Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (331)

Search Parameters:
Keywords = thermophysical parameter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7281 KB  
Article
Functional Characteristics of Conductive Polymer Composites with Built-In Carbon Nanotubes and Metallic Particles
by Alexandr V. Shchegolkov, Aleksei V. Shchegolkov, Ivan D. Parfimovich, Fadey F. Komarov, Lev S. Novikov and Vladimir N. Chernik
J. Compos. Sci. 2025, 9(8), 429; https://doi.org/10.3390/jcs9080429 - 8 Aug 2025
Viewed by 427
Abstract
A series of studies was conducted on the functional and structural characteristics of polymer composite materials (PCMs) based on silicone polymers modified with multi-walled carbon nanotubes (MWCNTs) and metallic particles (CuAl or Al). The influence of the structural parameters of carbon and metallic [...] Read more.
A series of studies was conducted on the functional and structural characteristics of polymer composite materials (PCMs) based on silicone polymers modified with multi-walled carbon nanotubes (MWCNTs) and metallic particles (CuAl or Al). The influence of the structural parameters of carbon and metallic inclusions in the polymer matrix on the electrophysical and thermophysical properties of the composites was demonstrated. Various conduction mechanisms dominating in the inverse temperature ranges of 50 K–1–13 K–1, 13 K–1–6 K–1, and 6 K–1–2 K–1 were identified. The operational modes of the polymer composites as active materials for thermoregulating coatings were established. The highest temperature of 32.9 °C in operating mode and the shortest warm-up time of 180 s were observed in the composite modified with 4 wt.% CNTs and 10 wt.% bronze particles at a supply voltage of 10 V. The characteristics of the composites under atomic oxygen (AO) exposure with a fluence of 3 × 1021 atoms/cm2 was evaluated, confirming their functionality, particularly for potential space applications. The composites demonstrated nearly complete retention of their functional characteristics. The aim of this study was to develop electrically conductive functional composites based on silicone polymers containing MWCNTs and metallic particles inclusions for creating electric heating elements with tailored functional characteristics. Full article
Show Figures

Figure 1

17 pages, 6663 KB  
Article
Study on Thermal Conductivity Prediction of Granites Using Data Augmentation and Machine Learning
by Yongjie Ma, Lin Tian, Fuhang Hu, Jingyong Wang, Echuan Yan and Yanjun Zhang
Energies 2025, 18(15), 4175; https://doi.org/10.3390/en18154175 - 6 Aug 2025
Viewed by 286
Abstract
With the global low-carbon energy transition, accurate prediction of thermal and physical parameters of deep rock masses is critical for geothermal resource development. To address the insufficient generalization ability of machine learning models caused by scarce measured data on granite thermal conductivity, this [...] Read more.
With the global low-carbon energy transition, accurate prediction of thermal and physical parameters of deep rock masses is critical for geothermal resource development. To address the insufficient generalization ability of machine learning models caused by scarce measured data on granite thermal conductivity, this study focused on granites from the Gonghe Basin and Songliao Basin in Qinghai Province. A data augmentation strategy combining cubic spline interpolation and Gaussian noise injection (with noise intensity set to 10% of the original data feature range) was proposed, expanding the original 47 samples to 150. Thermal conductivity prediction models were constructed using Support Vector Machine (SVM), Random Forest (RF), and Backpropagation Neural Network(BPNN). Results showed that data augmentation significantly improved model performance: the RF model exhibited the best improvement, with its coefficient of determination R2 increasing from 0.7489 to 0.9765, Root Mean Square Error (RMSE) decreasing from 0.1870 to 0.1271, and Mean Absolute Error (MAE) reducing from 0.1453 to 0.0993. The BPNN and SVM models also improved, with R2 reaching 0.9365 and 0.8743, respectively, on the enhanced dataset. Feature importance analysis revealed porosity (with a coefficient of variation of 0.88, much higher than the longitudinal wave velocity’s 0.27) and density as key factors, with significantly higher contributions than longitudinal wave velocity. This study provides quantitative evidence for data augmentation and machine learning in predicting rock thermophysical parameters, promoting intelligent geothermal resource development. Full article
Show Figures

Figure 1

17 pages, 1522 KB  
Article
Characterization of Solid Particulates to Be Used as Storage as Well as Heat Transfer Medium in Concentrated Solar Power Systems
by Rageh Saeed, Syed Noman Danish, Shaker Alaqel, Nader S. Saleh, Eldwin Djajadiwinata, Hany Al-Ansary, Abdelrahman El-Leathy, Abdulelah Alswaiyd, Zeyad Al-Suhaibani, Zeyad Almutairi and Sheldon Jeter
Appl. Sci. 2025, 15(15), 8566; https://doi.org/10.3390/app15158566 - 1 Aug 2025
Viewed by 280
Abstract
Using solid particulates as a heat transfer medium for concentrated solar power (CSP) systems has many advantages, positioning them as a superior option compared with conventional heat transfer media such as steam, oil, air, and molten salt. However, a critical imperative lies in [...] Read more.
Using solid particulates as a heat transfer medium for concentrated solar power (CSP) systems has many advantages, positioning them as a superior option compared with conventional heat transfer media such as steam, oil, air, and molten salt. However, a critical imperative lies in the comprehensive evaluation of the properties of potential solid particulates intended for utilization under such extreme thermal conditions. This paper undertakes an exhaustive examination of both ambient and high-temperature thermophysical properties of four naturally occurring particulate materials, Riyadh white sand, Riyadh red sand, Saudi olivine sand, and US olivine sand, and one well-known engineered particulate material. The parameters under scrutiny encompass loose bulk density, tapped bulk density, real density, sintering temperature, and thermal conductivity. The results reveal that the theoretical density decreases with the increase in temperature. The bulk density of solid particulates depends strongly on the particulate size distribution, as well as on the compaction. The tapped bulk density was found to be larger than the loose density for all particulates, as expected. The sintering test proved that Riyadh white sand is sintered at the highest temperature and pressure, 1300 °C and 50 MPa, respectively. US olivine sand was solidified at 800 °C and melted at higher temperatures. This proves that US olivine sand is not suitable to be used as a thermal energy storage and heat transfer medium in high-temperature particle-based CSP systems. The experimental results of thermal diffusivity/conductivity reveal that, for all particulates, both properties decrease with the increase in temperature, and results up to 475.5 °C are reported. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

17 pages, 1742 KB  
Article
Assessment of Aerodynamic Properties of the Ventilated Cavity in Curtain Wall Systems Under Varying Climatic and Design Conditions
by Nurlan Zhangabay, Aizhan Zhangabay, Kenzhebek Akmalaiuly, Akmaral Utelbayeva and Bolat Duissenbekov
Buildings 2025, 15(15), 2637; https://doi.org/10.3390/buildings15152637 - 25 Jul 2025
Viewed by 405
Abstract
Creating a comfortable microclimate in the premises of buildings is currently becoming one of the priorities in the field of architecture, construction and engineering systems. The increased attention from the scientific community to this topic is due not only to the desire to [...] Read more.
Creating a comfortable microclimate in the premises of buildings is currently becoming one of the priorities in the field of architecture, construction and engineering systems. The increased attention from the scientific community to this topic is due not only to the desire to ensure healthy and favorable conditions for human life but also to the need for the rational use of energy resources. This area is becoming particularly relevant in the context of global challenges related to climate change, rising energy costs and increased environmental requirements. Practice shows that any technical solutions to ensure comfortable temperature, humidity and air exchange in rooms should be closely linked to the concept of energy efficiency. This allows one not only to reduce operating costs but also to significantly reduce greenhouse gas emissions, thereby contributing to sustainable development and environmental safety. In this connection, this study presents a parametric assessment of the influence of climatic and geometric factors on the aerodynamic characteristics of the air cavity, which affect the heat exchange process in the ventilated layer of curtain wall systems. The assessment was carried out using a combined analytical calculation method that provides averaged thermophysical parameters, such as mean air velocity (Vs), average internal surface temperature (tin.sav), and convective heat transfer coefficient (αs) within the air cavity. This study resulted in empirical average values, demonstrating that the air velocity within the cavity significantly depends on atmospheric pressure and façade height difference. For instance, a 10-fold increase in façade height leads to a 4.4-fold increase in air velocity. Furthermore, a three-fold variation in local resistance coefficients results in up to a two-fold change in airflow velocity. The cavity thickness, depending on atmospheric pressure, was also found to affect airflow velocity by up to 25%. Similar patterns were observed under ambient temperatures of +20 °C, +30 °C, and +40 °C. The analysis confirmed that airflow velocity is directly affected by cavity height, while the impact of solar radiation is negligible. However, based on the outcomes of the analytical model, it was concluded that the method does not adequately account for the effects of solar radiation and vertical temperature gradients on airflow within ventilated façades. This highlights the need for further full-scale experimental investigations under hot climate conditions in South Kazakhstan. The findings are expected to be applicable internationally to regions with comparable climatic characteristics. Ultimately, a correct understanding of thermophysical processes in such structures will support the advancement of trends such as Lightweight Design, Functionally Graded Design, and Value Engineering in the development of curtain wall systems, through the optimized selection of façade configurations, accounting for temperature loads under specific climatic and design conditions. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

17 pages, 2256 KB  
Article
Performance Analysis of Different Borehole Heat Exchanger Configurations: A Case Study in NW Italy
by Jessica Maria Chicco, Nicolò Giordano, Cesare Comina and Giuseppe Mandrone
Smart Cities 2025, 8(4), 121; https://doi.org/10.3390/smartcities8040121 - 21 Jul 2025
Viewed by 494
Abstract
The central role of heating and cooling in energy transition has been recognised in recent years, especially with geopolitical developments since February 2022 which demand an acceleration in deploying local energy sources to increase the resilience of the energy sector. Geothermal energy is [...] Read more.
The central role of heating and cooling in energy transition has been recognised in recent years, especially with geopolitical developments since February 2022 which demand an acceleration in deploying local energy sources to increase the resilience of the energy sector. Geothermal energy is a promising and vital option to optimize heating and cooling systems, promoting sustainability of urban environments. To this end, a proper design is of paramount importance to guarantee the energy performance of the whole system. This work deals with the optimization of the technical and geometrical characteristics of borehole heat exchangers (BHEs) as part of a shallow geothermal plant that is assumed to be integrated in an already operating gas-fired DH grid. Thermal performances of three different configurations were analysed according to the geological information that revealed an aquifer at −36 m overlying a poorly permeable marly succession. Numerical simulations validated the geological, hydrogeological, and thermo-physical models by back-analysing the experimental results of a thermal response test (TRT) on a pilot 150 m deep BHE. Five-year simulations were then performed to compare 150 m and 36 m polyethylene 2U, and 36 m steel coaxial BHEs. The coaxial configuration shows the best performance both in terms of specific power (74.51 W/m) and borehole thermal resistance (0.02 mK/W). Outcomes of the study confirm that coupling the best geological and technical parameters ensure the best energy performance and economic sustainability. Full article
(This article belongs to the Special Issue Energy Strategies of Smart Cities)
Show Figures

Figure 1

11 pages, 3779 KB  
Article
Synergistic Enhancement of LiNO3-NaNO3-KNO3-NaNO2 Thermophysical Properties Through Dual Nano-Additives: SiO2 and MgO
by Chuang Zhu, Wenxuan He, Manting Gu, Dan Zhang and Baiyuan Tian
Nanomaterials 2025, 15(14), 1094; https://doi.org/10.3390/nano15141094 - 14 Jul 2025
Viewed by 331
Abstract
LiNO3-NaNO3-KNO3-NaNO2 has a relatively low phase-change temperature, making it suitable for low-temperature heat utilization systems. This study focuses on the performance optimization of the quaternary molten salt to advance its applicability. A series of nanocomposites consisting [...] Read more.
LiNO3-NaNO3-KNO3-NaNO2 has a relatively low phase-change temperature, making it suitable for low-temperature heat utilization systems. This study focuses on the performance optimization of the quaternary molten salt to advance its applicability. A series of nanocomposites consisting of nano-SiO2/MgO and the quaternary salt are prepared. Core thermophysical properties, including phase transition behaviors and thermal transport parameters, are quantified. The incorporation of nano-SiO2/MgO induces moderate adjustments to the melting point and latent heat yet demonstrates an obvious enhancement in specific heat capacity. Optimal doping at 0.7 wt.% SiO2 and 0.3 wt.% MgO yields a molten-state specific heat of 1.51 J/(g·K), representing a 6% increase over the undoped base salt (1.42 J/(g·K)). By combining the thermal diffusivity properties of the samples, this study found that the doping of nanoparticles typically induces new structures in molten salts that tend to enhance the specific heat capacity while simultaneously reducing thermal diffusivity. Full article
(This article belongs to the Special Issue Advances in Nano-Enhanced Thermal Functional Materials)
Show Figures

Figure 1

23 pages, 4322 KB  
Article
Thermal, Metallurgical, and Mechanical Analysis of Single-Pass INC 738 Welded Parts
by Cherif Saib, Salah Amroune, Mohamed-Saïd Chebbah, Ahmed Belaadi, Said Zergane and Barhm Mohamad
Metals 2025, 15(6), 679; https://doi.org/10.3390/met15060679 - 18 Jun 2025
Viewed by 441
Abstract
This study presents numerical analyses of the thermal, metallurgical, and mechanical processes involved in welding. The temperature fields were computed by solving the transient heat transfer equation using the ABAQUS/Standard 2024 finite element solver. Two types of moving heat sources were applied: a [...] Read more.
This study presents numerical analyses of the thermal, metallurgical, and mechanical processes involved in welding. The temperature fields were computed by solving the transient heat transfer equation using the ABAQUS/Standard 2024 finite element solver. Two types of moving heat sources were applied: a surface Gaussian distribution and a volumetric model, both implemented via DFLUX subroutines to simulate welding on butt-jointed plates. The simulation accounted for key welding parameters, including current, voltage, welding speed, and plate dimensions. The thermophysical properties of the INC 738 LC nickel superalloy were used in the model. Solidification characteristics, such as dendritic arm spacing, were estimated based on cooling rates around the weld pool. The model also calculated transverse residual stresses and applied a hot cracking criterion to identify regions vulnerable to cracking. The peak transverse stress, recorded in the heat-affected zone (HAZ), reached 1.1 GPa under Goldak’s heat input model. Additionally, distortions in the welded plates were evaluated for both heat source configurations. Full article
Show Figures

Figure 1

25 pages, 1579 KB  
Article
Properties of Pellets from Forest and Agricultural Biomass and Their Mixtures
by Mariusz Jerzy Stolarski, Michał Krzyżaniak and Ewelina Olba-Zięty
Energies 2025, 18(12), 3137; https://doi.org/10.3390/en18123137 - 14 Jun 2025
Cited by 2 | Viewed by 525
Abstract
Pellets can be produced not only from forest dendromass but also from agricultural dendromass derived from short rotation coppice (SRC) plantations, as well as surplus straw from cereal and oilseed crops. This study aimed to determine the thermophysical properties and elemental composition of [...] Read more.
Pellets can be produced not only from forest dendromass but also from agricultural dendromass derived from short rotation coppice (SRC) plantations, as well as surplus straw from cereal and oilseed crops. This study aimed to determine the thermophysical properties and elemental composition of 16 types of pellets produced from four types of forest biomass (Scots pine I, alder, beech, and Scots pine II), four types of agricultural biomass (SRC willow, SRC poplar, wheat straw, and rapeseed straw), and eight types of pellets from mixtures of wood biomass and straw. Another aim of the study was to demonstrate which pellet types met the parameters specified in three standards, categorizing pellets into thirteen different classes. As expected, pellets produced from pure Scots pine sawdust exhibited the best quality. The quality of the pellets obtained from mixtures of dendromass and straw deteriorated with an increase in the proportion of cereal straw or rapeseed straw in relation to pure Scots pine sawdust and SRC dendromass. The bulk density of the pellets ranged from 607.9 to 797.5 kg m−3, indicating that all 16 pellet types met the requirements of all six classes of the ISO standard. However, it was determined that four types of pellets (rapeseed, wheat, and two others from biomass mixtures) did not meet the necessary requirements of the Premium and Grade 1 classes. The ash content ranged from 0.44% DM in pellets from pure Scots pine sawdust to 5.00% DM in rapeseed straw pellets. Regarding ash content, only the pellets made from pure Scots pine sawdust met the stringent requirements of the highest classes, A1, Premium, and Grade 1. In contrast, all 16 types of pellets fulfilled the criteria for the lower classes, i.e., Utility and Grade 4. Concerning the nitrogen (N) content, seven types of pellets met the strict standards of classes A1 and Grade 1, while all the pellets satisfied the less rigorous requirements of classes B and Grade 4. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

31 pages, 6448 KB  
Review
Review of Research on Supercritical Carbon Dioxide Axial Flow Compressors
by Yong Tian, Dexi Chen, Yuming Zhu, Peng Jiang, Bo Wang, Xiang Xu and Xiaodi Tang
Energies 2025, 18(12), 3081; https://doi.org/10.3390/en18123081 - 11 Jun 2025
Viewed by 652
Abstract
Since the beginning of the 21st century, the supercritical carbon dioxide (sCO2) Brayton cycle has emerged as a hot topic of research in the energy field. Among its key components, the sCO2 compressor has received significant attention. In particular, axial-flow [...] Read more.
Since the beginning of the 21st century, the supercritical carbon dioxide (sCO2) Brayton cycle has emerged as a hot topic of research in the energy field. Among its key components, the sCO2 compressor has received significant attention. In particular, axial-flow sCO2 compressors are increasingly being investigated as power systems advance toward high power scaling. This paper reviews global research progress in this field. As for performance characteristics, currently, sCO2 axial-flow compressors are mostly designed with large mass flow rates (>100 kg/s), near-critical inlet conditions, multistage configurations with relatively low stage pressure ratios (1.1–1.2), and high isentropic efficiencies (87–93%). As for internal flow characteristics, although similarity laws remain applicable to sCO2 turbomachinery, the flow dynamics are strongly influenced by abrupt variations in thermophysical properties (e.g., viscosities, sound speeds, and isentropic exponents). High Reynolds numbers reduce frictional losses and enhance flow stability against separation but increase sensitivity to wall roughness. The locally reduced sound speed may induce shock waves and choke, while drastic variation in the isentropic exponent makes the multistage matching difficult and disperses normalized performance curves. Additionally, the quantitative impact of a near-critical phase change remains insufficiently understood. As for the experimental investigation, so far, it has been publicly shown that only the University of Notre Dame has conducted an axial-flow compressor experimental test, for the first stage of a 10 MW sCO2 multistage axial-flow compressor. Although the measured efficiency is higher than that of all known sCO2 centrifugal compressors, the inlet conditions evidently deviate from the critical point, limiting the applicability of the results to sCO2 power cycles. As for design and optimization, conventional design methodologies for axial-flow compressors require adaptations to incorporate real-gas property correction models, re-evaluations of maximum diffusion (e.g., the DF parameter) for sCO2 applications, and the intensification of structural constraints due to the high pressure and density of sCO2. In conclusion, further research should focus on two aspects. The first is to carry out more fundamental cascade experiments and numerical simulations to reveal the complex mechanisms for the near-critical, transonic, and two-phase flow within the sCO2 axial-flow compressor. The second is to develop loss models and design a space suitable for sCO2 multistage axial-flow compressors, thus improving the design tools for high-efficiency and wide-margin sCO2 axial-flow compressors. Full article
Show Figures

Figure 1

17 pages, 1310 KB  
Article
Influence of Building Envelope Modeling Parameters on Energy Simulation Results
by Simon Muhič, Dimitrije Manić, Ante Čikić and Mirko Komatina
Sustainability 2025, 17(12), 5276; https://doi.org/10.3390/su17125276 - 7 Jun 2025
Viewed by 549
Abstract
This study investigates the influence of input values for building energy model parameters on simulation results, with the aim of improving the reliability and sustainability of energy performance assessments. Dynamic simulations were conducted in TRNSYS for three theoretical multi-residential buildings, varying parameters such [...] Read more.
This study investigates the influence of input values for building energy model parameters on simulation results, with the aim of improving the reliability and sustainability of energy performance assessments. Dynamic simulations were conducted in TRNSYS for three theoretical multi-residential buildings, varying parameters such as referent model dimensions, infiltration rates, envelope thermophysical properties, and interior thermal capacitance. The case study, based in Slovenia, demonstrates that glazing-related parameters, particularly the solar heat gain coefficient (g-value), exert the most significant influence—reducing the g-value from 0.62 to 0.22 decreased simulated heating (qH,nd) and cooling (qC,nd) demands by 25% and 95%, respectively. In contrast, referent dimensions for modeled floor area proved least influential. For Building III (BSF = 0.36), dimensional variations altered results by less than ±1%, whereas, for Building I (BSF = 0.62), variations reached up to ±20%. In general, lower shape factors yield more robust energy models that are less sensitive to input deviations. These findings are critical for promoting resource-efficient simulation practices and ensuring that energy modeling contributes effectively to sustainable building design. Understanding which inputs warrant detailed attention supports more targeted and meaningful simulation workflows, enabling more accurate and impactful strategies for building energy efficiency and long-term environmental performance. Full article
Show Figures

Figure 1

18 pages, 12819 KB  
Article
Investigation of Droplet Spreading and Rebound Dynamics on Superhydrophobic Surfaces Using Machine Learning
by Samo Jereb, Jure Berce, Robert Lovšin, Matevž Zupančič, Matic Može and Iztok Golobič
Biomimetics 2025, 10(6), 357; https://doi.org/10.3390/biomimetics10060357 - 1 Jun 2025
Viewed by 832
Abstract
The spreading and rebound of impacting droplets on superhydrophobic interfaces is a complex phenomenon governed by the interconnected contributions of surface, fluid and environmental factors. In this work, we employed a collection of 1498 water–glycerin droplet impact experiments on monolayer-functionalized laser-structured aluminum samples [...] Read more.
The spreading and rebound of impacting droplets on superhydrophobic interfaces is a complex phenomenon governed by the interconnected contributions of surface, fluid and environmental factors. In this work, we employed a collection of 1498 water–glycerin droplet impact experiments on monolayer-functionalized laser-structured aluminum samples to train, validate and optimize a machine learning regression model. To elucidate the role of each influential parameter, we analyzed the model-predicted individual parameter contributions on key descriptors of the phenomenon, such as contact time, maximum spreading coefficient and rebound efficiency. Our results confirm the dominant contribution of droplet impact velocity while highlighting that the droplet spreading phase appears to be independent of surface microtopography, i.e., the depth and width of laser-made features. Interestingly, once the rebound transitions to the retraction stage, the importance of the unwetted area fraction is heightened, manifesting in higher rebound efficiency on samples with smaller distances between laser-fabricated microchannels. Finally, we exploited the trained models to develop empirical correlations for predicting the maximum spreading coefficient and rebound efficiency, both of which strongly outperform the currently published models. This work can aid future studies that aim to bridge the gap between the observed macroscale surface-droplet interactions and the microscale properties of the interface or the thermophysical properties of the fluid. Full article
Show Figures

Figure 1

26 pages, 4568 KB  
Article
Optimization of ATIG Weld Based on a Swarm Intelligence Approach: Application to the Design of Welding in Selected Manufacturing Processes
by Kamel Touileb and Sahbi Boubaker
Crystals 2025, 15(6), 523; https://doi.org/10.3390/cryst15060523 - 29 May 2025
Viewed by 510
Abstract
Tungsten Inert Gas (TIG) welding is a widespread welding process used in the industry for high-quality joints. However, this welding process suffers from lower productivity. Activated Tungsten Inert Gas (ATIG) is a variant of the TIG that aims to increase the depth penetration [...] Read more.
Tungsten Inert Gas (TIG) welding is a widespread welding process used in the industry for high-quality joints. However, this welding process suffers from lower productivity. Activated Tungsten Inert Gas (ATIG) is a variant of the TIG that aims to increase the depth penetration capability of conventional TIG welding. This is achieved by applying a thin coating of activating flux material onto the workpiece surface before welding. This work investigates the effect of the thermophysical properties of individual metallic oxide fluxes on 316L stainless steel weld morphology. Four levels of current intensity (120, 150, 180, 200 A) are considered. The weld speed up to 15 cm/min and arc length of 2 mm are maintained constant. Thirteen oxides were tested under various levels of current intensity in addition to multiple thermophysical properties combinations, and the depth penetration (D) and the aspect ratio (R) were recorded. This process has provided 52 combinations (13 oxides * 4 currents). Based on the numerical observations, linear and nonlinear models for describing the effect of the thermophysical parameters on the weld characteristics were tuned using a particle swarm optimization algorithm. While the linear model provided good prediction accuracy, the nonlinear exponential model outperformed the linear one for the depth yielding a mean absolute percentage error of 17%, a coefficient of determination of 0.8266, and a root mean square error of 0.9665 mm. The inverse optimization process, where the depth penetration ranged from 1.5 mm to 12 mm, thus covering a large spectrum of industries, the automotive, power plants, and construction industries, was solved to determine the envelopes’ lower and upper limits of optimal oxide thermophysical properties. The results that allowed the design of the fluxes to be used in advance were promising since they provided the oxide designer with the numerical ranges of the oxide components to achieve the targeted depths. Future directions of this work can be built around investigating additional nonlinear models, including saturation and dead-zone, to efficiently estimate the effect of the thermophysical properties on the welding process of other materials. Full article
Show Figures

Figure 1

15 pages, 5502 KB  
Article
Thermophysical Enhancement of Graphene Oxide-Enhanced Quaternary Nitrate for Concentrated Solar Power Applications
by Yingchun Wang, Haonan Zhang, Hantao Liu, Hong Hou, Yonghong Guo and Wenrui Chang
Energies 2025, 18(10), 2607; https://doi.org/10.3390/en18102607 - 18 May 2025
Viewed by 429
Abstract
With the continuous progress of global renewable energy, the reliability of the performance of heat storage materials is becoming increasingly important. In this study, graphene oxide (GO) was used as an additive to investigate its influence on the heat storage performance of quaternary [...] Read more.
With the continuous progress of global renewable energy, the reliability of the performance of heat storage materials is becoming increasingly important. In this study, graphene oxide (GO) was used as an additive to investigate its influence on the heat storage performance of quaternary nitrate molten salt. Quaternary nitrate molten salts doped in different proportions of 0.5, 1.0, 1.5, and 2.0 wt.% were prepared by the high-temperature hot melting method, and their properties were characterized in detail. The results show that the optimal concentration value of graphene oxide nanosheets is 1.0 wt.%, at which point the thermal parameters such as the specific heat capacity and thermal conductivity of the molten salt are optimal. Meanwhile, differential scanning calorimetry and thermogravimetric analysis tests verified the enhanced effect of the thermal performance. Furthermore, transmission electron microscopy and scanning electron microscopy analyses indicated that the insertion and encapsulation of nanosheets in the channel structure between nitrate crystals were effective. The modification methods used in this paper can enhance the thermophysical properties of nitrates. Meanwhile, the methods proposed in this paper can provide new ideas for the practice of heat-requiring systems. Full article
Show Figures

Figure 1

18 pages, 6824 KB  
Article
Study of Phase Transformations in ZrO2 Ceramics Stabilized by Y2O3 and Their Role in Changing Strength Characteristics and Heat Resistance
by Inesh E. Kenzhina, Artem L. Kozlovskiy, Meiram Begentayev, Petr Blynskiy, Aktolkyn Tolenova and Anatoli I. Popov
Sustainability 2025, 17(10), 4284; https://doi.org/10.3390/su17104284 - 8 May 2025
Cited by 1 | Viewed by 604
Abstract
The results obtained reflect the determination of the possibility of the stability enhancement of the strength and thermal parameters of zirconium-containing ceramic materials via the addition of a stabilizing additive in the form of Y2O3. According to the data [...] Read more.
The results obtained reflect the determination of the possibility of the stability enhancement of the strength and thermal parameters of zirconium-containing ceramic materials via the addition of a stabilizing additive in the form of Y2O3. According to the data obtained, a connection between phase transformations caused by the addition of the stabilizing Y2O3 additive and an increase in strength characteristics, the growth of which is also due to the formation of the dispersion hardening effect during grain size reduction, was established. It was found that the formation of the stabilized Zr(Y)O2 phase results in thermal conductivity reduction, while the formation of the perovskite phase YZrO3 has a positive effect on the thermophysical parameters of ceramics. It was determined that the change in phase composition associated with the formation of the tetragonal Zr(Y)O2 phase at low dopant concentrations leads to an increase in strength characteristics, but a decrease in thermal conductivity, while the formation of the YZrO3 phase in the structure contributes to a growth not only in strength, but also thermophysical parameters. Full article
Show Figures

Figure 1

14 pages, 2837 KB  
Article
Modeling the Temperature and Pressure Variations of Supercritical Carbon Dioxide in Coiled Tubing
by Zhixing Luan and Peng Wang
Processes 2025, 13(4), 1230; https://doi.org/10.3390/pr13041230 - 18 Apr 2025
Viewed by 410
Abstract
The use of supercritical carbon dioxide (SC-CO2) coiled tubing drilling technology for developing heavy oil and other special reservoirs offers significant advantages, including non-pollution of oil layers, prevention of clay swelling, avoidance of reservoir damage, compact footprint, and enhanced oil recovery, [...] Read more.
The use of supercritical carbon dioxide (SC-CO2) coiled tubing drilling technology for developing heavy oil and other special reservoirs offers significant advantages, including non-pollution of oil layers, prevention of clay swelling, avoidance of reservoir damage, compact footprint, and enhanced oil recovery, making it a highly promising innovative drilling technology. The thermo-hydraulic coupling characteristics of SC-CO2 in helical coiled tubes are critical to the design of SC-CO2 coiled tubing drilling systems. However, existing models often neglect thermal conduction, variable thermophysical properties, and friction-compression coupling effects, leading to significant deviations in the prediction of temperature and pressure variations. Considering heat transmission and fluid dynamics, a coiled tube heat-transfer model which considers varying properties of both pressure and temperature has been developed based on an optimized convective heat-transfer coefficient. Then, the physical parameters of the carbon dioxide in the helical coiled tubing were researched. Results indicated that the temperature change of carbon dioxide in helical coiled tubing was small due to the low temperature difference between the carbon dioxide and the air as well as the existence of an air interlayer and low natural convective heat-transfer efficiency. The drop in pressure of the carbon dioxide increased with increasing coiled tubing length, and the pressure was half that of the conventional drilling fluid in the same condition due to its low viscosity. The density of carbon dioxide in the helical coiled tubing changed from 1078 kg/m3 to 1047 kg/m3 with increasing coiled tubing length under the conditions stated herein, and the carbon dioxide remained liquid throughout the whole process. Full article
Show Figures

Figure 1

Back to TopTop