Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (399)

Search Parameters:
Keywords = synthetic insecticide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2228 KB  
Article
Chemical Composition and Insecticidal Activity of Eschweilera jefensis Organic Extracts Against Aphis gossypii
by Lilia Chérigo, Juan Fernández, Ramy Martínez, Emmanuel Santos and Sergio Martínez-Luis
Agronomy 2025, 15(10), 2374; https://doi.org/10.3390/agronomy15102374 (registering DOI) - 11 Oct 2025
Abstract
Aphis gossypii is a major pest that harms crops like industrial tomatoes in Panama. Recent resistance to synthetic insecticides has prompted interest in using plant secondary metabolites as eco-friendly alternatives. While some plants with insecticidal properties are well-known, others remain unexplored but could [...] Read more.
Aphis gossypii is a major pest that harms crops like industrial tomatoes in Panama. Recent resistance to synthetic insecticides has prompted interest in using plant secondary metabolites as eco-friendly alternatives. While some plants with insecticidal properties are well-known, others remain unexplored but could offer effective solutions. This study aimed to evaluate the insecticidal activity of ethanolic extracts from the stems and leaves of Eschweilera jefensis against nymphs and adults of Aphis gossypii. Extracts were tested at three concentrations (25, 50, and 100 µg/L), with mortality assessed at 24, 48, and 72 h post-application. The LC50 values for the stem extract were 66.5, 36.8, and 31.0 μg/L, and for the leaf extract, they were 37.3, 28.4, and <25 μg/L at 24, 48, and 72 h, respectively. An advanced metabolomic analysis was conducted to identify the active compounds in each extract. This analysis uncovered several pentacyclic triterpenes, which, known for their insecticidal properties, are likely the key bioactive components responsible for the observed effects. Advanced metabolic analyses also revealed that the leaf extract, displaying the strongest insecticidal activity, is primarily composed of friedelene, while the stem extract contains betulin as their key active compounds. Furthermore, 29 known compounds were identified across both extracts, representing the first comprehensive report on the metabolic composition of E. jefensis, which underscores the significance of these findings. Together, these results suggest that E. jefensis extracts could serve as a promising natural alternative to synthetic insecticides for the management and control of A. gossypii. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

23 pages, 2833 KB  
Review
Staurosporine as an Antifungal Agent
by Filipa C. Santos, Joaquim T. Marquês, Eva N. Santos and Rodrigo F. M. de Almeida
Int. J. Mol. Sci. 2025, 26(19), 9683; https://doi.org/10.3390/ijms26199683 - 4 Oct 2025
Viewed by 209
Abstract
Staurosporine (STS) was discovered in 1977 by Omura and colleagues during a chemical screening for microbial alkaloids. It was the first indolocarbazole compound isolated from a soil-dwelling bacterium, Streptomyces staurosporeus. STS was also found to have antifungal activity, but its potent protein [...] Read more.
Staurosporine (STS) was discovered in 1977 by Omura and colleagues during a chemical screening for microbial alkaloids. It was the first indolocarbazole compound isolated from a soil-dwelling bacterium, Streptomyces staurosporeus. STS was also found to have antifungal activity, but its potent protein kinase (PK) inhibitory properties, perhaps the most extensively characterized biochemical feature of STS, were only revealed nearly a decade after its discovery. Thereafter, STS has been studied mainly for its anticancer potential with foreseen applications ranging from biomedical (e.g., antiparasitic) to agricultural (e.g., insecticidal). Interestingly, the recent discovery that STS induces apoptosis in the filamentous fungus Neurospora crassa renewed interest in this molecule as a scaffold for antifungal drug development. Studies in fungi and mammalian cell lines suggest that, in addition to PK inhibition, other modes of action are possible for STS. These may involve the targeting of membrane lipid domains and/or alterations of membrane biophysical properties. Here, the studies on the action of STS and its natural and synthetic derivatives against diverse fungal species, since its discovery to the present day, are critically reviewed and discussed with the aim of highlighting their advantages, limitations to be overcome, conceivable mechanisms of action, and potential as antifungal chemotherapeutic agents. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Graphical abstract

24 pages, 13107 KB  
Article
Assessing the Insecticidal Performance of Commiphora myrrha Essential Oil Against Prostephanus truncatus and Sitophilus zeamais Using a Metabolomic Approach
by Nickolas G. Kavallieratos, Maria C. Boukouvala, Constantin S. Filintas, Demeter Lorentha S. Gidari, Anna Skourti, Vasiliki Panagiota C. Kyrpislidi, Filippo Maggi, Riccardo Petrelli, Eleonora Spinozzi, Marta Ferrati, Cristina Teruzzi and Fabrizio Araniti
Plants 2025, 14(19), 3031; https://doi.org/10.3390/plants14193031 - 30 Sep 2025
Viewed by 370
Abstract
Botanical insecticides have gained interest due to a rising demand for environmentally friendly pest control methods for stored-product protection. The insecticidal effectiveness of the essential oil (EO) obtained from the oleo-gum-resin of myrrh (Commiphora myrrha (Nees) Engl.), against Prostephanus truncatus (Horn) and [...] Read more.
Botanical insecticides have gained interest due to a rising demand for environmentally friendly pest control methods for stored-product protection. The insecticidal effectiveness of the essential oil (EO) obtained from the oleo-gum-resin of myrrh (Commiphora myrrha (Nees) Engl.), against Prostephanus truncatus (Horn) and Sitophilus zeamais Motschulsky, and the metabolic shifts of the two species, were investigated in this work. A thorough gas chromatography-mass spectrometry (GC-MS) investigation showed that the composition of this EO was dominated by furanosesquiterpenes, specifically, furanoeudesma-1,3-diene and curzerene. Commiphora myrrha EO treatments, especially at 1000 ppm, resulted in high adult mortality for P. truncatus (up to 85.6%), while S. zeamais showed only moderate mortality (up to 25.6%). To investigate the different species-specific effectiveness of the EO, untargeted GC-MS metabolomic profiling was conducted to elucidate the impact of the EO on the metabolism of the insects, with subsequent data analysis employing multivariate, univariate, and network methods. Each species reacts differently to the treatments (myrrh EO versus the synthetic insecticide pirimiphos-methyl (PM)), according to the analysis results. In particular, myrrh EO caused distinct shifts in metabolic pathways that varied between P. truncatus and S. zeamais. Overall, C. myrrha EO exhibits potential as a botanical insecticide, especially against P. truncatus, and it causes metabolic disturbances specific to the species. The results demonstrate the significance of metabolomic technologies in assessing bioinsecticide mechanisms and lend credence to their possible incorporation in integrated pest management methodologies or their contribution to the creation of diagnostic indicators of insecticidal exposure. Full article
(This article belongs to the Special Issue Green Insect Control: The Potential Impact of Plant Essential Oils)
Show Figures

Figure 1

18 pages, 5793 KB  
Article
Purpureocillium takamizusanense: A New Entomopathogenic Fungus in the Americas and Its Pathogenicity Against the Cacao Black Bug, Antiteuchus tripterus (Hemiptera: Pentatomidae)
by Elgar Hernandez-Diaz, Luis Carlos Martínez, Jorge Ronny Díaz-Valderrama, Liz Marjory Cumpa-Velasquez, Segundo Manuel Oliva-Cruz, Angel F. Huaman-Pilco, Karol Rubio, Eduardo Enrique León-Alcántara and Manuel Alejandro Ix-Balam
Agronomy 2025, 15(10), 2315; https://doi.org/10.3390/agronomy15102315 - 30 Sep 2025
Viewed by 442
Abstract
The black bug, Antiteuchus tripterus (Hemiptera: Pentatomidae), is one of the most important pests of cacao in Peru. Its control relies primarily on synthetic insecticides, which negatively impact the environment and the health of cacao farmers. Therefore, the use of natural enemies, such [...] Read more.
The black bug, Antiteuchus tripterus (Hemiptera: Pentatomidae), is one of the most important pests of cacao in Peru. Its control relies primarily on synthetic insecticides, which negatively impact the environment and the health of cacao farmers. Therefore, the use of natural enemies, such as entomopathogenic fungi, represents a promising and sustainable alternative. In this study, we aimed to characterize entomopathogenic fungal isolates obtained from naturally infected A. tripterus adults in Peru. Using morphological and molecular approaches, we identified the isolates as Purpureocillium takamizusanense. Then, we assessed their pathogenic potential against A. tripterus and identified their functional cell wall groups. To evaluate pathogenicity, A. tripterus nymphs were exposed to serially diluted conidial suspensions (105–109 conidia mL−1; isolate 24M) in both laboratory and field trials. The isolates exhibited conidial viability above 99%. Concentration-mortality bioassays confirmed the lethal effect of P. takamizusanense against A. tripterus nymphs. The LC50 was 1.65 × 106 conidia mL–1, while the LT50 and LT90 were 3.08 and 7.29 days, respectively. The field mortality rate was about 52%, which can be explained by the influence of the environment. Spectroscopy analyses revealed functional groups including chitin, glucans, lipids, aliphatic chains, and proteins, which may contribute to infection and fungal persistence. This study presents the first record of P. takamizusanense in the Americas and highlights its potential as a biocontrol agent against A. tripterus in cacao plantations. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

17 pages, 1569 KB  
Article
Floral Diversity Shapes Herbivore Colonization, Natural Enemy Performance, and Economic Returns in Cauliflower
by Keerthi Manikyanahalli Chandrashekara, Sachin Suresh Suroshe, Grandhi Ramamurthy Hithesh, Subhash Chander, Rakesh Kumar, Kirankumar G. Nagaraju, Srinivas Kummari, Rakshith H. Siddaswamy, Chaitanya Mallanagouda, Eere Vidya Madhuri, Jagadam Sai Rupali, Loganathan Ramakrishnan and Harishkumar H. Venkatachalapathi
Horticulturae 2025, 11(9), 1045; https://doi.org/10.3390/horticulturae11091045 - 2 Sep 2025
Viewed by 573
Abstract
Cauliflower, a widely cultivated vegetable crop valued for its edible curds, faces a persistent threat from insect pests, which are typically managed using synthetic insecticides. This study evaluated the benefits of intercropping practices as part of an ecological pest management strategy in cauliflower [...] Read more.
Cauliflower, a widely cultivated vegetable crop valued for its edible curds, faces a persistent threat from insect pests, which are typically managed using synthetic insecticides. This study evaluated the benefits of intercropping practices as part of an ecological pest management strategy in cauliflower cultivation during the winter seasons of 2017–18 and 2021–22. Nine insect pests belonging to six families of three orders were recorded. The calendula intercropping system (IS) consistently showed the lowest infestation by Plutella xylostella and Pieris brassicae/plant. Calendula IS had attracted the highest numbers of syrphids, Cotesia glomerata, Diaeretiella rapae, Cotesia vestalis, and coccinellids such as Coccinella septempunctata and Cheilomenes sexmaculata. In candytuft IS, a strong tri-trophic interaction between the flower and D. rapae significantly reduced aphid populations, for each additional D. rapae, aphid numbers decreased by 48.53 in 2018. The marigold IS recorded the highest Shannon diversity index in 2021–22. The longest adult survival of C. septempunctata (8.67 ± 3.35 days), in the absence of aphids was recorded on candytuft flowers. The total sugars and protein in flowers positively influenced the longevity of the adult coccinellid beetles (R2-40.42 and 20.79%, respectively). Calendula intercropping yielded the highest revenue return of Indian rupee (₹) 11.33 per INR 1 invested, compared to the cauliflower monocrop (1.58). These findings demonstrate that, intercropping and habitat manipulation can enhance ecological pest control and reduce the dependence on synthetic chemicals. Full article
(This article belongs to the Special Issue Enhancing Biological Control of Insect Pests of Horticultural Crops)
Show Figures

Graphical abstract

14 pages, 571 KB  
Article
Phytochemical and Insecticidal Activity of Some Thyme Plants’ Essential Oils Against Cryptoblabes gnidiella and Scirtothrips mangiferae on Mango Inflorescences
by Mohammad M. Aljameeli, Nawal Abdulaziz Alfuhaid, Ahmed Ramadan El-Rokh, Samira A. El-Salam, May A. Elhefni, Amira S. El-Rahman, Esraa M. Hussein, Jazem A. Mahyoub, Hayam Elshazly, Hanan S. Alyahya, Shatha I. Alqurashi, Mohamed A. Abdein, EL-Sayed M. Qaoud and Marwa M. Mosallam
Insects 2025, 16(9), 922; https://doi.org/10.3390/insects16090922 - 2 Sep 2025
Viewed by 813
Abstract
Mango fruits are one of the strategic fruit crops in different countries that are attacked by several serious pests such as Cryptoblabes gnidiella and Scirtothrips mangiferae. Natural extracts, especially essential oils, provide several promising insecticide agents to control different insects as an [...] Read more.
Mango fruits are one of the strategic fruit crops in different countries that are attacked by several serious pests such as Cryptoblabes gnidiella and Scirtothrips mangiferae. Natural extracts, especially essential oils, provide several promising insecticide agents to control different insects as an alternative to synthetic insecticides. Using Clevenger-type hydrodistillation, the essential oils of five thyme plants—Thymus vulgaris, Origanum vulgare, Thymus argenteus, Thymus citriodorus, and Origanum syriacum—from Saudi Arabia and Egypt were extracted, and GC/MS analysis was performed. In addition, some chemical parameters of the five species were determined, such as chlorophyll a, chlorophyll b, β-carotene, total antioxidant capacity, total phenols, and total flavonoids. Two compounds, thymol and carvacrol, were identified in T. vulgaris and O. vulgare at ratios of 69.45 and 64.82%, respectively. These major compounds were isolated and identified using 1H NMR analysis. The insecticidal potentials of the five essential oils and their pure isolated compounds were evaluated on C. gnidiella and S. mangiferae on mango inflorescences. The results showed that T. vulgaris and O. vulgare oils were the most potent against C. gnidiella (LC50, 183.33 and 164.68 ppm, respectively) and S. mangiferae (18.93 and 16.93 ppm, respectively). Thymol and carvacrol had the highest effect on both insects. Furthermore, the effect of thymol and carvacrol at LC50 values on some biochemical parameters of C. gnidiella was determined. Therefore, thymol and carvacrol from Thymus species are promising compounds that could be used as insecticides against the harmful insects C. gnidiella and S. mangiferae on mango inflorescences. Full article
(This article belongs to the Special Issue Advanced Pest Control Strategies of Fruit Crops)
Show Figures

Scheme 1

18 pages, 1156 KB  
Article
Contact Toxicity, Electrophysiology, Anti-Mating, and Repellent Effects of Piper guineense Against Spodoptera frugiperda (Lepidoptera: Noctuidae)
by Mobolade D. Akinbuluma, Jacques A. Deere, Peter Roessingh and Astrid T. Groot
Insects 2025, 16(9), 908; https://doi.org/10.3390/insects16090908 - 1 Sep 2025
Viewed by 672
Abstract
The fall armyworm, Spodoptera frugiperda, is a long-distance migratory pest, which invaded the African continent in 2016, causing enormous losses to agricultural crops, especially maize. Synthetic insecticides are primarily used for managing S. frugiperda, but they leave residues on human food [...] Read more.
The fall armyworm, Spodoptera frugiperda, is a long-distance migratory pest, which invaded the African continent in 2016, causing enormous losses to agricultural crops, especially maize. Synthetic insecticides are primarily used for managing S. frugiperda, but they leave residues on human food and animal feed and also cause environmental hazards. We evaluated the crude ethanolic extract of Piper guineense fruits for contact toxicity on S. frugiperda larvae and determined the lethal concentration (LC50) of the extract. Additionally, we conducted an electrophysiological (EAG) experiment to determine the responses of adult S. frugiperda males and females to P. guineense and determined whether the extract influenced mating, oviposition, and repellence to the adult female. We found that P. guineense extract caused significantly higher mortality to S. frugiperda larvae than an ethanol control. Electrophysiologically, we observed significantly higher responses to the extract than the control, with some variations in response between the sexes. A wind tunnel experiment revealed that females moved more towards the control than towards the extract. Taken together, our results confirm that P. guineense extract is effective against S. frugiperda larvae and adults. Future research should explore the responses of S. frugiperda to P. guineense extract on a field scale. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Graphical abstract

23 pages, 2428 KB  
Review
Cabbage Stink Bug (Eurydema ventralis Kolenati, 1846) (Hemiptera: Pentatomidae)—An Increasingly Important Pest in Europe
by Sergeja Adamič Zamljen, Tanja Bohinc and Stanislav Trdan
Agriculture 2025, 15(16), 1779; https://doi.org/10.3390/agriculture15161779 - 19 Aug 2025
Viewed by 858
Abstract
Eurydema ventralis Kolenati, 1846 (Hemiptera: Pentatomidae), commonly known as the cabbage stink bug, is an increasingly important pest in Brassicaceae crops across Europe, including Slovenia. This review provides a comprehensive synthesis of current knowledge on the taxonomy, biology, distribution, and economic impact of [...] Read more.
Eurydema ventralis Kolenati, 1846 (Hemiptera: Pentatomidae), commonly known as the cabbage stink bug, is an increasingly important pest in Brassicaceae crops across Europe, including Slovenia. This review provides a comprehensive synthesis of current knowledge on the taxonomy, biology, distribution, and economic impact of Eurydema ventralis, with a focus on cabbage (Brassica oleracea L. var. capitata) cultivation. Various monitoring and population assessment methods are discussed as foundational tools for implementing integrated pest management (IPM). The focus of this study is on the available control strategies, including chemical, biological, cultural, and mechanical approaches. While synthetic insecticides remain a commonly used option, their environmental impact, potential for resistance development, and non-target effects raise concerns. Increasing research attention is being given to biological control agents, such as egg parasitoids, generalist predators (e.g., Coccinellidae, Carabidae, Nabidae), and entomopathogenic fungi. These agents show considerable promise but are not being fully utilized at present. A further review of cultural practices and mechanical control methods is also undertaken for their role in reducing pest populations. The compatibility of different strategies within an IPM framework is examined in detail. In conclusion, this review identifies existing knowledge gaps and puts forward a number of recommendations for future research directions. The purpose of these recommendations is to support the development of more sustainable and ecological pest management solutions for E. ventralis in cabbage cultivation. Full article
Show Figures

Figure 1

12 pages, 520 KB  
Article
Evaluation of Bacterial Strains as a Sustainable Approach for Control of Myzus cerasi (F.) (Hemiptera: Aphididae) Under Laboratory and Field Conditions
by Yeşim Bulak Korkmaz
Insects 2025, 16(8), 857; https://doi.org/10.3390/insects16080857 - 18 Aug 2025
Viewed by 653
Abstract
This study aims to evaluate the insecticidal activity of four bacterial strains against M. cerasi under both laboratory and field conditions, in order to provide a more sustainable and eco-friendly alternative to chemical insecticides. Four environmentally friendly bacterial strains were evaluated for their [...] Read more.
This study aims to evaluate the insecticidal activity of four bacterial strains against M. cerasi under both laboratory and field conditions, in order to provide a more sustainable and eco-friendly alternative to chemical insecticides. Four environmentally friendly bacterial strains were evaluated for their potential as biocontrol agents: Brevibacillus brevis (FD-1), Bacillus cereus (FD-63), Bacillus thuringiensis subsp. kenyae (FDP-8), and Bacillus thuringiensis subsp. kurstaki (FDP-41). Experiments were conducted under both controlled laboratory and field conditions. Data showed that mortality rates ranged from 33.33% to 93.33% under controlled conditions and from 13.33% to 50% under field conditions over the 96 h period. B. thuringiensis subsp. kurstaki (FDP-41) and B. thuringiensis subsp. kenyae (FDP-8) were the most effective bacterial strains against the aphids in controlled conditions. The percentage of mortality related to these applications was 93.33% and 80% in 96 h under laboratory conditions. However, the effectiveness of B. thuringiensis subsp. kurstaki (FDP-41) was 50% at 96 h in the field. These findings suggest that B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. kenyae hold significant potential as biological control agents against M. cerasi. Additionally, FDP-41 showed the lowest LT50 value of 25.37 h in the laboratory and 86.40 h in the field. This indicates a much more rapid and potent effect on M. cerasi compared to other strains. As a result, it was concluded that these bacterial strains may be used successfully as biocontrol agents in the biological control of M. cerasi. Their successful use could reduce reliance on synthetic insecticides, thereby minimizing pesticide residues on crops and contributing to safer agricultural production and environmental sustainability. Full article
Show Figures

Figure 1

21 pages, 4423 KB  
Article
Binary Mixtures of Essential Oils: Potent Housefly Adulticides That Are Safe Against Non-Target Species
by Hataichanok Passara, Sirawut Sittichok, Tanapoom Moungthipmalai, Chamroon Laosinwattana, Kouhei Murata and Mayura Soonwera
Insects 2025, 16(8), 855; https://doi.org/10.3390/insects16080855 - 17 Aug 2025
Cited by 1 | Viewed by 1441
Abstract
In this study, we investigated the insecticidal potential of Eucalyptus globulus Labill. and Cymbopogon citratus Stapf essential oils (EOs), both alone and in synergistic blends with their primary active compounds, against adult houseflies (Musca domestica L.). Toxicity assessments were also conducted on [...] Read more.
In this study, we investigated the insecticidal potential of Eucalyptus globulus Labill. and Cymbopogon citratus Stapf essential oils (EOs), both alone and in synergistic blends with their primary active compounds, against adult houseflies (Musca domestica L.). Toxicity assessments were also conducted on non-target organisms—dwarf honeybees (Apis florea Fabricius) and guppies (Poecilia reticulata Peters)—to evaluate environmental safety. All binary EO mixtures demonstrated superior efficacy compared to individual EOs and the synthetic pyrethroid α-cypermethrin (1% positive control). The most potent formulation, combining 2.5% (v/v) geranial with 2.5% (v/v) E. globulus EO, exhibited a synergistic effect, achieving complete fly mortality (LT50: 0.06 h). This mixture’s mortality index significantly exceeded those of single-component formulations, with a mortality index of 0.22, confirming greater toxicity to flies than α-cypermethrin. Importantly, all the tested EOs and their blends were non-toxic to honeybees and guppies; in comparison, α-cypermethrin caused significant harm. These findings highlight the 2.5% (v/v) geranial + 2.5% (v/v) E. globulus EO blend as a highly effective and environmentally friendly alternative to conventional insecticides. Further research is recommended to optimize its formulation for practical use in sustainable fly management. Full article
(This article belongs to the Special Issue Plant Essential Oils for the Control of Insects and Mites)
Show Figures

Figure 1

18 pages, 2236 KB  
Article
Lethal Effect and Two-Sex Life Table of Tuta absoluta (Meyrick) Treated with Melaleuca alternifolia and Eucalyptus staigeriana Essential Oils
by Brenda C. F. Braga, Dejane S. Alves, Andreísa F. Lima, Júlia A. C. Oliveira, Karolina G. Figueiredo, Vinícius C. Carvalho, Suzan K. V. Bertolucci and Geraldo A. Carvalho
Horticulturae 2025, 11(8), 951; https://doi.org/10.3390/horticulturae11080951 - 12 Aug 2025
Viewed by 610
Abstract
The Tuta absoluta species represents a significant threat to solanaceous crops globally and has developed resistance to conventional synthetic insecticides. This study investigated the insecticidal properties of essential oils (EOs) from Melaleuca alternifolia and Eucalyptus staigeriana against T. absoluta using the age-stage, two-sex [...] Read more.
The Tuta absoluta species represents a significant threat to solanaceous crops globally and has developed resistance to conventional synthetic insecticides. This study investigated the insecticidal properties of essential oils (EOs) from Melaleuca alternifolia and Eucalyptus staigeriana against T. absoluta using the age-stage, two-sex life table methodology. Initially, the EOs of M. alternifolia and E. staigeriana were chemically characterized by gas chromatography (GC) techniques. In this analysis, we identified 19 compounds in M. alternifolia essential oil, with terpinen-4-ol, γ-terpinene, and α-terpinene as the predominant constituents. Eucalyptus staigeriana essential oil contained 25 identified compounds, predominantly limonene, terpinolene, geranial, and neral. Essential oils were dissolved in acetone and applied topically to larval stages. Both treatments significantly reduced pest longevity and adversely affected key demographic parameters. Melaleuca alternifolia treatment resulted in a substantial decrease in the intrinsic rate of population increase, indicating potential for population suppression. These findings support the potential application of M. alternifolia and E. staigeriana EOs as biological control agents against T. absoluta in integrated pest management programs. Full article
Show Figures

Graphical abstract

26 pages, 3619 KB  
Review
Baculovirus-Based Biocontrol: Synergistic and Antagonistic Interactions of PxGV, PxNPV, SeMNPV, and SfMNPV in Integrative Pest Management
by Alberto Margarito García-Munguía, Carlos Alberto García-Munguía, Paloma Lucía Guerra-Ávila, Estefany Alejandra Sánchez-Mendoza, Fabián Alejandro Rubalcava-Castillo, Argelia García-Munguía, María Reyna Robles-López, Luis Fernando Cisneros-Guzmán, María Guadalupe Martínez-Alba, Ernesto Olvera-Gonzalez, Raúl René Robles-de la Torre and Otilio García-Munguía
Viruses 2025, 17(8), 1077; https://doi.org/10.3390/v17081077 - 2 Aug 2025
Viewed by 1266
Abstract
The use of chemical pesticides in agriculture has led to the development of resistant pest populations, posing a challenge to long-term pest management. This review aims to evaluate the scientific literature on the individual and combined use of baculoviruses with conventional chemical and [...] Read more.
The use of chemical pesticides in agriculture has led to the development of resistant pest populations, posing a challenge to long-term pest management. This review aims to evaluate the scientific literature on the individual and combined use of baculoviruses with conventional chemical and biological insecticides to combat Plutella xylostella, Spodoptera exigua, and Spodoptera frugiperda in broccoli, tomato, and maize crops. Notable findings include that both individual Plutella xylostella nucleopolyhedrovirus (PxNPV) and the combination of Plutella xylostella granulovirus (PxGV) and azadirachtin at a low dose effectively control Plutella xylostella; both combinations of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) with emamectin benzoate and chlorfenapyr reduced resistance in Spodoptera exigua and increased the efficacy of the insecticides; and the combination of Spodoptera frugiperda nucleopolyhedrovirus (SfMNPV) and spinetoram is effective against Spodoptera frugiperda. Integrating baculoviruses into pest management strategies offers a promising approach to mitigate the adverse effects of chemical pesticides, such as resistance development, health risks, and environmental damage. However, there remains a broad spectrum of research opportunities regarding the use of baculoviruses in agriculture. Full article
Show Figures

Figure 1

19 pages, 5967 KB  
Article
Chitosan Application Improves the Growth and Physiological Parameters of Tomato Crops
by Juan José Reyes-Pérez, Luis Tarquino Llerena-Ramos, Wilmer Tezara, Víctor Reynel, Luis Guillermo Hernández-Montiel and Antonio Juárez-Maldonado
Horticulturae 2025, 11(8), 878; https://doi.org/10.3390/horticulturae11080878 - 28 Jul 2025
Viewed by 1219
Abstract
Tomato crops are treated with high concentrations of synthetic fertilizers and insecticides to increase yields, but the careless use of these chemicals harms the environment and human health and affects plant pathogen resistance. The effect of foliar spray of three concentrations of chitosan [...] Read more.
Tomato crops are treated with high concentrations of synthetic fertilizers and insecticides to increase yields, but the careless use of these chemicals harms the environment and human health and affects plant pathogen resistance. The effect of foliar spray of three concentrations of chitosan (500, 1000, and 2000 mg L−1) on plant growth, yield, fruit quality, and physiological performance in two tomato varieties (Floradade and Candela F1) was studied. Physiological traits such as photosynthesis, chlorophyll content, and leaf area index of the plants were positively affected by chitosan, an effective compound that biostimulates growth, with increases in biomass of organs with respect to the control treatment. Chitosan also improved tomato quality, such as increases in polyphenols, antioxidant capacity, flavonoids, carotenoids, vitamin C, and total soluble solids in both tomato varieties. Finally, yield increased by 76.4% and 65.4% in Floradade and Candela F1, respectively. The responses of tomato plants to chitosan application were different depending on the variety evaluated, indicating a differential response to the biostimulant. The use of chitosan in agriculture is a tool that has no negative effects on plants and the environment and can increase the productive capacity of tomato plants. Full article
Show Figures

Figure 1

14 pages, 1214 KB  
Article
Larvicidal Activity of Essential Oil, Hydrolate, and Aqueous Extract from Leaves of Myrciaria floribunda Against Aedes Aegypti
by Eduarda Florencio Santos, Wevertton Marllon Anselmo, Eurico Eduardo Pinto de Lemos, Júlio César Ribeiro de Oliveira Farias de Aguiar, Ana Carla da Silva, Fábio Henrique Galdino dos Santos, Camila Caroline Lopes Arruda, João Vitor Castro Aguiar, José Jorge Almeida de Andrade, Suyana Karolyne Lino da Rocha, Liderlânio de Almeida Araújo, Paulo Gomes Pereira Júnior, Caroline Francisca de Oliveira Albuquerque, Edymilaís da Silva Sousa, Gerlan Lino dos Santos, Tamires Zuleide da Conceição, Leonardo Arcanjo de Andrade, Luiz Alberto Lira Soares, Magda Rhayanny Assunção Ferreira and Daniela Maria do Amaral Ferraz Navarro
Molecules 2025, 30(15), 3116; https://doi.org/10.3390/molecules30153116 - 25 Jul 2025
Viewed by 927
Abstract
The mosquito Aedes aegypti is the vector responsible for the transmission of important arboviruses such as dengue fever, Chikungunya, Zika virus, and yellow fever. These diseases affect millions of people and exert impacts on healthcare systems throughout the world. Given the increasing resistance [...] Read more.
The mosquito Aedes aegypti is the vector responsible for the transmission of important arboviruses such as dengue fever, Chikungunya, Zika virus, and yellow fever. These diseases affect millions of people and exert impacts on healthcare systems throughout the world. Given the increasing resistance to synthetic insecticides, essential oils from plants constitute an ecologically viable alternative for the control of this vector. The aim of the present study was to investigate the larvicidal activity of the essential oil (EO), aqueous extract, rutin, and hydrolate from the leaves of Myrciaria floribunda against Aedes aegypti larvae in the initial L4 stage. The yield of EO was 0.47%. Thirty-seven chemical constituents were identified and quantified using chromatographic methods. The major constituents were (E)-caryophyllene (27.35%), 1,8-cineole (11.25%), β-selinene (4.92%), and α-muurolene (4.92%). In the larvicidal tests, the lethal concentration (LC50) was 201.73 ppm for the essential oil, 15.85% for the aqueous extract, and 22.46 ppm for rutin. The hydrolate had no larvicidal activity. The compounds that exhibited larvicidal activity against Aedes aegypti constitute a promising option for the development of natural formulations to diminish the propagation of this vector. Full article
(This article belongs to the Special Issue Chemical Composition and Bioactivities of Essential Oils, 3rd Edition)
Show Figures

Graphical abstract

13 pages, 1768 KB  
Article
Insecticidal Effect of Lemongrass Essential Oil Against Megalurothrips usitatus (Bagnall)
by Yun Han, Ming Zhu, Bo Qiu, Shaukat Ali and Jianhui Wu
Agronomy 2025, 15(7), 1733; https://doi.org/10.3390/agronomy15071733 - 18 Jul 2025
Viewed by 2118
Abstract
Megalurothrips usitatus is a global pest damaged legume crops, particularly cowpea (Vigna unguiculata). This study aimed to determine the chemical composition of lemongrass essential oil (LEO) and its insecticidal activity against the insect pest M. usitatus. The composition of lemongrass [...] Read more.
Megalurothrips usitatus is a global pest damaged legume crops, particularly cowpea (Vigna unguiculata). This study aimed to determine the chemical composition of lemongrass essential oil (LEO) and its insecticidal activity against the insect pest M. usitatus. The composition of lemongrass essential oil was analyzed using Gas Chromatography Mass Spectrometry (GC-MS). D-limonene, Neral, and Citral were found to constitute over 30% of the essential oil. LEO exhibited higher insecticidal toxicity than the individual pure components. Based on our results, the optimal formulation of LEO emulsifiable concentrates (ECs) was identified, and their insecticidal activity was further investigated. The mortality rate induced by the LEO did not significantly differ from that of the emamectin benzoate (EB) formulation but was lower than that of spinosad (SP). Additionally, LEO was shown to act as a synergist when combined with EB for controlling M. usitatus. This research offers an alternative strategy for controlling M. usitatus and reducing the reliance on synthetic pesticides. Full article
Show Figures

Figure 1

Back to TopTop