Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = thiol–epoxy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3584 KB  
Article
Multi-Functional Hybrid Terpolymer Thermosets Based on Thiols Bio-Based Epoxy and Benzoxazine Monomers
by Madalina Ioana Necolau, Elena Iuliana Biru, Elena Olaret and Horia Iovu
Polymers 2025, 17(17), 2389; https://doi.org/10.3390/polym17172389 - 1 Sep 2025
Viewed by 438
Abstract
Hybrid thermosetting terpolymers based on epoxidized linseed oil (ELO), eugenol-based benzoxazine monomer (EPB), and thiols (2SH and 3SH) were synthesized and studied by focusing on the effects of the thiol-bearing functionality over the final performances. The curing dynamics were monitored by differential scanning [...] Read more.
Hybrid thermosetting terpolymers based on epoxidized linseed oil (ELO), eugenol-based benzoxazine monomer (EPB), and thiols (2SH and 3SH) were synthesized and studied by focusing on the effects of the thiol-bearing functionality over the final performances. The curing dynamics were monitored by differential scanning calorimetry (DSC) and Fourier transform infrared spectrometry (FTIR). FTIR results showed that the curing process takes place in multiple steps and depends on the concentration of thiol used as a crosslinker. At the same time, the complexity of the reactions that take place within each system was highlighted by the curing profiles from DSC. Dynamic mechanical analysis (DMA) and nanoindentation data revealed that the mechanical features of the terpolymers can be modulated to achieve high stiffness, as in the case where 2SH and 3SH thiols were used in 0.25 wt.% or increased flexibility where 1% thiol concentrations were employed. Higher crosslinking density for hybrid terpolymers in comparison with the epoxy/benzoxazine sample indicated a good compatibility between the monomers and the crosslinking agents and the formation of additional chemical bonds within the networks. The ternary samples demonstrated good thermal stability (up to 300 °C) and high residual mass (>25%), which make them suitable candidates as flame-resistant coatings. Full article
(This article belongs to the Collection Design and Synthesis of Polymers)
Show Figures

Figure 1

15 pages, 3732 KB  
Article
Near-Infrared Light-Induced Deep Curing of Thiol–Epoxy Networks Based on Upconversion Photochemistry
by Pin Yang, Yaoxin Huang, Xiaoxuan Liu and Zhiquan Li
Coatings 2025, 15(4), 494; https://doi.org/10.3390/coatings15040494 - 21 Apr 2025
Viewed by 831
Abstract
Thiol–epoxy photopolymerization offers exceptional advantages for high-performance protective coatings, yet efficiently curing thick formulations remains a significant challenge due to the limited penetration depth of conventional UV light. Herein, we report a novel near-infrared (NIR) light-activated photopolymerization system for deep-curing applications, strategically integrating [...] Read more.
Thiol–epoxy photopolymerization offers exceptional advantages for high-performance protective coatings, yet efficiently curing thick formulations remains a significant challenge due to the limited penetration depth of conventional UV light. Herein, we report a novel near-infrared (NIR) light-activated photopolymerization system for deep-curing applications, strategically integrating upconversion nanoparticles (UCNPs) as NIR-to-UV converters, isopropylthioxanthone (ITX) as a photosensitizer, and a liquid N-phenylglycine-based photobase generator (NPG-TBD) with enhanced resin solubility. Upon 980 nm NIR irradiation, photogenerated TBD efficiently catalyzes thiol–epoxy polymerization through an anionic mechanism, enabling uniform network formation with epoxy and thiol functional group conversions greater than 90% throughout samples exceeding 2.5 cm in thickness. The resulting coatings exhibit excellent mechanical properties including 3H pencil hardness, strong adhesion (0 grade), and good flexibility (2 mm), significantly outperforming conventional UV systems limited to approximately 1.5 mm. Additionally, the cured materials demonstrate multifunctional characteristics including distinctive upconversion luminescence and dual-responsive shape memory behavior. This approach addresses critical limitations in deep-photocuring technology while offering significant potential for applications in protective coatings for marine infrastructure, chemical storage facilities, and smart materials requiring both substantial barrier properties and programmable responsiveness. Full article
Show Figures

Figure 1

19 pages, 2471 KB  
Article
Thiol-Epoxy Click Chemistry: The Synthesis of Vicinal Amino Alcohols Containing a 1,2,4-Triazole Ring
by Artyom V. Petrosyan, Astghik A. Shahkhatuni, Andranik M. Davinyan, Karine S. Avetisyan, Tariel V. Ghochikyan, Melanya A. Samvelyan, Valentine G. Nenajdenko and Armen S. Galstyan
Chemistry 2025, 7(2), 53; https://doi.org/10.3390/chemistry7020053 - 1 Apr 2025
Cited by 1 | Viewed by 2986
Abstract
As examples of “Click Chemistry”, the reaction of 1-(oxiran-2-ylmethyl)piperidine with several 1,2,4-triazoles derivatives was studied. As a result, the reaction shows that the oxirane ring opens regiospecifically, according to Krasusky’s rule, without using a catalyst. The basic nitrogen present in 1-(oxiran-2-ylmethyl)piperidine has a [...] Read more.
As examples of “Click Chemistry”, the reaction of 1-(oxiran-2-ylmethyl)piperidine with several 1,2,4-triazoles derivatives was studied. As a result, the reaction shows that the oxirane ring opens regiospecifically, according to Krasusky’s rule, without using a catalyst. The basic nitrogen present in 1-(oxiran-2-ylmethyl)piperidine has a catalytic (anchimer) effect. Full article
(This article belongs to the Special Issue Celebrating the 50th Anniversary of Professor Valentine Ananikov)
Show Figures

Graphical abstract

12 pages, 1708 KB  
Article
Fabricating High Strength Bio-Based Dynamic Networks from Epoxidized Soybean Oil and Poly(Butylene Adipate-co-Terephthalate)
by Bin Xu, Zhong-Ming Xia, Rui Zhan and Ke-Ke Yang
Polymers 2024, 16(16), 2280; https://doi.org/10.3390/polym16162280 - 11 Aug 2024
Viewed by 1700
Abstract
Amid the rapid development of modern society, the widespread use of plastic products has led to significant environmental issues, including the accumulation of non-degradable waste and extensive consumption of non-renewable resources. Developing healable, recyclable, bio-based materials from abundant renewable resources using diverse dynamic [...] Read more.
Amid the rapid development of modern society, the widespread use of plastic products has led to significant environmental issues, including the accumulation of non-degradable waste and extensive consumption of non-renewable resources. Developing healable, recyclable, bio-based materials from abundant renewable resources using diverse dynamic interactions attracts increasing global attention. However, achieving a good balance between the self-healing capacity and mechanical performance, such as strength and toughness, remains challenging. In our study, we address this challenge by developing a new type of dynamic network from epoxidized soybean oil (ESO) and poly(butylene adipate-co-terephthalate) (PBAT) with good strength and toughness. For the synthetic strategy, a thiol–epoxy click reaction was conducted to functionalize ESO with thiol and hydroxyl groups. Subsequently, a curing reaction with isocyanates generated dynamic thiourethane and urethane bonds with different bonding energies in the dynamic networks to reach a trade-off between dynamic features and mechanical properties; amongst these, the thiourethane bonds with a lower bonding energy provide good dynamic features, while the urethane bonds with a higher bonding energy ensure good mechanical properties. The incorporation of flexible PBAT segments to form the rational multi-phase structure with crystalline domains further enhanced the products. A typical sample, OTSO100-PBAT100, exhibited a tensile strength of 33.2 MPa and an elongation at break of 1238%, demonstrating good healing capacity and desirable mechanical performance. This study provides a promising solution to contemporary environmental and energy challenges by developing materials that combine mechanical and repair properties. It addresses the specific gap of achieving a trade-off between tensile strength and elongation at break in bio-based self-healing materials, promising a wide range of applications. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

17 pages, 4688 KB  
Article
Novel Reactive Polyhedral Oligomeric Silsesquioxane-Reinforced and Toughened Epoxy Resins for Advanced Composites
by Weibo Liu, Caiyun Wang, Yu Feng, Yongfeng Chen, Liqiang Wan, Farong Huang, Zuozhen Liu, Jianhua Qian and Weiping Liu
Polymers 2024, 16(13), 1877; https://doi.org/10.3390/polym16131877 - 1 Jul 2024
Cited by 5 | Viewed by 1828
Abstract
Most toughening methods for epoxy resins are usually used at the expense of other properties. Some polyhedral oligomeric silsesquioxanes (POSSs) with both a rigid Si-O-Si structure and flexible organic chain segments could be expected to be effective toughening agents. In this study, three [...] Read more.
Most toughening methods for epoxy resins are usually used at the expense of other properties. Some polyhedral oligomeric silsesquioxanes (POSSs) with both a rigid Si-O-Si structure and flexible organic chain segments could be expected to be effective toughening agents. In this study, three reactive polyhedral oligomeric silsesquioxanes with a thiol group (OMPPS), a carboxyl group (OCOPS), and an epoxy group (OGCPS) were synthesized and characterized. They were utilized as modifiers to toughen 3-(oxiran-2-ylmethoxy)-N,N-bis(oxiran-2-ylmethyl)aniline (AFG-90MH)/4,4′-methylenebis(2-ethylaniline) (MOEA) (epoxy resin) with different molar ratios to obtain hybrid resins named OMPPS-EP-i, OCOPS-EP-j, and OGCPS-EP-k. The effects of the amount of modifier added and the length of the organic chain on the cage structure on various properties of the hybrid resins were investigated. The results show that all three modifiers show good compatibility with the epoxy resin. The hybrid resins have a low viscosity at 45~85 °C and can be cured at a low temperature (110 °C). The cured hybrid resins display improved toughness. Typically, the critical stress intensity factor (KIC) and impact strength of OGCPS-EP-0.6-C are 2.54 MPa∙m−1/2 and 19.33 kJ∙m−2, respectively, which increased by 58.75% and 22.48% compared with the pristine epoxy resin, respectively. In addition, the glass transition temperature and flexural strength of the hybrid resins are basically unchanged. Full article
(This article belongs to the Special Issue Advances in Functional Rubber and Elastomer Composites II)
Show Figures

Graphical abstract

19 pages, 8137 KB  
Article
Influence of Thiol-Functionalized Polysilsesquioxane/Phosphorus Flame-Retardant Blends on the Flammability and Thermal, Mechanical, and Volatile Organic Compound (VOC) Emission Properties of Epoxy Resins
by Young-Hun Kim, Jeong Ju Baek, Ki Cheol Chang, Ho Sun Lim, Myung-Seok Choi, Won-Gun Koh and Gyojic Shin
Polymers 2024, 16(6), 842; https://doi.org/10.3390/polym16060842 - 19 Mar 2024
Cited by 6 | Viewed by 2382
Abstract
In this study, thiol-functionalized ladder-like polysesquioxanes end-capped with methyl and phenyl groups were synthesized via a simple sol-gel method and characterized through gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and thermogravimetric analysis (TGA). Additionally, epoxy blends of [...] Read more.
In this study, thiol-functionalized ladder-like polysesquioxanes end-capped with methyl and phenyl groups were synthesized via a simple sol-gel method and characterized through gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and thermogravimetric analysis (TGA). Additionally, epoxy blends of different formulations were prepared. Their structural, flame-retardant, thermal, and mechanical properties, as well as volatile organic compound (VOC) emissions, were determined using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), TGA, scanning electron microscopy (SEM), limiting oxygen index (LOI), cone calorimetry, and a VOC analyzer. Compared to epoxy blends with flame retardants containing elemental phosphorus alone, those with flame retardants containing elemental phosphorus combined with silicon and sulfur exhibited superior thermal, flame-retardant, and mechanical properties with low VOC emissions. SEM of the residual char revealed a dense and continuous morphology without holes or cracks. In particular, LOI values for the combustion of methyl and phenyl end-capped polysilsesquioxane mixtures were 32.3 and 33.7, respectively, compared to 28.4% of the LOI value for the blends containing only phosphorus compounds. The silicon–sulfur–phosphorus-containing blends displayed reduced flammability concerning the blends using a flame retardant containing only phosphorus. This reflects the cooperative effects of various flame-retardant moieties. Full article
(This article belongs to the Special Issue Resins for Additive Manufacturing)
Show Figures

Graphical abstract

20 pages, 4366 KB  
Review
Chemistry of Polythiols and Their Industrial Applications
by Seung-Mo Hong, Oh Young Kim and Seok-Ho Hwang
Materials 2024, 17(6), 1343; https://doi.org/10.3390/ma17061343 - 14 Mar 2024
Cited by 5 | Viewed by 3947
Abstract
Thiols can react with readily available organic substrates under benign conditions, making them suitable for use in chemical, biological, physical, and materials and engineering research areas. In particular, the highly efficient thiol-based click reaction includes the reaction of radicals with electron-rich enes, Michael [...] Read more.
Thiols can react with readily available organic substrates under benign conditions, making them suitable for use in chemical, biological, physical, and materials and engineering research areas. In particular, the highly efficient thiol-based click reaction includes the reaction of radicals with electron-rich enes, Michael addition with electron-poor enes, carbonyl addition with isocyanate SN2 ring opening with epoxies, and SN2 nucleophilic substitution with halogens. This mini review provides insights into emerging venues for their industrial applications, especially for the applications of thiol-ene, thiol–isocyanate, and thiol–epoxy reactions, highlighting a brief chemistry of thiols as well as various approaches to polythiol synthesis. Full article
Show Figures

Figure 1

17 pages, 5738 KB  
Article
Effect of Synthetic Low-Odor Thiol-Based Hardeners Containing Hydroxyl and Methyl Groups on the Curing Behavior, Thermal, and Mechanical Properties of Epoxy Resins
by Young-Hun Kim, Jeong Ju Baek, Ki Cheol Chang, Baek Soo Park, Won-Gun Koh and Gyojic Shin
Polymers 2023, 15(13), 2947; https://doi.org/10.3390/polym15132947 - 4 Jul 2023
Cited by 4 | Viewed by 3099
Abstract
A novel thiol-functionalized polysilsesqioxane containing hydroxyl and methyl groups was synthesized using a simple acid-catalyzed sol–gel method to develop an epoxy hardener with low odor, low volatile organic compound (VOC) emissions, and fast curing at low temperatures. The synthesized thiol-based hardeners were characterized [...] Read more.
A novel thiol-functionalized polysilsesqioxane containing hydroxyl and methyl groups was synthesized using a simple acid-catalyzed sol–gel method to develop an epoxy hardener with low odor, low volatile organic compound (VOC) emissions, and fast curing at low temperatures. The synthesized thiol-based hardeners were characterized using Fourier transform infrared spectroscopy, nuclear magnetic resonance, thermogravimetric analysis (TGA), and gel permeation chromatography and compared with commercially available hardeners in terms of odor intensity and VOC emissions using the air dilution olfaction method and VOC analysis. The curing behavior and thermal and mechanical properties of the epoxy compounds prepared with the synthesized thiol-based hardeners were also evaluated. The results showed that synthetic thiol-based hardeners containing methyl and hydroxyl groups initiated the curing reaction of epoxy compounds at 53 °C and 45 °C, respectively. In contrast, commercial thiol-based hardeners initiated the curing reaction at 67 °C. Additionally, epoxy compounds with methyl-containing synthetic thiol-based hardeners exhibited higher TGA at a 5% weight loss temperature (>50 °C) and lap shear strength (20%) than those of the epoxy compounds with commercial thiol-based hardeners. Full article
(This article belongs to the Special Issue Research and Application of Polymer Adhesives)
Show Figures

Graphical abstract

14 pages, 2312 KB  
Article
Facile Synthesis of Sulfur-Containing Functionalized Disiloxanes with Nonconventional Fluorescence by Thiol–Epoxy Click Reaction
by Jing Tang, Shengyu Feng and Dengxu Wang
Int. J. Mol. Sci. 2023, 24(9), 7785; https://doi.org/10.3390/ijms24097785 - 24 Apr 2023
Cited by 5 | Viewed by 2189
Abstract
Herein, a series of novel sulfur-containing functionalized disiloxanes based on a low-cost and commercially available material, i.e., 1,3-bis(3-glycidoxypropyl)-1,1,3,3-tetramethyldisiloxane, and various thiol compounds were prepared by thiol–epoxy click reaction. It was found that both lithium hydroxide (LiOH) and tetrabutylammonium fluoride (TBAF) have high catalytic [...] Read more.
Herein, a series of novel sulfur-containing functionalized disiloxanes based on a low-cost and commercially available material, i.e., 1,3-bis(3-glycidoxypropyl)-1,1,3,3-tetramethyldisiloxane, and various thiol compounds were prepared by thiol–epoxy click reaction. It was found that both lithium hydroxide (LiOH) and tetrabutylammonium fluoride (TBAF) have high catalytic activity after optimizing the reaction condition, and the reaction can be carried out with high yields, excellent regioselectivity, mild reaction condition, and good tolerance of functional groups. These compounds exhibit excellent nonconventional fluorescence due to the formation of coordination bonds between Si atoms and heteroatoms (e.g., S or N) and can emit blue fluorescence upon ultraviolet (UV) irradiation. These results demonstrate that the thiol–epoxy click reaction could promisingly act as an efficient organosilicon synthetic methodology to construct various organosilicon materials with novel structures and functionality, and thus their application scope will be significantly expanded. Full article
Show Figures

Graphical abstract

15 pages, 5558 KB  
Article
Fabrication of Woven Jute Fiber Epoxy Bio-Composites through the Epoxy/Thiol-Ene Photopolymerization Technique
by Ricardo Acosta Ortiz, Roberto Yañez Macías, José de Jesús Ku Herrera and Aida Esmeralda García Valdez
Polymers 2023, 15(1), 60; https://doi.org/10.3390/polym15010060 - 23 Dec 2022
Cited by 5 | Viewed by 3053
Abstract
An eco-friendly epoxy/thiol-ene photopolymerization (ETEP) process was employed to prepare epoxy bio-composites using a commercial biobased epoxy resin and a woven jute fabric as reinforcement. In this process the components of the thiol-ene system, an allyl-functionalized ditertiary amine curing agent, a multifunctional thiol [...] Read more.
An eco-friendly epoxy/thiol-ene photopolymerization (ETEP) process was employed to prepare epoxy bio-composites using a commercial biobased epoxy resin and a woven jute fabric as reinforcement. In this process the components of the thiol-ene system, an allyl-functionalized ditertiary amine curing agent, a multifunctional thiol and a radical photoinitiator, were added to the epoxy resin to produce a polyether–polythioether crosslinked co-network. Moreover, the jute fibers were functionalized with thiol groups using the 3-mercaptopropyl (trimethoxysilane) with the purpose of creating a chemically bonded polymeric matrix/fiber system. The obtained bio-composites prepared with the thiol-functionalized cellulose fibers exhibited an increase up to 52% and 40% in flexural modulus and strength with respect to the non-functionalized counterparts. Under the three-point bending loadings, the composites displayed higher deformation at break and toughness due to the presence of polythioethers in the co-network. The prepared bio-composites developed in this work are excellent candidates to extend the use of cellulose fibers for structural applications. Full article
(This article belongs to the Special Issue Innovations in Epoxy Polymers)
Show Figures

Graphical abstract

5 pages, 1834 KB  
Proceeding Paper
An Optimized Methodology to Achieve Irreversible Bonding between PDMS and Polyimides for Biomedical Sensors
by Muhammad Farooq, Bilal Amin, Adnan Elahi, William Wijns and Atif Shahzad
Eng. Proc. 2022, 27(1), 14; https://doi.org/10.3390/ecsa-9-13223 - 1 Nov 2022
Cited by 1 | Viewed by 2288
Abstract
Polyimide (PI) and polydimethylsiloxane (PDMS) are widely used materials in biomedical sensor development. The hydrophobic property of PDMS makes it difficult to bind with other materials, such as PI, which is commonly used in sensor applications. This paper employs the chemical functionalization of [...] Read more.
Polyimide (PI) and polydimethylsiloxane (PDMS) are widely used materials in biomedical sensor development. The hydrophobic property of PDMS makes it difficult to bind with other materials, such as PI, which is commonly used in sensor applications. This paper employs the chemical functionalization of the PDMS and PI surfaces via epoxy-thiol click chemistry to achieve irreversible bonding. The bonding strength between the PDMS and PI is tested using a peel-off test method where adhesive and cohesive failures are observed. To demonstrate the importance of strong bonding, a wireless pressure sensor is developed. The sensor is tested for cyclic pressures over 1 million cycles with no evidence of bonding failures. This irreversible bonding can improve sensor integrity, reliability, and stability, especially for biomedical applications. Full article
Show Figures

Figure 1

27 pages, 4533 KB  
Article
Hybrid Tri-Cure Organo-Silicon Coatings for Monument Preservation
by Cory B. Sims, Chamika U. Lenora and Joseph C. Furgal
Coatings 2022, 12(8), 1098; https://doi.org/10.3390/coatings12081098 - 2 Aug 2022
Cited by 8 | Viewed by 4056
Abstract
A coating system integrating three distinct chemistries was developed to protect materials used in monuments and construction. Initial curing is achieved using a UV-initiated thiol-ene reaction to form a non-impressionable/non-sticky surface. Second, amine/epoxy reactions form a firm surface adhesion and give mechanical strength [...] Read more.
A coating system integrating three distinct chemistries was developed to protect materials used in monuments and construction. Initial curing is achieved using a UV-initiated thiol-ene reaction to form a non-impressionable/non-sticky surface. Second, amine/epoxy reactions form a firm surface adhesion and give mechanical strength through consolidation. Third, alkoxysilane sol-gel curing integrates the siloxane network while adding thermal stability, hydrophobicity, and a hardened surface. The final design utilizes a photoacid generator to increase the reaction speed of the second and third curing steps. The coating can be applied by spray, dip, or wipe on methods and exhibits a rapid non-impressionable surface (as fast as 10 min) that resists graffiti and environmental conditions, and is used and stored as a single-component system with a pot life exceeding six months. A series of experiments were used to determine the coating properties and durability, including field testing and accelerated weathering. Full article
(This article belongs to the Special Issue Advanced Coating Material for Heritage Preservation)
Show Figures

Graphical abstract

2 pages, 162 KB  
Correction
Correction: Bok et al. Super-Toughened Fumed-Silica-Reinforced Thiol-Epoxy Composites Containing Epoxide-Terminated Polydimethylsiloxanes. Int. J. Mol. Sci. 2021, 22, 8097
by Goseong Bok, Gayoung Lim, Mingi Kwak and Youngmin Kim
Int. J. Mol. Sci. 2022, 23(15), 8545; https://doi.org/10.3390/ijms23158545 - 1 Aug 2022
Viewed by 1703
Abstract
The authors wish to make the following corrections to the original publication [...] Full article
(This article belongs to the Collection Feature Papers in Materials Science)
15 pages, 2018 KB  
Article
Synthesis of a Curing Agent Derived from Limonene and the Study of Its Performance to Polymerize a Biobased Epoxy Resin Using the Epoxy/Thiol-Ene Photopolymerization Technique
by Ricardo Acosta Ortiz, Rebeca Sadai Sánchez Huerta, Antonio Serguei Ledezma Pérez and Aida E. García Valdez
Polymers 2022, 14(11), 2192; https://doi.org/10.3390/polym14112192 - 28 May 2022
Cited by 8 | Viewed by 3750
Abstract
This study describes the synthesis of a curing agent derived from limonene as well as its application to prepare biobased thermoset polymers via the epoxy/thiol-ene photopolymerization (ETE) method. A biobased commercial epoxy resin was used to synthesize a crosslinked polymeric matrix of polyether-polythioether [...] Read more.
This study describes the synthesis of a curing agent derived from limonene as well as its application to prepare biobased thermoset polymers via the epoxy/thiol-ene photopolymerization (ETE) method. A biobased commercial epoxy resin was used to synthesize a crosslinked polymeric matrix of polyether-polythioether type. The preparation of the curing agent required two steps. First, a diamine intermediate was prepared by means of a thiol-ene coupling reaction between limonene and cysteamine hydrochloride. Second, the primary amino groups of the intermediate compound were alkylated using allyl bromide. The obtained ditertiary amine-functionalized limonene compound was purified and characterized by FTIR and NMR spectroscopies along with GC-MS. The curing agent was formulated with a tetrafunctional thiol in stoichiometric ratio, and a photoinitiator at 1 mol % concentration, as the components of a thiol-ene system (TES). Two formulations were prepared in which molar concentrations of 30 and 40 mol % of the TES were added to the epoxy resin. The kinetics of the ETE photopolymerizations were determined by means of Real-Time FTIR spectroscopy, which demonstrated high reactivity by observing photopolymerization rates in the range of 1.50–2.25 s−1 for the epoxy, double bonds and thiol groups. The obtained polymers were analyzed by thermal and thermo-mechanical techniques finding glass transition temperatures (Tg) of 60 °C and 52 °C for the polymers derived from the formulations with 30 mol % and 40 mol % of TES, respectively. Potential applications for these materials can be foreseen in the area of coatings. Full article
(This article belongs to the Collection Polymerization and Kinetic Studies)
Show Figures

Graphical abstract

14 pages, 31118 KB  
Article
Biodegradable Natural Rubber Based on Novel Double Dynamic Covalent Cross-Linking
by Qinggeng Jiang, Yi Gao, Lusheng Liao, Rentong Yu and Jianhe Liao
Polymers 2022, 14(7), 1380; https://doi.org/10.3390/polym14071380 - 29 Mar 2022
Cited by 10 | Viewed by 5701
Abstract
In this paper, biodegradable epoxidized natural rubber containing cyclic carbonate groups (CNR) was prepared by the reaction between epoxidized natural rubber (ENR) and carbon dioxide. Dynamic disulfide bonds and a boronic ester structure were successfully constructed and then the cross-linking network was formed [...] Read more.
In this paper, biodegradable epoxidized natural rubber containing cyclic carbonate groups (CNR) was prepared by the reaction between epoxidized natural rubber (ENR) and carbon dioxide. Dynamic disulfide bonds and a boronic ester structure were successfully constructed and then the cross-linking network was formed by the thermally initiated “click” reaction between thiol groups of the cross-linker and the residual epoxy groups of ENR. As a result of the exquisite double dynamic covalent structure, the material exhibits high self-healing efficiency. Moreover, by virtue of the cyclic carbonate structure of the CNR, the natural rubber was confirmed to be biodegradable according to the biodegradable measurement. To the best of our knowledge, natural rubber with biodegradable and self-healing characteristics was obtained for the first time. Full article
(This article belongs to the Special Issue Self-Healing Polymers and Vitrimers)
Show Figures

Figure 1

Back to TopTop