Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = tetraether lipids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 20388 KB  
Article
Distribution and Environmental Implications of GDGTs in Sediments from Three Asian Mangrove Wetlands
by Qiunan Li, Yasong Wang, Xinxin Li, Mohammad Abdul Baki, Shilpi Saha, Jiaodi Zhou and Yunping Xu
Water 2025, 17(18), 2677; https://doi.org/10.3390/w17182677 - 10 Sep 2025
Viewed by 470
Abstract
Glycerol Dialkyl Glycerol Tetraethers (GDGTs) are microbial membrane lipids that can provide crucial information for identifying organic carbon sources and understanding paleoenvironments. Despite numerous studies reporting the presence of GDGTs in various terrestrial and marine environments, there is a paucity of reports concerning [...] Read more.
Glycerol Dialkyl Glycerol Tetraethers (GDGTs) are microbial membrane lipids that can provide crucial information for identifying organic carbon sources and understanding paleoenvironments. Despite numerous studies reporting the presence of GDGTs in various terrestrial and marine environments, there is a paucity of reports concerning GDGTs in mangrove wetlands that are characterized by unique hydrological conditions and disproportionately high accumulation rates of blue carbon (i.e., carbon sequestered in coastal ecosystems, where tidal flooding and anaerobic sediments facilitate exceptional long-term carbon storage). This study investigates GDGTs in 81 sediment samples from 5 sediment cores collected from three Asian mangrove wetlands in Bangladesh, Hong Kong, and Guangxi Province, China. The Hong Kong mangrove sediments had the highest GDGT concentration (370.18 ± 58.00 ng·g−1 dws), followed by Bangladesh mangrove sediments (136.70 ± 41.70 ng·g−1 dws), while Guangxi mangrove sediments had the lowest (100.80 ± 28.71 ng·g−1 dws). All samples demonstrated high BIT index values (>0.8), low IIIa/IIa index values (0.09–0.19) and the predominance of tetramethylated brGDGTs (70.38 ± 2.21%), indicating that terrestrial inputs are the primary source of organic carbon. Despite overall low methylation index (MI) values (0.15–0.35) and GDGT-0/Cren ratios, deeper sediment samples in the lower part of HK exhibited GDGT-0/Cren > 2, likely reflecting enhanced contributions of methanogenic archaea under distinct redox conditions compared to upper sediments. This in situ production may complicate the application of GDGT-based paleo-proxies, as indicated by the substantial deviations between CBT’-pH (MBT’5ME-temperature) and measured pH (instrumental temperature). The dominant bacterial phyla in the mangrove sediments of Guangxi and Bangladesh were Proteobacteria, Actinobacteriota, Chloroflexi, Acidobacteriota, and Firmicutes (>70% relative abundance). However, correlations between microbial community compositions and brGDGT isomers are different among sampling sites. Our study emphasizes that site- and depth-specific microbial activity may significantly contribute to organic matter cycling and the in situ production of GDGTs in mangrove sediments. These factors should be taken into account for organic carbon sequestration and the validity of GDGT-based paleo-proxies in mangrove wetlands. Full article
(This article belongs to the Section Ecohydrology)
Show Figures

Figure 1

25 pages, 7553 KB  
Article
Distribution and Variation Characteristics of Branched Glycerol Dialkyl Glycerol Tetraethers (BrGDGTs) in Sediment Cores Along the Nearshore-to-Offshore Gradient of the East China Sea and Their Correlation with Microbial Community Diversity
by Ting Zeng, Cheng Liu, Qunhui Yang, Jingyuan Zhao and Fuwu Ji
Biology 2025, 14(8), 1077; https://doi.org/10.3390/biology14081077 - 18 Aug 2025
Viewed by 639
Abstract
Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are promising molecular biomarkers widely applied in paleoenvironmental reconstructions, including temperature and pH. However, knowledge of the microorganisms responsible for brGDGT production in marine environments remains limited, which constrains the further development and application of brGDGT-based proxies [...] Read more.
Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are promising molecular biomarkers widely applied in paleoenvironmental reconstructions, including temperature and pH. However, knowledge of the microorganisms responsible for brGDGT production in marine environments remains limited, which constrains the further development and application of brGDGT-based proxies for reconstructing past marine conditions. In this study, both ‘living’ intact polar lipid-derived brGDGTs (IPL-brGDGTs) and ‘fossil’ core brGDGTs (CL-brGDGTs), together with bacterial community compositions, were analysed in multiple sediment cores collected along a nearshore-to-offshore transect in the East China Sea (ECS). The potential correlations between brGDGT distributions and bacterial community compositions at varying sediment depths across an environmental gradient were also explored. Results revealed that IPL-brGDGTs were predominantly biosynthesised in situ, whereas CL-brGDGTs reflected a mixture of marine autochthonous production and terrestrial inputs. Potential brGDGT-producing bacteria in nearshore environments were primarily composed of chemolithoautotrophic taxa (e.g., Gammaproteobacteria and Dehalococcoidia) and chemoheterotrophic taxa (e.g., Alphaproteobacteria, Bacilli, and Actinobacteria). In contrast, offshore regions were dominated by chemoheterotrophic hypoxic bacteria (e.g., Anaerolineae and Phycisphaerae) and facultatively anaerobic chemolithoautotrophic bacteria (e.g., Gammaproteobacteria and Desulfobacteria). A significant difference in bacterial community composition and IPL-brGDGT distribution was observed at a depth of 17 cm, likely due to physical disturbance in near-surface sediments, such as wave action, tidal forces, and storm events. Variance partitioning analysis (VPA) revealed that the bacterial community composition alone accounted for 14.1% of the variation in IPL-brGDGTs and 6.5% in CL-brGDGTs, further suggesting that the distribution of brGDGTs is primarily influenced by the composition of the bacterial community in the nearshore-to-offshore sedimentary ecosystems of the ECS. These findings regarding the potential biosynthesis of brGDGTs in coastal habitats advance our understanding of the microbial mechanisms that regulate brGDGT distribution in marine ecosystems. Moreover, they emphasise the importance of considering physical disturbance effects when interpreting sedimentary brGDGT records for paleoenvironmental reconstructions in marginal seas, such as the ECS. Full article
Show Figures

Figure 1

25 pages, 2441 KB  
Review
Archaeal Lipids: Extraction, Separation, and Identification via Natural Product Chemistry Perspective
by Tuo Li, Youyi Luo, Changhong Liu, Xuan Lu and Baomin Feng
Int. J. Mol. Sci. 2025, 26(7), 3167; https://doi.org/10.3390/ijms26073167 - 29 Mar 2025
Cited by 1 | Viewed by 2470
Abstract
Archaeal lipids, defining a primordial life domain alongside Bacteria and Eukarya, are distinguished by their unique glycerol-1-phosphate backbone and ether-linked isoprenoid chains. Serving as critical geochemical biomarkers, archaeal lipids like glycerol dialkyl glycerol tetraethers (GDGTs) underpin paleoclimate proxies, while their phylum-specific distributions illuminate [...] Read more.
Archaeal lipids, defining a primordial life domain alongside Bacteria and Eukarya, are distinguished by their unique glycerol-1-phosphate backbone and ether-linked isoprenoid chains. Serving as critical geochemical biomarkers, archaeal lipids like glycerol dialkyl glycerol tetraethers (GDGTs) underpin paleoclimate proxies, while their phylum-specific distributions illuminate phylogenetic divergence. Despite the maturity of Mass Spectrometry-based quantitative biomarkers—predominantly those with established structures—becoming well-established in geochemical research, systematic investigation of archaeal lipids as natural products has notably lagged. This deficit manifests across three key dimensions: (1) Extraction methodology lacks universal protocols adapted to diverse archaeal taxa and sample matrices. While comparative studies exist, theoretical frameworks guiding method selection remain underexplored. (2) Purification challenges persist due to the unique structures and complex isomerization profiles of archaeal lipids, hindering standardized separation protocols. (3) Most critically, structural characterization predominantly depends on decades-old foundational studies. However, the existing reviews prioritize chemical structural, biosynthetic, and applied aspects of archaeal lipids over analytical workflows. This review addresses this gap by adopting a natural product chemistry perspective, integrating three key aspects: (1) the clarification of applicable objects, scopes, and methodological mechanisms of various extraction technologies for archaeal lipids, encompassing both cultured and environmental samples; (2) the elucidation of separation principles underlying polar-gradient lipid fractionation processes, leveraging advanced chromatographic technologies; (3) the detailed exploration of applications for NMR in resolving complex lipid structures, with specialized emphasis on determining the stereochemical configuration. By synthesizing six decades of methodological evolution, we establish a comprehensive analytical framework, from lipids extraction to structural identification. This integrated approach constructs a systematic methodological paradigm for archaeal lipid analysis, bridging theoretical principles with practical implementation. Full article
Show Figures

Figure 1

24 pages, 6018 KB  
Article
Bilayer-Forming Lipids Enhance Archaeal Monolayer Membrane Stability
by Margot Saracco, Philippe Schaeffer, Maxime Tourte, Sonja-Verena Albers, Yoann Louis, Judith Peters, Bruno Demé, Stephane Fontanay and Philippe M. Oger
Int. J. Mol. Sci. 2025, 26(7), 3045; https://doi.org/10.3390/ijms26073045 - 26 Mar 2025
Cited by 1 | Viewed by 1475
Abstract
Archaeal membranes exhibit remarkable stability under extreme environmental conditions, a feature attributed to their unique lipid composition. While it is widely accepted that tetraether lipids confer structural integrity by forming monolayers, the role of bilayer-forming diether lipids in membrane stability remains unclear. Here, [...] Read more.
Archaeal membranes exhibit remarkable stability under extreme environmental conditions, a feature attributed to their unique lipid composition. While it is widely accepted that tetraether lipids confer structural integrity by forming monolayers, the role of bilayer-forming diether lipids in membrane stability remains unclear. Here, we demonstrate that incorporating diethers into archaeal-like lipid assemblies enhances membrane organization and adaptability under thermal stress. Using neutron diffraction, we show that membranes composed of mixed diethers and tetraethers exhibit greater structural order and stability compared to pure lipid systems. Contrary to expectations, monolayer-forming tetraethers alone display increased variability in lamellar spacing under fluctuating temperature and humidity, whereas mixed lipid membranes maintain a consistent architecture. Furthermore, neutron-scattering length density profiles reveal an unexpected density feature at the bilayer midplane, challenging conventional models of archaeal monolayer organization. These findings suggest that molecular diversity of lipid molecules, rather than tetraether dominance, plays a critical role in membrane auto-assembly, stability, and adaptability. Our results provide new insights into archaeal membrane adaptation strategies, with implications for the development of bioinspired, robust synthetic membranes for industrial and biomedical applications. Full article
(This article belongs to the Special Issue Feature Papers in 'Physical Chemistry and Chemical Physics' 2024)
Show Figures

Figure 1

22 pages, 6720 KB  
Article
Archaeosomes for Oral Drug Delivery: From Continuous Microfluidics Production to Powdered Formulations
by Ivan Vidakovic, Karin Kornmueller, Daniela Fiedler, Johannes Khinast, Eleonore Fröhlich, Gerd Leitinger, Christina Horn, Julian Quehenberger, Oliver Spadiut and Ruth Prassl
Pharmaceutics 2024, 16(6), 694; https://doi.org/10.3390/pharmaceutics16060694 - 23 May 2024
Cited by 6 | Viewed by 2407
Abstract
Archaeosomes were manufactured from natural archaeal lipids by a microfluidics-assisted single-step production method utilizing a mixture of di- and tetraether lipids extracted from Sulfolobus acidocaldarius. The primary aim of this study was to investigate the exceptional stability of archaeosomes as potential carriers for [...] Read more.
Archaeosomes were manufactured from natural archaeal lipids by a microfluidics-assisted single-step production method utilizing a mixture of di- and tetraether lipids extracted from Sulfolobus acidocaldarius. The primary aim of this study was to investigate the exceptional stability of archaeosomes as potential carriers for oral drug delivery, with a focus on powdered formulations. The archaeosomes were negatively charged with a size of approximately 100 nm and a low polydispersity index. To assess their suitability for oral delivery, the archaeosomes were loaded with two model drugs: calcein, a fluorescent compound, and insulin, a peptide hormone. The archaeosomes demonstrated high stability in simulated intestinal fluids, with only 5% of the encapsulated compounds being released after 24 h, regardless of the presence of degrading enzymes or extremely acidic pH values such as those found in the stomach. In a co-culture cell model system mimicking the intestinal barrier, the archaeosomes showed strong adhesion to the cell membranes, facilitating a slow release of contents. The archaeosomes were loaded with insulin in a single-step procedure achieving an encapsulation efficiency of approximately 35%. These particles have been exposed to extreme manufacturing temperatures during freeze-drying and spray-drying processes, demonstrating remarkable resilience under these harsh conditions. The fabrication of stable dry powder formulations of archaeosomes represents a promising advancement toward the development of solid dosage forms for oral delivery of biological drugs. Full article
(This article belongs to the Special Issue Advances in Oral Administration)
Show Figures

Graphical abstract

16 pages, 8466 KB  
Article
Membrane Adaptations and Cellular Responses of Sulfolobus acidocaldarius to the Allylamine Terbinafine
by Alka Rao, Niels A. W. de Kok and Arnold J. M. Driessen
Int. J. Mol. Sci. 2023, 24(8), 7328; https://doi.org/10.3390/ijms24087328 - 15 Apr 2023
Cited by 3 | Viewed by 4286
Abstract
Cellular membranes are essential for compartmentalization, maintenance of permeability, and fluidity in all three domains of life. Archaea belong to the third domain of life and have a distinct phospholipid composition. Membrane lipids of archaea are ether-linked molecules, specifically bilayer-forming dialkyl glycerol diethers [...] Read more.
Cellular membranes are essential for compartmentalization, maintenance of permeability, and fluidity in all three domains of life. Archaea belong to the third domain of life and have a distinct phospholipid composition. Membrane lipids of archaea are ether-linked molecules, specifically bilayer-forming dialkyl glycerol diethers (DGDs) and monolayer-forming glycerol dialkyl glycerol tetraethers (GDGTs). The antifungal allylamine terbinafine has been proposed as an inhibitor of GDGT biosynthesis in archaea based on radiolabel incorporation studies. The exact target(s) and mechanism of action of terbinafine in archaea remain elusive. Sulfolobus acidocaldarius is a strictly aerobic crenarchaeon thriving in a thermoacidophilic environment, and its membrane is dominated by GDGTs. Here, we comprehensively analyzed the lipidome and transcriptome of S. acidocaldarius in the presence of terbinafine. Depletion of GDGTs and the accompanying accumulation of DGDs upon treatment with terbinafine were growth phase-dependent. Additionally, a major shift in the saturation of caldariellaquinones was observed, which resulted in the accumulation of unsaturated molecules. Transcriptomic data indicated that terbinafine has a multitude of effects, including significant differential expression of genes in the respiratory complex, motility, cell envelope, fatty acid metabolism, and GDGT cyclization. Combined, these findings suggest that the response of S. acidocaldarius to terbinafine inhibition involves respiratory stress and the differential expression of genes involved in isoprenoid biosynthesis and saturation. Full article
(This article belongs to the Special Issue Lipids: From the Structure, Function and Evolution to Applications)
Show Figures

Graphical abstract

13 pages, 2341 KB  
Article
Highly Stable Liposomes Based on Tetraether Lipids as a Promising and Versatile Drug Delivery System
by Aybike Hemetsberger, Eduard Preis, Konrad Engelhardt, Bernd Gutberlet, Frank Runkel and Udo Bakowsky
Materials 2022, 15(19), 6995; https://doi.org/10.3390/ma15196995 - 9 Oct 2022
Cited by 5 | Viewed by 2462
Abstract
Conventional liposomes often lack stability, limiting their applicability and usage apart from intravenous routes. Nevertheless, their advantages in drug encapsulation and physicochemical properties might be helpful in oral and pulmonary drug delivery. This study investigated the feasibility and stability of liposomes containing tetraether [...] Read more.
Conventional liposomes often lack stability, limiting their applicability and usage apart from intravenous routes. Nevertheless, their advantages in drug encapsulation and physicochemical properties might be helpful in oral and pulmonary drug delivery. This study investigated the feasibility and stability of liposomes containing tetraether lipids (TEL) from Thermoplasma acidophilum. Liposomes composed of different molar ratios of TEL:Phospholipon 100H (Ph) were produced and exposed to various temperature and pH conditions. The effects on size, polydispersity index, and zeta potential were examined by dynamic and electrophoretic light scattering. Autoclaving, which was considered an additional process step after fabrication, could minimize contamination and prolong shelf life, and the stability after autoclaving was tested. Moreover, 5(6)-carboxyfluorescein leakage was measured after incubation in the presence of fetal calf serum (FCS) and lung surfactant (Alveofact). The incorporation of TEL into the liposomes significantly impacted the stability against low pH, higher temperatures, and even sterilization by autoclaving. The stability of liposomes containing TEL was confirmed by atomic force microscopy as images revealed similar sizes and morphology before and after incubation with FCS. It could be concluded that increasing the molar ratio in the TEL:Ph liposome formulations improved the structural stability against high temperature, low pH, sterilization via autoclaving, and the presence of FCS and lung surfactant. Full article
Show Figures

Figure 1

20 pages, 1826 KB  
Review
Vesicular and Planar Membranes of Archaea Lipids: Unusual Physical Properties and Biomedical Applications
by Parkson Lee-Gau Chong, Abby Chang, Allyson Yu and Ayna Mammedova
Int. J. Mol. Sci. 2022, 23(14), 7616; https://doi.org/10.3390/ijms23147616 - 9 Jul 2022
Cited by 13 | Viewed by 3840
Abstract
Liposomes and planar membranes made of archaea or archaea-like lipids exhibit many unusual physical properties compared to model membranes composed of conventional diester lipids. Here, we review several recent findings in this research area, which include (1) thermosensitive archaeosomes with the capability to [...] Read more.
Liposomes and planar membranes made of archaea or archaea-like lipids exhibit many unusual physical properties compared to model membranes composed of conventional diester lipids. Here, we review several recent findings in this research area, which include (1) thermosensitive archaeosomes with the capability to drastically change the membrane surface charge, (2) MthK channel’s capability to insert into tightly packed tetraether black lipid membranes and exhibit channel activity with surprisingly high calcium sensitivity, and (3) the intercalation of apolar squalane into the midplane space of diether bilayers to impede proton permeation. We also review the usage of tetraether archaeosomes as nanocarriers of therapeutics and vaccine adjuvants, as well as the biomedical applications of planar archaea lipid membranes. The discussion on archaeosomal therapeutics is focused on partially purified tetraether lipid fractions such as the polar lipid fraction E (PLFE) and glyceryl caldityl tetraether (GCTE), which are the main components of PLFE with the sugar and phosphate removed. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

13 pages, 2123 KB  
Article
The Polar Lipid Fraction E from Sulfolobus acidocaldarius Can Be Used as Liposomal Drug Stabilizing Agents to Reduce the Leakage of the Antivascular Drug Combretastatin A4 Disodium Phosphate from Tetraether/Diester Hybrid Archaeosomes
by Varsha P. Daswani, Umme Ayesa and Parkson Lee-Gau Chong
Biophysica 2021, 1(4), 474-486; https://doi.org/10.3390/biophysica1040034 - 9 Dec 2021
Cited by 2 | Viewed by 4022
Abstract
Liposomes have many advantages as therapeutic capsules over free drugs such as small molecule drugs and nucleic acids. Cholesterol is commonly used as a membrane stabilizing agent in liposomal drugs (e.g., mRNA-lipid nanoparticle COVID-19 vaccines). However, due to the vulnerability of cholesterol to [...] Read more.
Liposomes have many advantages as therapeutic capsules over free drugs such as small molecule drugs and nucleic acids. Cholesterol is commonly used as a membrane stabilizing agent in liposomal drugs (e.g., mRNA-lipid nanoparticle COVID-19 vaccines). However, due to the vulnerability of cholesterol to oxidation and the etiological role of cholesterol in many disorders, it is desirable to find an alternative means to stabilize liposomal membranes for drug delivery. In this study, we demonstrated that the polar lipid fraction E (PLFE), which contains exclusively bipolar tetraether macrocyclic lipids, isolated from the thermoacidophilic archaeon S. acidocaldarius can greatly stabilize the liposomal formulation of the anti-vascular drug, combretastatin A4 disodium phosphate (CA4P). Stability was assessed by determining the leakage rate constant k of entrapped CA4P fluorometrically. We found that, at 37 °C, PLFE decreases the k value monotonically from 1.54 × 10−2 s−1 for 100% 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) liposomes to 3.4 × 10−5 s−1 for 100% PLFE archaeosomes, a change of k by two orders of magnitude. The changes in k of CA4P leakage are correlated well with the changes in liposomal CA4P’s cytotoxicity against MCF-7 breast cancer cells. We further showed that the reduction in spontaneous leakage of entrapped CA4P by PLFE can be attributed to the increased membrane surface charge and the increased membrane order and packing tightness in liposomes, as reflected by the zeta potential (−6.83 to −41.1 mV from 0 to 100 mol% PLFE) and diphenylhexatriene (DPH) fluorescence polarization (0.13 to 0.4 from 0 to 100 mol% PLFE) measurements. Moreover, we showed that PLFE slows down CA4P leakage more than cholesterol in POPC liposomes. These results together suggest that PLFE lipids can serve as an effective stabilizing agent for liposomal drugs and could potentially be useful for the optimization of liposomal CA4P for cancer treatment. Full article
Show Figures

Graphical abstract

12 pages, 1012 KB  
Article
Certain, but Not All, Tetraether Lipids from the Thermoacidophilic Archaeon Sulfolobus acidocaldarius Can Form Black Lipid Membranes with Remarkable Stability and Exhibiting Mthk Channel Activity with Unusually High Ca2+ Sensitivity
by Alexander Bonanno and Parkson Lee-Gau Chong
Int. J. Mol. Sci. 2021, 22(23), 12941; https://doi.org/10.3390/ijms222312941 - 30 Nov 2021
Cited by 5 | Viewed by 2540
Abstract
Bipolar tetraether lipids (BTL) have been long thought to play a critical role in allowing thermoacidophiles to thrive under extreme conditions. In the present study, we demonstrated that not all BTLs from the thermoacidophilic archaeon Sulfolobus acidocaldarius exhibit the same membrane behaviors. We [...] Read more.
Bipolar tetraether lipids (BTL) have been long thought to play a critical role in allowing thermoacidophiles to thrive under extreme conditions. In the present study, we demonstrated that not all BTLs from the thermoacidophilic archaeon Sulfolobus acidocaldarius exhibit the same membrane behaviors. We found that free-standing planar membranes (i.e., black lipid membranes, BLM) made of the polar lipid fraction E (PLFE) isolated from S. acidocaldarius formed over a pinhole on a cellulose acetate partition in a dual-chamber Teflon device exhibited remarkable stability showing a virtually constant capacitance (~28 pF) for at least 11 days. PLFE contains exclusively tetraethers. The dominating hydrophobic core of PLFE lipids is glycerol dialky calditol tetraether (GDNT, ~90%), whereas glycerol dialkyl glycerol tetraether (GDGT) is a minor component (~10%). In sharp contrast, BLM made of BTL extracted from microvesicles (Sa-MVs) released from the same cells exhibited a capacitance between 36 and 39 pF lasting for only 8 h before membrane dielectric breakdown. Lipids in Sa-MVs are also exclusively tetraethers; however, the dominating lipid species in Sa-MVs is GDGT (>99%), not GDNT. The remarkable stability of BLMPLFE can be attributed to strong PLFE–PLFE and PLFE–substrate interactions. In addition, we compare voltage-dependent channel activity of calcium-gated potassium channels (MthK) in BLMPLFE to values recorded in BLMSa-MV. MthK is an ion channel isolated from a methanogenic that has been extensively characterized in diester lipid membranes and has been used as a model for calcium-gated potassium channels. We found that MthK can insert into BLMPLFE and exhibit channel activity, but not in BLMSa-MV. Additionally, the opening/closing of the MthK in BLMPLFE is detectable at calcium concentrations as low as 0.1 mM; conversely, in diester lipid membranes at such a low calcium concentration, no MthK channel activity is detectable. The differential effect of membrane stability and MthK channel activity between BLMPLFE and BLMSa-MV may be attributed to their lipid structural differences and thus their abilities to interact with the substrate and membrane protein. Since Sa-MVs that bud off from the plasma membrane are exclusively tetraether lipids but do not contain the main tetraether lipid component GDNT of the plasma membrane, domain segregation must occur in S. acidocaldarius. The implication of this study is that lipid domain formation is existent and functionally essential in all kinds of cells, but domain formation may be even more prevalent and pronounced in hyperthermophiles, as strong domain formation with distinct membrane behaviors is necessary to counteract randomization due to high growth temperatures while BTL in general make archaea cell membranes stable in high temperature and low pH environments whereas different BTL domains play different functional roles. Full article
(This article belongs to the Special Issue Life Under Extreme Conditions: A Molecular Science View)
Show Figures

Figure 1

17 pages, 24243 KB  
Review
Liposome Photosensitizer Formulations for Effective Cancer Photodynamic Therapy
by Sherif Ashraf Fahmy, Hassan Mohamed El-Said Azzazy and Jens Schaefer
Pharmaceutics 2021, 13(9), 1345; https://doi.org/10.3390/pharmaceutics13091345 - 27 Aug 2021
Cited by 41 | Viewed by 6162
Abstract
Photodynamic therapy (PDT) is a promising non-invasive strategy in the fight against that which circumvents the systemic toxic effects of chemotherapeutics. It relies on photosensitizers (PSs), which are photoactivated by light irradiation and interaction with molecular oxygen. This generates highly reactive oxygen species [...] Read more.
Photodynamic therapy (PDT) is a promising non-invasive strategy in the fight against that which circumvents the systemic toxic effects of chemotherapeutics. It relies on photosensitizers (PSs), which are photoactivated by light irradiation and interaction with molecular oxygen. This generates highly reactive oxygen species (such as 1O2, H2O2, O2, ·OH), which kill cancer cells by necrosis or apoptosis. Despite the promising effects of PDT in cancer treatment, it still suffers from several shortcomings, such as poor biodistribution of hydrophobic PSs, low cellular uptake, and low efficacy in treating bulky or deep tumors. Hence, various nanoplatforms have been developed to increase PDT treatment effectiveness and minimize off-target adverse effects. Liposomes showed great potential in accommodating different PSs, chemotherapeutic drugs, and other therapeutically active molecules. Here, we review the state-of-the-art in encapsulating PSs alone or combined with other chemotherapeutic drugs into liposomes for effective tumor PDT. Full article
Show Figures

Figure 1

22 pages, 3772 KB  
Article
Improvement of Pulmonary Photodynamic Therapy: Nebulisation of Curcumin-Loaded Tetraether Liposomes
by Jennifer Lehmann, Michael R. Agel, Konrad H. Engelhardt, Shashank R. Pinnapireddy, Sabine Agel, Lili Duse, Eduard Preis, Matthias Wojcik and Udo Bakowsky
Pharmaceutics 2021, 13(8), 1243; https://doi.org/10.3390/pharmaceutics13081243 - 12 Aug 2021
Cited by 24 | Viewed by 3958
Abstract
Lung cancer is one of the most common causes for a high number of cancer related mortalities worldwide. Therefore, it is important to improve the therapy by finding new targets and developing convenient therapies. One of these novel non-invasive strategies is the combination [...] Read more.
Lung cancer is one of the most common causes for a high number of cancer related mortalities worldwide. Therefore, it is important to improve the therapy by finding new targets and developing convenient therapies. One of these novel non-invasive strategies is the combination of pulmonary delivered tetraether liposomes and photodynamic therapy. In this study, liposomal model formulations containing the photosensitiser curcumin were nebulised via two different technologies, vibrating-mesh nebulisation and air-jet nebulisation, and compared with each other. Particle size and ζ-potential of the liposomes were investigated using dynamic light scattering and laser Doppler anemometry, respectively. Furthermore, atomic force microscopy and transmission electron microscopy were used to determine the morphological characteristics. Using a twin glass impinger, suitable aerodynamic properties were observed, with the fine particle fraction of the aerosols being ≤62.7 ± 1.6%. In vitro irradiation experiments on lung carcinoma cells (A549) revealed an excellent cytotoxic response of the nebulised liposomes in which the stabilisation of the lipid bilayer was the determining factor. Internalisation of nebulised curcumin-loaded liposomes was visualised utilising confocal laser scanning microscopy. Based on these results, the pulmonary application of curcumin-loaded tetraether liposomes can be considered as a promising approach for the photodynamic therapy against lung cancer. Full article
Show Figures

Graphical abstract

21 pages, 6537 KB  
Article
Polar Lipid Fraction E from Sulfolobus acidocaldarius and Dipalmitoylphosphatidylcholine Can Form Stable yet Thermo-Sensitive Tetraether/Diester Hybrid Archaeosomes with Controlled Release Capability
by Umme Ayesa and Parkson Lee-Gau Chong
Int. J. Mol. Sci. 2020, 21(21), 8388; https://doi.org/10.3390/ijms21218388 - 9 Nov 2020
Cited by 14 | Viewed by 4259
Abstract
Archaeosomes have drawn increasing attention in recent years as novel nano-carriers for therapeutics. The main obstacle of using archaeosomes for therapeutics delivery has been the lack of an efficient method to trigger the release of entrapped content from the otherwise extremely stable structure. [...] Read more.
Archaeosomes have drawn increasing attention in recent years as novel nano-carriers for therapeutics. The main obstacle of using archaeosomes for therapeutics delivery has been the lack of an efficient method to trigger the release of entrapped content from the otherwise extremely stable structure. Our present study tackles this long-standing problem. We made hybrid archaeosomes composed of tetraether lipids, called the polar lipid fraction E (PLFE) isolated from the thermoacidophilic archaeon Sulfolobus acidocaldarius, and the synthetic diester lipid dipalmitoylphosphatidylcholine (DPPC). Differential polarized phase-modulation and steady-state fluorometry, confocal fluorescence microscopy, zeta potential (ZP) measurements, and biochemical assays were employed to characterize the physical properties and drug behaviors in PLFE/DPPC hybrid archaeosomes in the presence and absence of live cells. We found that PLFE lipids have an ordering effect on fluid DPPC liposomal membranes, which can slow down the release of entrapped drugs, while PLFE provides high negative charges on the outer surface of liposomes, which can increase vesicle stability against coalescence among liposomes or with cells. Furthermore, we found that the zeta potential in hybrid archaeosomes with 30 mol% PLFE and 70 mol% DPPC (designated as PLFE/DPPC(3:7) archaeosomes) undergoes an abrupt increase from −48 mV at 37 °C to −16 mV at 44 °C (termed the ZP transition), which we hypothesize results from DPPC domain melting and PLFE lipid ‘flip-flop’. The anticancer drug doxorubicin (DXO) can be readily incorporated into PLFE/DPPC(3:7) archaeosomes. The rate constant of DXO release from PLFE/DPPC(3:7) archaeosomes into Tris buffer exhibited a sharp increase (~2.5 times), when the temperature was raised from 37 to 42 °C, which is believed to result from the liposomal structural changes associated with the ZP transition. This thermo-induced sharp increase in drug release was not affected by serum proteins as a similar temperature dependence of drug release kinetics was observed in human blood serum. A 15-min pre-incubation of PLFE/DPPC(3:7) archaeosomal DXO with MCF-7 breast cancer cells at 42 °C caused a significant increase in the amount of DXO entering into the nuclei and a considerable increase in the cell’s cytotoxicity under the 37 °C growth temperature. Taken together, our data suggests that PLFE/DPPC(3:7) archaeosomes are stable yet potentially useful thermo-sensitive liposomes wherein the temperature range (from 37 to 42–44 °C) clinically used for mild hyperthermia treatment of tumors can be used to trigger drug release for medical interventions. Full article
(This article belongs to the Collection Feature Papers in Molecular Biophysics)
Show Figures

Graphical abstract

22 pages, 2086 KB  
Review
The Cell Membrane of Sulfolobus spp.—Homeoviscous Adaption and Biotechnological Applications
by Kerstin Rastädter, David J. Wurm, Oliver Spadiut and Julian Quehenberger
Int. J. Mol. Sci. 2020, 21(11), 3935; https://doi.org/10.3390/ijms21113935 - 30 May 2020
Cited by 29 | Viewed by 5684
Abstract
The microbial cell membrane is affected by physicochemical parameters, such as temperature and pH, but also by the specific growth rate of the host organism. Homeoviscous adaption describes the process of maintaining membrane fluidity and permeability throughout these environmental changes. Archaea, and thereby, [...] Read more.
The microbial cell membrane is affected by physicochemical parameters, such as temperature and pH, but also by the specific growth rate of the host organism. Homeoviscous adaption describes the process of maintaining membrane fluidity and permeability throughout these environmental changes. Archaea, and thereby, Sulfolobus spp. exhibit a unique lipid composition of ether lipids, which are altered in regard to the ratio of diether to tetraether lipids, number of cyclopentane rings and type of head groups, as a coping mechanism against environmental changes. The main biotechnological application of the membrane lipids of Sulfolobus spp. are so called archaeosomes. Archaeosomes are liposomes which are fully or partly generated from archaeal lipids and harbor the potential to be used as drug delivery systems for vaccines, proteins, peptides and nucleic acids. This review summarizes the influence of environmental parameters on the cell membrane of Sulfolobus spp. and the biotechnological applications of their membrane lipids. Full article
(This article belongs to the Special Issue Biochemistry and Biophysics of Archaea Membranes)
Show Figures

Figure 1

15 pages, 2547 KB  
Article
Novel Intact Polar and Core Lipid Compositions in the Pyrococcus Model Species, P. furiosus and P. yayanosii, Reveal the Largest Lipid Diversity Amongst Thermococcales
by Maxime Tourte, Vanessa Kuentz, Philippe Schaeffer, Vincent Grossi, Anais Cario and Philippe M. Oger
Biomolecules 2020, 10(6), 830; https://doi.org/10.3390/biom10060830 - 29 May 2020
Cited by 17 | Viewed by 4048
Abstract
Elucidating the lipidome of Archaea is essential to understand their tolerance to extreme environmental conditions. Previous characterizations of the lipid composition of Pyrococcus species, a model genus of hyperthermophilic archaea belonging to the Thermococcales order, led to conflicting results, which hindered the comprehension [...] Read more.
Elucidating the lipidome of Archaea is essential to understand their tolerance to extreme environmental conditions. Previous characterizations of the lipid composition of Pyrococcus species, a model genus of hyperthermophilic archaea belonging to the Thermococcales order, led to conflicting results, which hindered the comprehension of their membrane structure and the putative adaptive role of their lipids. In an effort to clarify the lipid composition data of the Pyrococcus genus, we thoroughly investigated the distribution of both the core lipids (CL) and intact polar lipids (IPL) of the model Pyrococcus furiosus and, for the first time, of Pyrococcus yayanosii, the sole obligate piezophilic hyperthermophilic archaeon known to date. We showed a low diversity of IPL in the lipid extract of P. furiosus, which nonetheless allowed the first report of phosphatidyl inositol-based glycerol mono- and trialkyl glycerol tetraethers. With up to 13 different CL structures identified, the acid methanolysis of Pyrococcus furiosus revealed an unprecedented CL diversity and showed strong discrepancies with the IPL compositions reported here and in previous studies. By contrast, P. yayanosii displayed fewer CL structures but a much wider variety of polar heads. Our results showed severe inconsistencies between IPL and CL relative abundances. Such differences highlight the diversity and complexity of the Pyrococcus plasma membrane composition and demonstrate that a large part of its lipids remains uncharacterized. Reassessing the lipid composition of model archaea should lead to a better understanding of the structural diversity of their lipidome and of their physiological and adaptive functions. Full article
(This article belongs to the Collection Archaea: Diversity, Metabolism and Molecular Biology)
Show Figures

Figure 1

Back to TopTop