Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,669)

Search Parameters:
Keywords = test reactor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2194 KB  
Article
Long-Term Evaluation of CNT-Clad Stainless-Steel Cathodes in Multi-Channel Microbial Electrolysis Cells Under Variable Conditions
by Kevin Linowski, Md Zahidul Islam, Luguang Wang, Fei Long, Choongho Yu and Hong Liu
Energies 2025, 18(19), 5241; https://doi.org/10.3390/en18195241 - 2 Oct 2025
Abstract
Microbial electrolysis cells (MECs) present a viable platform for sustainable hydrogen generation from organic waste, but their scalability is limited by cathode performance, cost, and durability. This study evaluates three hybrid carbon nanotube (CNT) cathodes—acid-washed CNT (AW-CNT), thin layer non-acid-washed CNT (TN-NAW-CNT), and [...] Read more.
Microbial electrolysis cells (MECs) present a viable platform for sustainable hydrogen generation from organic waste, but their scalability is limited by cathode performance, cost, and durability. This study evaluates three hybrid carbon nanotube (CNT) cathodes—acid-washed CNT (AW-CNT), thin layer non-acid-washed CNT (TN-NAW-CNT), and thick layer non-acid-washed CNT (TK-NAW-CNT)—each composed of stainless-steel-supported CNTs coated with molybdenum phosphide (MoP). These were benchmarked against woven carbon cloth (WCC) under varied operational conditions. A custom multi-channel reactor operated for 341 days, testing cathode performance across applied voltages (0.7–1.2 V), buffer types (phosphate vs. bicarbonate), pH (7.0 and 8.5), buffer concentrations (10–200 mM), and substrates including acetate, lactate, and treated acid whey. CNT-based cathodes consistently showed higher current densities than WCC across most conditions with significant difference found at higher applied voltages. TK-NAW-CNT achieved peak current densities of 259 A m−2 at 1.2 V and maintained >41 A m−2 in real-waste conditions with no added buffer. Long-term performance losses were minimal: 4.5% (TN-NAW-CNT), 0.1% (TK-NAW-CNT), 10.8% (AW-CNT), and 6.8% (WCC). CNT cathodes showed improved performance from reduced resistance and greater electrochemical stability, while proton transfer improvements benefited all materials due to buffer type and pH conditions. These results highlight CNT-based cathodes as promising, scalable alternatives to WCC for energy-positive wastewater treatment. Full article
Show Figures

Figure 1

25 pages, 11406 KB  
Article
Experimental Optimization, Scaling Up, and Characterization for Continuous Aragonite Synthesis from Lime Feedstock Using Magnesium Chloride as Chemical Inducer
by Mohammad Ghaddaffi M. Noh, Nor Yuliana Yuhana, Mohammad Hafizuddin Hj Jumali, Mohammad Syazwan Onn and Ruzilah Sanum
Processes 2025, 13(10), 3142; https://doi.org/10.3390/pr13103142 - 30 Sep 2025
Abstract
The current state of the art research, and latest engineering technology application in the synthesis of the aragonite crystalline phase of calcium carbonate is presented here. Aragonite crystalline products are highly valuable in selected industries, such as medical and personal care, and in [...] Read more.
The current state of the art research, and latest engineering technology application in the synthesis of the aragonite crystalline phase of calcium carbonate is presented here. Aragonite crystalline products are highly valuable in selected industries, such as medical and personal care, and in food additives using MgCl2 as a chemical inducer. The outcome of this literature review provides the outlook of the available research whitespace opportunity in optimizing the current process parameters and in ensuring that sustainable and economically feasible continuous production of aragonite products could be achieved. One of the major improvements proposed in this study is to investigate the methods of synthesizing aragonite crystalline particles using a continuous mineral carbonation reactor system and optimizing the operating parameters. An experimental design was established to identify all the main effects to maximize aragonite production. The three main effects investigated are the effect of feedstock or reactant concentration, the effect of reaction temperature, and the effect of reaction time towards aragonite yield in the final products synthesized. An optimized operating parameter for maximum aragonite yield at 95% purity was proposed at the reaction temperature T of 90 °C, reaction time t of 10 min, and feedstock ratio Mg-to-Ca of 0.4. Subsequently, the continuous reactor system was designed, operated, and tested for at least 50 h operation, where the lime CaO(s) feed was successfully converted into aragonite products with purity between 75 and 81%. The properties and quality of the aragonite produced were analytically characterized from the following laboratory methods which include the thermalgravimetric analysis, TGA; X-Ray Diffraction, XRD; scanning electron microscopy, SEM; and induction coupled plasma, ICP. TGA mass balance after decomposition suggests that 44% of the mass balance represents the weight of CO2 sequestered in the aragonite crystalline carbonates. Hence, the aragonite crystalline carbonates can be labeled as a green product which sequesters 0.44 kg of CO2 per 1 kg of precipitated aragonite products synthesized. Interestingly, SEM microscopy characterization results revealed that the aragonite precipitate has a physical morphology of needle-like shape with a good aspect ratio (length/diameter) AR of between 8.67 micron and 11.35 micron. The properties were found to be suitable for paper making fillers, medical, personal care, and food additive applications. Full article
10 pages, 480 KB  
Article
Low Seroprevalence of Bovine Brucellosis in Communal Areas of Limpopo Province, South Africa
by Karabelo Madiba, Nomakorinte Gcebe, Carin Boshoff, Mohamed Sirdar, Ngoako Ramaselela and Tiny Hlokwe
Vet. Sci. 2025, 12(10), 942; https://doi.org/10.3390/vetsci12100942 - 29 Sep 2025
Abstract
Brucellosis is caused by Gram-negative coccobacilli of the Brucella genus, with cattle mainly infected with Brucella abortus. The disease burden is a threat to socioeconomic development (agriculture/tourism) as well as to animal health, biodiversity and to human health due to the zoonotic [...] Read more.
Brucellosis is caused by Gram-negative coccobacilli of the Brucella genus, with cattle mainly infected with Brucella abortus. The disease burden is a threat to socioeconomic development (agriculture/tourism) as well as to animal health, biodiversity and to human health due to the zoonotic nature of this pathogen. In South Africa (S.A), the prevalence of the disease in cattle and livestock in general is mostly unknown in communal farms. A cross-sectional study with a multistage sampling strategy was applied in communal areas from three district municipalities, i.e., Mopani, Capricorn and Sekhukhune of Limpopo province, South Africa. Sera (n = 1133) were collected and screened for antibodies against the Brucella species using the Rose Bengal Test (RBT) and confirmation of positive reactors with a Complement Fixation Test (CFT). The brucellosis seroprevalence was found to be 0.79% (95% CI: 0.38–1.45) by a CFT. Univariate analysis indicated that only the frequency of birth was significantly associated with CFT positivity (OR = 20; 95% Cl: 1.61–247.99; p = 0.039). The multivariable logistic regression model revealed that the frequency of birth, age, breed, gender, municipality and district were not statistically significant predictors at 0.05 level. However, some variables like cattle aged more than five years, had higher odds of CFT positivity compared to those younger than five years (OR = 5.66; 95% CI: 0.36–87.97), although the association was not statistically significant (p = 0.215). All positive reactors detected originated from the Mopani district municipality. Overall, the findings reveal a much lower seroprevalence of brucellosis in the communal farms of Limpopo province than previously assumed. We are of the opinion that the low seroprevalence is attributed to effective control strategies implemented by the Limpopo provincial veterinary services and hence provide important information to assist the regulatory bodies in the control and eradication of the disease. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

15 pages, 1930 KB  
Article
Assessing Probiotic Efficacy: Short-Term Impact on Canine Gut Microbiota Using an In Vitro Colonic Fermentation Model
by Achraf Adib Lesaux, Jonas Ghyselinck, Cindy Duysburgh, Massimo Marzorati, Jonna E. B. Koper and Jake Burlet
Pets 2025, 2(4), 33; https://doi.org/10.3390/pets2040033 - 28 Sep 2025
Abstract
In dogs, gut microbiome dysbiosis is associated with several health conditions, including gastrointestinal disease. Probiotic supplementation can support a balanced gut microbiome. This study assessed the impact of a probiotic containing a mixture of Lacticaseibacillus casei, Limosilactobacillus fermentum, Levilactobacillus brevis, [...] Read more.
In dogs, gut microbiome dysbiosis is associated with several health conditions, including gastrointestinal disease. Probiotic supplementation can support a balanced gut microbiome. This study assessed the impact of a probiotic containing a mixture of Lacticaseibacillus casei, Limosilactobacillus fermentum, Levilactobacillus brevis, and Enterococcus faecium on the gut microbiota of six dogs using short-term colonic simulations. Two groups were included, i.e., blank versus supplementation with the test product, and incubated for 48 h. Probiotic-supplemented reactors had significantly greater fermentative activity compared with the blank, as shown by lower pH levels and higher gas pressure after 6 h, 24 h, and 48 h of incubation (p < 0.05 for all). Saccharolytic fermentation also increased, with a significantly higher level of acetate at 24 h and propionate at 6 h, 24 h, and 48 h with the test product versus blank (p < 0.05 for all). There was no significant effect of the test product on alpha-diversity, but beta-diversity analysis revealed a clear separation in the microbial community composition between the test product and blank. Eight bacterial taxa were enriched with test product supplementation, including the probiotic test strains as well as Megamonas and Bacteroides species. This study, using in vitro short-term colon simulations with six canine donors, provides insights into the probiotic characteristics of the test product. Full article
Show Figures

Graphical abstract

22 pages, 5267 KB  
Article
On Ballooning and Burst Behavior of Nuclear Fuel Clad Considering Heating Rate Effect: Development of a Damage Model, a Burst Correlation and Experimental Validation
by Ather Syed and Mahendra Kumar Samal
Solids 2025, 6(4), 56; https://doi.org/10.3390/solids6040056 - 28 Sep 2025
Abstract
Nuclear fuel cladding serves as the primary barrier to the release of radioactive fission products and is subjected to high-temperature and high-pressure environments during both normal reactor operation and accident scenarios such as loss of coolant accidents (LOCAs). Predicting the burst behavior of [...] Read more.
Nuclear fuel cladding serves as the primary barrier to the release of radioactive fission products and is subjected to high-temperature and high-pressure environments during both normal reactor operation and accident scenarios such as loss of coolant accidents (LOCAs). Predicting the burst behavior of cladding is essential for ensuring structural integrity, especially under varying heating rates—an aspect inadequately addressed in existing empirical models. In this study, a finite element-based damage model is developed to simulate the ballooning and burst behavior of Zircaloy-4 cladding. The model incorporates creep deformation, stress triaxiality, and time-dependent damage accumulation. Material behavior is characterized using experimentally determined creep constants and the model is calibrated against burst test data from the literature. A new heating-rate-dependent burst correlation is proposed based on model outputs. The results indicate that increasing the heating rate raises the burst temperature due to reduced exposure time in the temperature regime where creep damage accumulates significantly. The model accurately reproduces burst behavior across a wide range of internal pressures (1–10 MPa) and heating rates (5–100 °C/s). The newly developed correlation improves predictive capability in accident analysis tools and can be directly implemented into safety analysis codes for Indian pressurized heavy water reactors (PHWRs), contributing to enhanced reactor safety evaluations. Full article
(This article belongs to the Topic Multi-scale Modeling and Optimisation of Materials)
Show Figures

Graphical abstract

30 pages, 21593 KB  
Article
Design and CFD Analysis of a Compact Anaerobic Digestion Bioreactor Evaluating Agitation Designs and Configurations for Energy Efficiency
by Hoe-Gil Lee and Brett Rice
Energies 2025, 18(19), 5085; https://doi.org/10.3390/en18195085 - 24 Sep 2025
Viewed by 36
Abstract
Anaerobic digestion (AD) plays a crucial role in renewable energy production and waste management by converting organic waste into biogas and reduces greenhouse gas emissions. Optimized bioreactor performance depends on two main categories of factors: (1) reactor and geometric factors of agitator geometry, [...] Read more.
Anaerobic digestion (AD) plays a crucial role in renewable energy production and waste management by converting organic waste into biogas and reduces greenhouse gas emissions. Optimized bioreactor performance depends on two main categories of factors: (1) reactor and geometric factors of agitator geometry, blade configuration, rotational speed, torque, power consumption, and the impeller-to-tank ration (d/D), and (2) fluid property factors of viscosity and flow characteristics, which relates turbulence, circulation patters, and stratification. Impeller power strongly influences nutrient distribution, gas exchange, and temperature uniformity within the reactor. While higher power inputs improve turbulence and prevent stratification, they also increase energy demand. This study evaluated fifteen blade configurations to determine the optimal fluid circulation using ANSYS 2024 R1 Fluent simulations. The bioreactor tank, with a diameter of 0.130 m and a height of 0.225 m, was tested at speeds ranging from 40 to 150 RPM. Among the single-blade configurations, the curved blade achieved the highest velocity at 0.521 m/s, generating localized circulations. The Rushton blade produced strong radial flows with a velocity of 0.364 m/s, while the propeller blade reached 0.254 m/s, supporting axial flow. In double-blade arrangements, the curved-propeller combination exhibited velocities between 0.261 and 0.342 m/s, enhancing fluid motion. The three-blade configurations resulted in the highest power consumption, ranging from 1.94 W to 1.99 W, with power increasing at higher RPMs and larger impeller sizes. However, torque values decreased over time. The most efficient mixing was achieved at moderate RPMs (80–120) and an impeller-to-tank diameter ratio (d/D) of approximately 0.75. These findings highlight the significance of blade selection in balancing mixing efficiency and energy consumption for scalable AD systems. Full article
(This article belongs to the Special Issue Advanced Technologies in Waste-to-Bioenergy)
Show Figures

Figure 1

18 pages, 2656 KB  
Article
Photocatalytic Degradation of Safranin O: Unraveling the Roles of Dissolved Gases, Environmental Matrices, and Reactive Species
by Meriem Bendjama and Oualid Hamdaoui
Catalysts 2025, 15(9), 914; https://doi.org/10.3390/catal15090914 - 22 Sep 2025
Viewed by 135
Abstract
This study investigates the impacts of the gas environment, water matrix, and reactive species on the TiO2-mediated photocatalytic degradation of safranin O (SO), a dye commonly found in wastewater. A slurry reactor (UVA, 365 nm) was used to quantify SO oxidation [...] Read more.
This study investigates the impacts of the gas environment, water matrix, and reactive species on the TiO2-mediated photocatalytic degradation of safranin O (SO), a dye commonly found in wastewater. A slurry reactor (UVA, 365 nm) was used to quantify SO oxidation while systematically varying the SO concentration (5–40 mg/L), the TiO2 loading (0–3 g/L), the temperature (15–45 °C), and the pH (2–12). The dissolved gases (air, nitrogen, and argon) and matrices (deionized water, mineral water, and seawater) were also examined. Eight mechanistic probes (ascorbic acid, methanol, azide, nitrite, benzoquinone, oxalate, sucrose, and phenol) were used to identify active oxidants. UVA/TiO2 achieved rapid decolorization in approximately 90 min at 10 mg/L of SO and 0.4 g/L of TiO2. Decolorization rates decreased with increasing SO concentration due to active-site competition and inner-filter effects. Rates also exhibited a bell-shaped dependence on TiO2 loading due to light scattering and aggregation at high solids concentrations. Temperature exhibited a non-monotonic profile with an optimum around 25 °C, and the pH displayed an optimum range with maximal removal occurring around pH 10 and declining at pH 12. Air saturation outperformed N2 and Ar, indicating that O2 is the terminal electron acceptor. Photocatalytic performance decreased in the order deionized water > mineral water > seawater, owing to bicarbonate/chloride scavenging and ionic-strength effects. Scavenger tests converged on OH dominance, with measurable contributions from superoxide/hydrogen peroxide (O2•−/H2O2) and valence-band holes (h+); singlet oxygen (1O2) played a minor role. These findings underscore the critical interplay between operational and environmental factors and offer a practical framework for scaling TiO2-based SO abatement in real waters. Full article
Show Figures

Figure 1

18 pages, 3472 KB  
Article
Study of Neutron Absorption of Reactor Spectrum by Composites Based on UHMWPE
by Yernat A. Kozhakhmetov, Mazhyn K. Skakov, Bauyrzhan T. Tuyakbayev, Yerzhan Ye. Sapatayev and Alexandr V. Gradoboev
Crystals 2025, 15(9), 828; https://doi.org/10.3390/cryst15090828 - 20 Sep 2025
Viewed by 270
Abstract
The development of radiation-protective materials with high resistance under reactor irradiation conditions is one of the urgent tasks in modern nuclear technologies. Ultra-high molecular weight polyethylene (UHMWPE) is considered a promising matrix material due to its high hydrogen content, low density, and strong [...] Read more.
The development of radiation-protective materials with high resistance under reactor irradiation conditions is one of the urgent tasks in modern nuclear technologies. Ultra-high molecular weight polyethylene (UHMWPE) is considered a promising matrix material due to its high hydrogen content, low density, and strong chemical resistance. Composite samples were fabricated by flame formation and irradiated in the IVG-1M research reactor of the National Nuclear Center of the Republic of Kazakhstan. Their neutron absorption capacity, bending strength, and chemical resistance were measured before and after irradiation. The results show that H3BO3 provides the strongest contribution to the increase in the neutron absorption coefficient, with the maximum effect observed at 30% filler content. Reactor irradiation caused only a moderate reduction in the composites’ bending strength. Chemical resistance tests confirmed that UHMWPE-based composites with WC and PbO retain stability in aggressive environments, even after reactor exposure. Overall, UHMWPE-based composites containing boron and heavy-element fillers demonstrate strong potential as radiation-protective materials. Their design should account not only for neutron absorption efficiency but also for mechanical strength and chemical resistance under reactor operating conditions. Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
Show Figures

Figure 1

18 pages, 18240 KB  
Article
High-Temperature Corrosion Behavior of 12Cr18Ni10Ti Grade Austenitic Stainless Steel Under Chlorination Conditions
by Yuliya Baklanova, Yerzhan Sapatayev and Kuanysh Samarkhanov
Metals 2025, 15(9), 1052; https://doi.org/10.3390/met15091052 - 20 Sep 2025
Viewed by 264
Abstract
Ensuring the long-term integrity of structural materials in extreme environments is a critical challenge in the design of equipment for nuclear fuel cycle operations. In particular, the durability of materials exposed to high temperatures and chemically aggressive environments during the processing of irradiated [...] Read more.
Ensuring the long-term integrity of structural materials in extreme environments is a critical challenge in the design of equipment for nuclear fuel cycle operations. In particular, the durability of materials exposed to high temperatures and chemically aggressive environments during the processing of irradiated reactor components remains a key concern. This study investigates the high-temperature corrosion behavior of 12Cr18Ni10Ti austenitic stainless steel in the reaction chamber of a beryllium chlorination plant developed for recycling irradiated beryllium reflectors from the JMTR (Japan Materials Testing Reactor). The chlorination process was conducted at temperatures ranging from 500 °C to 1000 °C in a chlorine-rich atmosphere. Post-operation analysis of steel samples extracted from the chamber revealed that uniform wall thinning was the predominant degradation mechanism. However, in high-temperature regions near the heating element, localized forms of damage, specifically pitting and intergranular corrosion, were detected, indicating that thermal stresses exacerbated localized attack. These findings contribute to the assessment of the service life of structural components under extreme conditions and offer practical guidance for material selection and design optimization in high-temperature chlorination systems used in nuclear applications. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Figure 1

22 pages, 4471 KB  
Article
Continuous Fermentative Biohydrogen Production from Fruit-Vegetable Waste: A Parallel Approach to Assess Process Reproducibility
by Leonardo J. Martínez-Mendoza, Raúl Muñoz and Octavio García-Depraect
Fermentation 2025, 11(9), 545; https://doi.org/10.3390/fermentation11090545 - 19 Sep 2025
Viewed by 259
Abstract
Dark fermentation (DF) has gained increasing interest over the past two decades as a sustainable route for biohydrogen production; however, understanding how reproducible the process can be, both from macro- and microbiological perspectives, remains limited. This study assessed the reproducibility of a parallel [...] Read more.
Dark fermentation (DF) has gained increasing interest over the past two decades as a sustainable route for biohydrogen production; however, understanding how reproducible the process can be, both from macro- and microbiological perspectives, remains limited. This study assessed the reproducibility of a parallel continuous DF system using fruit-vegetable waste as a substrate under strictly controlled operational conditions. Three stirred-tank reactors were operated in parallel for 90 days, monitoring key process performance indicators. In addition to baseline operation, different process enhancement strategies were tested, including bioaugmentation, supplementation with nutrients and/or additional fermentable carbohydrates, and modification of key operational parameters such as pH and hydraulic retention time, all widely used in the field to improve DF performance. Microbial community structure was also analyzed to evaluate its reproducibility and potential relationship with process performance and metabolic patterns. Under these conditions, key performance indicators and core microbial features were reproducible to a large extent, yet full consistency across reactors was not achieved. During operation, unforeseen operational issues such as feed line clogging, pH control failures, and mixing interruptions were encountered. Despite these disturbances, the system maintained an average hydrogen productivity of 3.2 NL H2/L-d, with peak values exceeding 6 NL H2/L-d under optimal conditions. The dominant microbial core included Bacteroides, Lactobacillus, Veillonella, Enterococcus, Eubacterium, and Clostridium, though their relative abundances varied notably over time and between reactors. An inverse correlation was observed between lactate concentration in the fermentation broth and the amount of hydrogen produced, suggesting it can serve as a precursor for hydrogen. Overall, the findings presented here demonstrate that DF processes can be resilient and broadly reproducible. However, they also emphasize the sensitivity of these processes to operational disturbances and microbial shifts. This underscores the necessity for refined control strategies and further systematic research to translate these insights into stable, high-performance real-world systems. Full article
Show Figures

Figure 1

26 pages, 6112 KB  
Article
Preliminary Experimental Validation of Single-Phase Natural Circulation Loop Based on RELAP5-3D Code: Part I
by Hossam H. Abdellatif, Joshua Young, David Arcilesi and Richard Christensen
J. Nucl. Eng. 2025, 6(3), 38; https://doi.org/10.3390/jne6030038 - 19 Sep 2025
Viewed by 338
Abstract
The molten salt reactor (MSR) is a prominent Generation IV nuclear reactor concept that offers substantial advantages over conventional solid-fueled systems, including enhanced fuel utilization, inherent passive safety features, and significant reductions in long-lived radioactive waste. Central to its safety strategy is a [...] Read more.
The molten salt reactor (MSR) is a prominent Generation IV nuclear reactor concept that offers substantial advantages over conventional solid-fueled systems, including enhanced fuel utilization, inherent passive safety features, and significant reductions in long-lived radioactive waste. Central to its safety strategy is a reliance on natural circulation (NC) mechanisms, which eliminate the need for active pumping systems and enhance system reliability during normal and off-normal conditions. However, the challenges associated with molten salts, such as their high melting points, corrosivity, and material compatibility issues, render experimental investigations inherently complex and demanding. Therefore, the use of high-Pr-number surrogate fluids represents a practical alternative for studying molten salt behavior under safer and more accessible experimental conditions. In this study, a single-phase natural circulation loop setup at the University of Idaho’s Thermal–Hydraulics Laboratory was employed to investigate NC behavior under various operating conditions. The RELAP5-3D code was initially validated against water-based experiments before employing Therminol-66, a high-Prandtl-number surrogate for molten salts, in the natural circulation loop for the first time. The RELAP5-3D results demonstrated good agreement with both steady-state and transient experimental results, thereby confirming the code’s ability to model NC behavior in a single-phase flow regime. The results also highlighted certain experimental limitations that should be addressed to enhance the NC loop’s performance. These include increasing the insulation thickness to reduce heat losses, incorporating a dedicated mass flow measurement device for improved accuracy, and replacing the current heater with a higher-capacity unit to enable testing at elevated power levels. By identifying and addressing the main causes of these limitations and uncertainties during water-based experiments, targeted improvements can be implemented in both the RELAP5 model and the experimental setup, thereby ensuring that tests using a surrogate fluid for MSR analyses are conducted with higher accuracy and minimal uncertainty. Full article
(This article belongs to the Special Issue Advances in Thermal Hydraulics of Nuclear Power Plants)
Show Figures

Figure 1

23 pages, 8269 KB  
Article
A Novel Double-Diamond Microreactor Design for Enhanced Mixing and Nanomaterial Synthesis
by Qian Peng, Guangzu Wang, Chao Sheng, Haonan Wang, Yao Fu and Shenghong Huang
Micromachines 2025, 16(9), 1058; https://doi.org/10.3390/mi16091058 - 18 Sep 2025
Viewed by 311
Abstract
This study introduces the Double-Diamond Reactor (DDR), a novel planar passive microreactor designed to overcome the following conventional limitations: inefficient mass transfer, high flow resistance, and clogging. The DDR integrates splitting–turning–impinging (STI) hydrodynamic principles via CFD-guided optimization, generating chaotic advection to enhance mixing. [...] Read more.
This study introduces the Double-Diamond Reactor (DDR), a novel planar passive microreactor designed to overcome the following conventional limitations: inefficient mass transfer, high flow resistance, and clogging. The DDR integrates splitting–turning–impinging (STI) hydrodynamic principles via CFD-guided optimization, generating chaotic advection to enhance mixing. Experimental evaluations using Villermaux–Dushman tests showed a segregation index (Xs) as low as 0.027 at 100 mL·min−1, indicating near-perfect mixing. In BaSO4 nanoparticle synthesis, the DDR achieved a 46% smaller average particle size (95 nm) and narrower distribution (σg=1.27) compared to reference designs (AFR-1), while maintaining low pressure drops (<20 kPa at 60 mL·min−1). The DDR’s superior performance stems from its hierarchical flow division and concave-induced vortices, which eliminate stagnant zones. This work demonstrates the DDR’s potential for high-throughput nanomaterial synthesis with precise control over particle characteristics, offering a scalable and energy-efficient solution for advanced chemical processes. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

20 pages, 3176 KB  
Article
Photocatalytic Mineralization of Emerging Organic Contaminants Using Real and Simulated Effluents in Batch and Membrane Photoreactors
by Cristina Lavorato, Angela Severino, Pietro Argurio, Raffaele Molinari, Beatrice Russo, Alberto Figoli and Teresa Poerio
Catalysts 2025, 15(9), 904; https://doi.org/10.3390/catal15090904 - 18 Sep 2025
Viewed by 233
Abstract
Conventional wastewater treatment plants (WWTPs) have limited efficiency in removing emerging pollutants (EPs), meaning these pollutants persist and lead to widespread ecological contamination. In this study, real effluents from a WWTP were characterized using TOC and Py-GC/MS, which indicated the presence of various [...] Read more.
Conventional wastewater treatment plants (WWTPs) have limited efficiency in removing emerging pollutants (EPs), meaning these pollutants persist and lead to widespread ecological contamination. In this study, real effluents from a WWTP were characterized using TOC and Py-GC/MS, which indicated the presence of various organic compounds that could be indicative of micro-nanoplastics (MNPs) or plastics additives. To address this challenge, we propose the use of a photocatalytic membrane reactor (PMR) as an advanced treatment system capable of achieving high degradation efficiency under mild operating conditions. Preliminary experimental tests were conducted using various commercial photocatalysts (TiO2, WO3, Nb2O5), four UV lamps, and oxidants (air, O2) using added Gemfibrozil (GEM) as a drug model compound. Real effluent samples collected from WWTP were tested with and without pretreatment to remove coarse particles prior to photocatalysis. Mineralization was achieved in both cases, but it occurred at a higher rate for the pretreated effluent. The mineralization of GEM and EPs in real effluent was achieved within five hours under UV irradiation using titanium dioxide (TiO2) as a low-cost photocatalyst in a PMR. The results highlight the potential of photocatalytic systems, and particularly PMRs, as a promising technology for removing recalcitrant pollutants in real effluents offering a viable solution for improved environmental protection. Full article
(This article belongs to the Special Issue 15th Anniversary of Catalysts—Recent Advances in Photocatalysis)
Show Figures

Figure 1

14 pages, 2287 KB  
Article
Applicability of Reynolds Analogy and Visualization of Coolant Flow Mixing in Downcomer of Land-Based Water-Cooled SMR
by Anton Riazanov, Sergei Dmitriev, Aleksandr Dobrov, Denis Doronkov, Aleksey Pronin, Tatiana Demkina, Daniil Kuritsin, Danil Nikolaev and Dmitriy Solntsev
Fluids 2025, 10(9), 244; https://doi.org/10.3390/fluids10090244 - 16 Sep 2025
Viewed by 236
Abstract
This article presents an experimental study on the hydrodynamics of coolant flow within the pressure vessel of a small modular reactor (SMR) cooled with water, including areas such as the annular downcomer, bottom chamber, and core-simulating channels that are being developed for use [...] Read more.
This article presents an experimental study on the hydrodynamics of coolant flow within the pressure vessel of a small modular reactor (SMR) cooled with water, including areas such as the annular downcomer, bottom chamber, and core-simulating channels that are being developed for use in land-based nuclear power plants. This paper describes the experimental setup and test model, measurement techniques used, experimental conditions under which this research was conducted, and results obtained. This study was conducted at the Nizhny Novgorod State Technical University (NNSTU) using a high-pressure aerodynamic testing facility and a scale model that included structural components similar to those found in loop-type reactors. Experiments were performed with Reynolds numbers (Re) ranging from 20,000 to 50,000 in the annular downcomer space of the test model. Two independent techniques were used to simulate the non-uniform flow field in the pressure vessel: passive impurity injection (adding propane to the airflow) and hot tracer (heating one of the reactor circulation loops). The axial velocity field at the inlet to the reactor core was also investigated. This study provided information about the spatial distribution of a tracer within the coolant flow in the annular downcomer and bottom chamber of the pressure vessel. Data on the distribution of the contrasting admixture are presented in plots. The swirling nature of the coolant flow within the pressurized vessel was analyzed. It was shown that the intensity of mixing within the bottom chamber of the pressure vessel is influenced by the presence of a central vortex. Parameters associated with the mixing of admixtures within the model for the pressure vessel were estimated. Additionally, the possibility for simulating flow with different temperature mixing processes using isothermal models was observed. Full article
(This article belongs to the Special Issue Flow Visualization: Experiments and Techniques, 2nd Edition)
Show Figures

Figure 1

17 pages, 2103 KB  
Article
Preparation and Performance Evaluation of a Low-Fume Asphalt Binder
by Hongmei Cai, Rui Li, Yuzhen Zhang and Junrui Xiao
Infrastructures 2025, 10(9), 244; https://doi.org/10.3390/infrastructures10090244 - 16 Sep 2025
Viewed by 221
Abstract
Asphalt fume emissions cause significant environmental hazards during the preparation of hot-mix asphalt. In this study, experimental investigations were conducted employing a reactor vessel to simulate asphalt fumes under controlled conditions. Asphalt fumes were obtained through an integrated system comprising glass fiber filter [...] Read more.
Asphalt fume emissions cause significant environmental hazards during the preparation of hot-mix asphalt. In this study, experimental investigations were conducted employing a reactor vessel to simulate asphalt fumes under controlled conditions. Asphalt fumes were obtained through an integrated system comprising glass fiber filter cartridges and an impinger absorption bottle. Quantitative analysis was then conducted using gravimetric analysis and UV-Vis spectrophotometry. Through systematic monitoring of compositional changes in asphalt binder fractions, the fume emission characteristics during in-plant mixing operations were quantitatively correlated with the following processing parameters: temperature, airflow rate, and mixing duration. Comparative evaluation revealed optimal performance from a ternary compound inhibitor containing cuprous chloride, ditert-butylhydroquinone, and ferric chloride in mass proportions of 4:4:2. At a critical dosage of 0.6 wt%, this compound inhibitor demonstrated significant reduction in total particulate matter emissions without compromising asphalt binder properties. In addition, comprehensive performance characterization through rheological testing and thin-film oven aging (TFOT) showed that the modified low-fume asphalt binder maintained equivalent or improved performances compared to a conventional asphalt binder. Full article
Show Figures

Figure 1

Back to TopTop