also impacted, including glutamatergic synaptic activity, glycogen synthesis, and amino acid biosynthesis. Interestingly, the effects of VGX were not significantly additive with AO, suggesting that AO inhibited the vagus nerve activity, partly offsetting the effects of VGX. In conclusion, AO and VGX exacerbated the dysregulation of energy, glucose, and lipid metabolism, neuroinflammation, and memory deficits, potentially through the modulation of the gut–brain axis. Targeting the gut–brain axis by inhibiting vagus nerve suppression represents a potential therapeutic strategy for ischemic stroke. Full article
Show Figures

Figure 1

18 pages, 5065 KB  
Article
Prolonged High-Fat Diet Consumption throughout Adulthood in Mice Induced Neurobehavioral Deterioration via Gut-Brain Axis
by Haicui Wu, Wenxiu Zhang, Mingyue Huang, Xueying Lin and Jiachi Chiou
Nutrients 2023, 15(2), 392; https://doi.org/10.3390/nu15020392 - 12 Jan 2023
Cited by 30 | Viewed by 5009
Abstract
Neuropsychiatric disorders have been one of the worldwide health problems contributing to profound social and economic consequences. It is reported that consumption of an excessive high-fat diet (HFD) in middle age could induce cognitive and emotional dysfunctions, whereas the mechanisms of the effects [...] Read more.
Neuropsychiatric disorders have been one of the worldwide health problems contributing to profound social and economic consequences. It is reported that consumption of an excessive high-fat diet (HFD) in middle age could induce cognitive and emotional dysfunctions, whereas the mechanisms of the effects of long-term HFD intake on brain disorders have not been fully investigated. We propose a hypothesis that prolonged HFD intake throughout adulthood could lead to neurobehavioral deterioration via gut-brain axis. In this study, the adult C57BL/6J mice consuming long-term HFD (24 weeks) exhibited more anxiety-like, depression-like, and disruptive social behaviors and poorer performance in learning and memory than control mice fed with a normal diet (ND). In addition, the homeostasis of gut microbiota was impaired by long-term HFD consumption. Changes in some flora, such as Prevotellaceae_NK3B31_group and Ruminococcus, within the gut communities, were correlated to neurobehavioral alterations. Furthermore, the gut permeability was increased after prolonged HFD intake due to the decreased thickness of the mucus layer and reduced expression of tight junction proteins in the colon. The mRNA levels of genes related to synaptic-plasticity, neuronal development, microglia maturation, and activation in the hippocampus and prefrontal cortex of HFD-fed mice were lower than those in mice fed with ND. Interestingly, the transcripts of genes related to tight junction proteins, ZO-1 and Occludin involved in blood-brain-barrier (BBB), were decreased in both hippocampus and prefrontal cortex after long-term HFD consumption. Those results indicated that chronic consumption of HFD in mice resulted in gut microbiota dysbiosis, which induced decreased expression of mucus and tight junction proteins in the colon, in turn leading to local and systemic inflammation. Those changes could further contribute to the impairment of brain functions and neurobehavioral alterations, including mood, sociability, learning and memory. In short, long-term HFD intake throughout adulthood could induce behavioral phenotypes related to neuropsychiatric disorders via gut-brain axis. The observations of this study provide potential intervention strategies to reduce the risk of HFD via targeting the gut or manipulating gut microbiota. Full article
(This article belongs to the Section Lipids)
Show Figures

Figure 1

18 pages, 2904 KB  
Article
M3 Receptor Pathway Stimulates Rapid Transcription of the CB1 Receptor Activation through Calcium Signalling and the CNR1 Gene Promoter
by Pietro Marini, Philip Cowie, Ahmet Ayar, Guy S. Bewick, John Barrow, Roger G. Pertwee, Alasdair MacKenzie and Paolo Tucci
Int. J. Mol. Sci. 2023, 24(2), 1308; https://doi.org/10.3390/ijms24021308 - 9 Jan 2023
Cited by 3 | Viewed by 2752
Abstract
In this study, we have investigated a possible mechanism that enables CB1/M3 receptor cross-talk, using SH-SY5Y cells as a model system. Our results show that M3 receptor activation initiates signaling that rapidly upregulates the CNR1 gene, resulting in a [...] Read more.
In this study, we have investigated a possible mechanism that enables CB1/M3 receptor cross-talk, using SH-SY5Y cells as a model system. Our results show that M3 receptor activation initiates signaling that rapidly upregulates the CNR1 gene, resulting in a greatly potentiated CB1 receptor response to agonists. Calcium homeostasis plays an essential intermediary role in this functional CB1/M3 receptor cross-talk. We show that M3 receptor-triggered calcium release greatly increases CB1 receptor expression via both transcriptional and translational activity, by enhancing CNR1 promoter activity. The co-expression of M3 and CB1 receptors in brain areas such as the nucleus accumbens and amygdala support the hypothesis that the altered synaptic plasticity observed after exposure to cannabinoids involves cross-talk with the M3 receptor subtype. In this context, M3 receptors and their interaction with the cannabinoid system at the transcriptional level represent a potential pharmacogenomic target not only for the develop of new drugs for addressing addiction and tolerance. but also to understand the mechanisms underpinning response stratification to cannabinoids. Full article
Show Figures

Figure 1

21 pages, 485 KB  
Review
Rapid Eye Movement Sleep during Early Life: A Comprehensive Narrative Review
by Hai-Lin Chen, Jin-Xian Gao, Yu-Nong Chen, Jun-Fan Xie, Yu-Ping Xie, Karen Spruyt, Jian-Sheng Lin, Yu-Feng Shao and Yi-Ping Hou
Int. J. Environ. Res. Public Health 2022, 19(20), 13101; https://doi.org/10.3390/ijerph192013101 - 12 Oct 2022
Cited by 10 | Viewed by 4171
Abstract
The ontogenetic sleep hypothesis suggested that rapid eye movement (REM) sleep is ontogenetically primitive. Namely, REM sleep plays an imperative role in the maturation of the central nervous system. In coincidence with a rapidly developing brain during the early period of life, a [...] Read more.
The ontogenetic sleep hypothesis suggested that rapid eye movement (REM) sleep is ontogenetically primitive. Namely, REM sleep plays an imperative role in the maturation of the central nervous system. In coincidence with a rapidly developing brain during the early period of life, a remarkably large amount of REM sleep has been identified in numerous behavioral and polysomnographic studies across species. The abundant REM sleep appears to serve to optimize a cerebral state suitable for homeostasis and inherent neuronal activities favorable to brain maturation, ranging from neuronal differentiation, migration, and myelination to synaptic formation and elimination. Progressively more studies in Mammalia have provided the underlying mechanisms involved in some REM sleep-related disorders (e.g., narcolepsy, autism, attention deficit hyperactivity disorder (ADHD)). We summarize the remarkable alterations of polysomnographic, behavioral, and physiological characteristics in humans and Mammalia. Through a comprehensive review, we offer a hybrid of animal and human findings, demonstrating that early-life REM sleep disturbances constitute a common feature of many neurodevelopmental disorders. Our review may assist and promote investigations of the underlying mechanisms, functions, and neurodevelopmental diseases involved in REM sleep during early life. Full article
(This article belongs to the Collection Sleep in Children)
26 pages, 666 KB  
Article
Computational Modeling of Information Propagation during the Sleep–Waking Cycle
by Farhad Razi, Rubén Moreno-Bote and Belén Sancristóbal
Biology 2021, 10(10), 945; https://doi.org/10.3390/biology10100945 - 22 Sep 2021
Cited by 3 | Viewed by 3725
Abstract
Non-threatening familiar sounds can go unnoticed during sleep despite the fact that they enter our brain by exciting the auditory nerves. Extracellular cortical recordings in the primary auditory cortex of rodents show that an increase in firing rate in response to pure tones [...] Read more.
Non-threatening familiar sounds can go unnoticed during sleep despite the fact that they enter our brain by exciting the auditory nerves. Extracellular cortical recordings in the primary auditory cortex of rodents show that an increase in firing rate in response to pure tones during deep phases of sleep is comparable to those evoked during wakefulness. This result challenges the hypothesis that during sleep cortical responses are weakened through thalamic gating. An alternative explanation comes from the observation that the spatiotemporal spread of the evoked activity by transcranial magnetic stimulation in humans is reduced during non-rapid eye movement (NREM) sleep as compared to the wider propagation to other cortical regions during wakefulness. Thus, cortical responses during NREM sleep remain local and the stimulus only reaches nearby neuronal populations. We aim at understanding how this behavior emerges in the brain as it spontaneously shifts between NREM sleep and wakefulness. To do so, we have used a computational neural-mass model to reproduce the dynamics of the sensory auditory cortex and corresponding local field potentials in these two brain states. Following the synaptic homeostasis hypothesis, an increase in a single parameter, namely the excitatory conductance g¯AMPA, allows us to place the model from NREM sleep into wakefulness. In agreement with the experimental results, the endogenous dynamics during NREM sleep produces a comparable, even higher, response to excitatory inputs to the ones during wakefulness. We have extended the model to two bidirectionally connected cortical columns and have quantified the propagation of an excitatory input as a function of their coupling. We have found that the general increase in all conductances of the cortical excitatory synapses that drive the system from NREM sleep to wakefulness does not boost the effective connectivity between cortical columns. Instead, it is the inter-/intra-conductance ratio of cortical excitatory synapses that should raise to facilitate information propagation across the brain. Full article
(This article belongs to the Special Issue Information Processing in Neuronal Circuits and Systems)
Show Figures

Figure 1

20 pages, 1258 KB  
Review
Calcium Dyshomeostasis in Alzheimer’s Disease Pathogenesis
by Roberta Cascella and Cristina Cecchi
Int. J. Mol. Sci. 2021, 22(9), 4914; https://doi.org/10.3390/ijms22094914 - 6 May 2021
Cited by 125 | Viewed by 9035
Abstract
Alzheimer’s disease (AD) is the most common age-related neurodegenerative disorder that is characterized by amyloid β-protein deposition in senile plaques, neurofibrillary tangles consisting of abnormally phosphorylated tau protein, and neuronal loss leading to cognitive decline and dementia. Despite extensive research, the exact mechanisms [...] Read more.
Alzheimer’s disease (AD) is the most common age-related neurodegenerative disorder that is characterized by amyloid β-protein deposition in senile plaques, neurofibrillary tangles consisting of abnormally phosphorylated tau protein, and neuronal loss leading to cognitive decline and dementia. Despite extensive research, the exact mechanisms underlying AD remain unknown and effective treatment is not available. Many hypotheses have been proposed to explain AD pathophysiology; however, there is general consensus that the abnormal aggregation of the amyloid β peptide (Aβ) is the initial event triggering a pathogenic cascade of degenerating events in cholinergic neurons. The dysregulation of calcium homeostasis has been studied considerably to clarify the mechanisms of neurodegeneration induced by Aβ. Intracellular calcium acts as a second messenger and plays a key role in the regulation of neuronal functions, such as neural growth and differentiation, action potential, and synaptic plasticity. The calcium hypothesis of AD posits that activation of the amyloidogenic pathway affects neuronal Ca2+ homeostasis and the mechanisms responsible for learning and memory. Aβ can disrupt Ca2+ signaling through several mechanisms, by increasing the influx of Ca2+ from the extracellular space and by activating its release from intracellular stores. Here, we review the different molecular mechanisms and receptors involved in calcium dysregulation in AD and possible therapeutic strategies for improving the treatment. Full article
(This article belongs to the Special Issue Protein Aggregates Toxicity: New Insights into the Mechanisms)
Show Figures

Figure 1

17 pages, 1775 KB  
Article
Expanding Role of Dopaminergic Inhibition in Hypercapnic Responses of Cultured Rat Carotid Body Cells: Involvement of Type II Glial Cells
by Erin M. Leonard and Colin A. Nurse
Int. J. Mol. Sci. 2020, 21(15), 5434; https://doi.org/10.3390/ijms21155434 - 30 Jul 2020
Cited by 10 | Viewed by 3963
Abstract
Dopamine (DA) is a well-studied neurochemical in the mammalian carotid body (CB), a chemosensory organ involved in O2 and CO2/H+ homeostasis. DA released from receptor (type I) cells during chemostimulation is predominantly inhibitory, acting via pre- and post-synaptic dopamine [...] Read more.
Dopamine (DA) is a well-studied neurochemical in the mammalian carotid body (CB), a chemosensory organ involved in O2 and CO2/H+ homeostasis. DA released from receptor (type I) cells during chemostimulation is predominantly inhibitory, acting via pre- and post-synaptic dopamine D2 receptors (D2R) on type I cells and afferent (petrosal) terminals respectively. By contrast, co-released ATP is excitatory at postsynaptic P2X2/3R, though paracrine P2Y2R activation of neighboring glial-like type II cells may boost further ATP release. Here, we tested the hypothesis that DA may also inhibit type II cell function. When applied alone, DA (10 μM) had negligible effects on basal [Ca2+]i in isolated rat type II cells. However, DA strongly inhibited [Ca2+]i elevations (Δ[Ca2+]i) evoked by the P2Y2R agonist UTP (100 μM), an effect opposed by the D2/3R antagonist, sulpiride (1–10 μM). As expected, acute hypercapnia (10% CO2; pH 7.4), or high K+ (30 mM) caused Δ[Ca2+]i in type I cells. However, these stimuli sometimes triggered a secondary, delayed Δ[Ca2+]i in nearby type II cells, attributable to crosstalk involving ATP-P2Y2R interactions. Interestingly sulpiride, or DA store-depletion using reserpine, potentiated both the frequency and magnitude of the secondary Δ[Ca2+]i in type II cells. In functional CB-petrosal neuron cocultures, sulpiride potentiated hypercapnia-induced Δ[Ca2+]i in type I cells, type II cells, and petrosal neurons. Moreover, stimulation of type II cells with UTP could directly evoke Δ[Ca2+]i in nearby petrosal neurons. Thus, dopaminergic inhibition of purinergic signalling in type II cells may help control the integrated sensory output of the CB during hypercapnia. Full article
Show Figures

Graphical abstract

19 pages, 4910 KB  
Article
Low Doses of Arsenic in a Mouse Model of Human Exposure and in Neuronal Culture Lead to S-Nitrosylation of Synaptic Proteins and Apoptosis via Nitric Oxide
by Haitham Amal, Guanyu Gong, Hongmei Yang, Brian A. Joughin, Xin Wang, Charles G. Knutson, Maryam Kartawy, Igor Khaliulin, John S. Wishnok and Steven R. Tannenbaum
Int. J. Mol. Sci. 2020, 21(11), 3948; https://doi.org/10.3390/ijms21113948 - 31 May 2020
Cited by 23 | Viewed by 4301
Abstract
Background: Accumulating public health and epidemiological literature support the hypothesis that arsenic in drinking water or food affects the brain adversely. Methods: Experiments on the consequences of nitric oxide (NO) formation in neuronal cell culture and mouse brain were conducted to probe the [...] Read more.
Background: Accumulating public health and epidemiological literature support the hypothesis that arsenic in drinking water or food affects the brain adversely. Methods: Experiments on the consequences of nitric oxide (NO) formation in neuronal cell culture and mouse brain were conducted to probe the mechanistic pathways of nitrosative damage following arsenic exposure. Results: After exposure of mouse embryonic neuronal cells to low doses of sodium arsenite (SA), we found that Ca2+ was released leading to the formation of large amounts of NO and apoptosis. Inhibition of NO synthase prevented neuronal apoptosis. Further, SA led to concerted S-nitrosylation of proteins significantly associated with synaptic vesicle recycling and acetyl-CoA homeostasis. Our findings show that low-dose chronic exposure (0.1–1 ppm) to SA in the drinking water of mice led to S-nitrosylation of proteomic cysteines. Subsequent removal of arsenic from the drinking water reversed the biochemical alterations. Conclusions: This work develops a mechanistic understanding of the role of NO in arsenic-mediated toxicity in the brain, incorporating Ca2+ release and S-nitrosylation as important modifiers of neuronal protein function. Full article
(This article belongs to the Special Issue Cellular Secretomes)
Show Figures

Figure 1

14 pages, 2057 KB  
Article
Carvacrol Attenuates Hippocampal Neuronal Death after Global Cerebral Ischemia via Inhibition of Transient Receptor Potential Melastatin 7
by Dae Ki Hong, Bo Young Choi, A Ra Kho, Song Hee Lee, Jeong Hyun Jeong, Beom Seok Kang, Dong Hyeon Kang, Kyoung-Ha Park and Sang Won Suh
Cells 2018, 7(12), 231; https://doi.org/10.3390/cells7120231 - 26 Nov 2018
Cited by 29 | Viewed by 4374
Abstract
Over the last two decades, evidence supporting the concept of zinc-induced neuronal death has been introduced, and several intervention strategies have been investigated. Vesicular zinc is released into the synaptic cleft, where it then translocates to the cytoplasm, which leads to the production [...] Read more.
Over the last two decades, evidence supporting the concept of zinc-induced neuronal death has been introduced, and several intervention strategies have been investigated. Vesicular zinc is released into the synaptic cleft, where it then translocates to the cytoplasm, which leads to the production of reactive oxygen species and neurodegeneration. Carvacrol inhibits transient receptor potential melastatin 7 (TRPM7), which regulates the homeostasis of extracellular metal ions, such as calcium and zinc. In the present study, we test whether carvacrol displays any neuroprotective effects after global cerebral ischemia (GCI), via a blockade of zinc influx. To test our hypothesis, we used eight-week-old male Sprague–Dawley rats, and a GCI model was induced by bilateral common carotid artery occlusion (CCAO), accompanied by blood withdrawal from the femoral artery. Ischemic duration was defined as a seven-minute electroencephalographic (EEG) isoelectric period. Carvacrol (50 mg/kg) was injected into the intraperitoneal space once per day for three days after the onset of GCI. The present study found that administration of carvacrol significantly decreased the number of degenerating neurons, microglial activation, oxidative damage, and zinc translocation after GCI, via downregulation of TRPM7 channels. These findings suggest that carvacrol, a TRPM7 inhibitor, may have therapeutic potential after GCI by reducing intracellular zinc translocation. Full article
(This article belongs to the Special Issue Emerging Trends in Metal Biochemistry)
Show Figures

Graphical abstract

14 pages, 1713 KB  
Article
Neurocognitive Disorders and Dehydration in Older Patients: Clinical Experience Supports the Hydromolecular Hypothesis of Dementia
by Michele Lauriola, Antonio Mangiacotti, Grazia D’Onofrio, Leandro Cascavilla, Francesco Paris, Giulia Paroni, Davide Seripa, Antonio Greco and Daniele Sancarlo
Nutrients 2018, 10(5), 562; https://doi.org/10.3390/nu10050562 - 3 May 2018
Cited by 36 | Viewed by 9678
Abstract
Abnormalities of water homeostasis can be early expressions of neuronal dysfunction, brain atrophy, chronic cerebrovasculopathy and neurodegenerative disease. The aim of this study was to analyze the serum osmolality of subjects with cognitive impairment. One thousand and ninety-one consecutive patients attending the Alzheimer’s [...] Read more.
Abnormalities of water homeostasis can be early expressions of neuronal dysfunction, brain atrophy, chronic cerebrovasculopathy and neurodegenerative disease. The aim of this study was to analyze the serum osmolality of subjects with cognitive impairment. One thousand and ninety-one consecutive patients attending the Alzheimer’s Evaluation Unit were evaluated with the Mini-Mental State Examination (MMSE), 21-Item Hamilton Depression Rating Scale (HDRS-21), Activities of Daily Living (ADL), Instrumental-ADL (IADL), Mini Nutritional Assessment (MNA), Exton-Smith Scale (ESS), and Cumulative Illness Rating Scale (CIRS). For each patient, the equation for serum osmolality developed by Khajuria and Krahn was applied. Five hundred and seventy-one patients had cognitive decline and/or depression mood (CD-DM) and 520 did not have CD-DM (control group). Patients with CD-DM were less likely to be male (p < 0.001), and were more likely to be older (p < 0.001), have a significant clear cognitive impairment (MMSE: p < 0.001), show the presence of a depressive mood (HDRS-21: p < 0.001) and have major impairments in ADL (p < 0.001), IADL (p < 0.001), MNA (p < 0.001), and ESS (p < 0.001), compared to the control group. CD-DM patients had a higher electrolyte concentration (Na+: p < 0.001; K+: p < 0.001; Cl: p < 0.001), risk of dehydration (osmolality p < 0.001), and kidney damage (eGFR: p = 0.021), than the control group. Alzheimer’s disease (AD) patients showed a major risk for current dehydration (p ≤ 0.001), and dehydration was associated with the risk of developing a type of dementia, like AD or vascular dementia (VaD) (OR = 2.016, p < 0.001). In the multivariate analysis, the presence of dehydration state was associated with ADL (p < 0.001) and IADL (p < 0.001), but independently associated with age (r2 = 0.0046, p = 0.77), ESS (r2 = 0.0052, p = 0.54) and MNA (r2 = 0.0004, p = 0.48). Moreover, younger patients with dementia were significantly more dehydrated than patients without dementia (65–75 years, p = 0.001; 76–85 years, p = 0.001; ≥86 years, p = 0.293). The hydromolecular hypothesis intends to explain the relationship between dehydration and cognitive impairment in older patients as the result of protein misfolding and aggregation, in the presence of a low interstitial fluid volume, which is a defect of the microcirculation. Defective proteins were shown to impair the amount of information in brain biomolecular mechanisms, with consequent neuronal and synaptic damage. Full article
(This article belongs to the Special Issue Lifestyle Strategies in Cognitive Decline: Focus on Nutrition)
Show Figures

Figure 1

11 pages, 5096 KB  
Review
The Emerging Role of Zinc in the Pathogenesis of Multiple Sclerosis
by Bo Young Choi, Jong Won Jung and Sang Won Suh
Int. J. Mol. Sci. 2017, 18(10), 2070; https://doi.org/10.3390/ijms18102070 - 28 Sep 2017
Cited by 34 | Viewed by 16477
Abstract
Our lab has previously demonstrated that multiple sclerosis-induced spinal cord white matter damage and motor deficits are mediated by the pathological disruption of zinc homeostasis. Abnormal vesicular zinc release and intracellular zinc accumulation may mediate several steps in the pathophysiological processes of multiple [...] Read more.
Our lab has previously demonstrated that multiple sclerosis-induced spinal cord white matter damage and motor deficits are mediated by the pathological disruption of zinc homeostasis. Abnormal vesicular zinc release and intracellular zinc accumulation may mediate several steps in the pathophysiological processes of multiple sclerosis (MS), such as matrix metallopeptidase 9 (MMP-9) activation, blood-brain barrier (BBB) disruption, and subsequent immune cell infiltration from peripheral systems. Oral administration of a zinc chelator decreased BBB disruption, immune cell infiltration, and spinal white matter myelin destruction. Therefore, we hypothesized that zinc released into the extracellular space during MS progression is involved in destruction of the myelin sheath in spinal cord white mater and in generation of motor deficits. To confirm our previous study, we employed zinc transporter 3 (ZnT3) knockout mice to test whether vesicular zinc depletion shows protective effects on multiple sclerosis-induced white matter damage and motor deficits. ZnT3 gene deletion profoundly reduced the daily clinical score of experimental autoimmune encephalomyelitis (EAE) by suppression of inflammation and demyelination in the spinal cord. ZnT3 gene deletion also remarkably inhibited formation of multiple sclerosis-associated aberrant synaptic zinc patches, MMP-9 activation, and BBB disruption. These two studies strongly support our hypothesis that zinc release from presynaptic terminals may be involved in multiple sclerosis pathogenesis. Further studies will no doubt continue to add mechanistic detail to this process and with luck, clarify how these observations may lead to development of novel therapeutic approaches for the treatment of multiple sclerosis. Full article
(This article belongs to the Special Issue Advances in Multiple Sclerosis 2017)
Show Figures

Graphical abstract

Back to TopTop